JPS6365030A - Method for cooling metallic strip - Google Patents

Method for cooling metallic strip

Info

Publication number
JPS6365030A
JPS6365030A JP20967186A JP20967186A JPS6365030A JP S6365030 A JPS6365030 A JP S6365030A JP 20967186 A JP20967186 A JP 20967186A JP 20967186 A JP20967186 A JP 20967186A JP S6365030 A JPS6365030 A JP S6365030A
Authority
JP
Japan
Prior art keywords
cooling
water
gas
metallic strip
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20967186A
Other languages
Japanese (ja)
Inventor
Kazumasa Mihara
一正 三原
Koichi Tamura
耕一 田村
Satoshi Shibuya
聡 渋谷
Sunao Takeda
武田 砂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20967186A priority Critical patent/JPS6365030A/en
Publication of JPS6365030A publication Critical patent/JPS6365030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To adequately cool a metallic strip at a specified cooling rate in a prescribed temp. range by dividing a gas-water cooler for the high-temp. metallic strip to a plurality in the moving direction of the metallic strip and setting the number of the divisions to be used and the flow rates of water and gas according to treatment conditions. CONSTITUTION:The metallic strip heated in an annealing furnace, etc., is subjected to gas-water cooling by atomizing the water and adding and spraying the same into the cooling gas. The gas-water cooler constituted in the above- mentioned manner is divided to a plurality in the moving direction of the metallic strip and to the cooling zones which are respectively independently controllable in the flow rate. Any or all of the number of the divisions to be used, water flow rate and gas flow rate in the above-mentioned cooling zones are set and the cooling is executed. The metallic strip is thereby cooled at the specified temp. range rate in the prescribed temp. range and the use of the unnecessary driving power by over cooling is prevented even if the line speed changes. This method is easily adapted to cooling conditions over a wide range.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、連続焼鈍炉や連続焼準炉等に適用して好適で
ある金属帯の冷却方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for cooling a metal strip, which is suitable for application to a continuous annealing furnace, a continuous normalizing furnace, etc.

〈従来の技術〉 従来の連続焼鈍炉の加熱部および冷却部は第3図に示す
如きである。すなわち、熱処理される鋼帯1は加熱部2
で所定の温度まで加熱される。この熱源3はコークス炉
ガス等のガス燃料あるいは電気であり、加熱部長さしお
よび熱源3の熱量は鋼帯1の処理量および昇温量あるい
は昇温速度等の冶金的要求により決定される。昇温を終
了した鋼帯1は必要に応じ所定の温度で所定時間均熱さ
れる。
<Prior Art> The heating section and cooling section of a conventional continuous annealing furnace are as shown in FIG. That is, the steel strip 1 to be heat treated is heated in the heating section 2.
is heated to a predetermined temperature. The heat source 3 is gas fuel such as coke oven gas or electricity, and the length of the heating section and the amount of heat of the heat source 3 are determined by metallurgical requirements such as the throughput of the steel strip 1 and the amount or rate of temperature rise. The steel strip 1 whose temperature has been raised is soaked at a predetermined temperature for a predetermined time as necessary.

この条件を満たすべく均熱帯4が設けられている。均熱
を終った鋼帯1は冷却帯5で所定の温度まで所定の速度
で冷却される。冷却の手法としては本発明の対象とする
気水冷却が用いられる。これは冷却ガス6の中に水7を
霧化添加し高温の鋼帯1に吹き付は冷却する手法である
A soaking zone 4 is provided to satisfy this condition. After soaking, the steel strip 1 is cooled down to a predetermined temperature at a predetermined rate in a cooling zone 5. Air-water cooling, which is the object of the present invention, is used as a cooling method. This is a method in which water 7 is atomized and added to cooling gas 6, and the hot steel strip 1 is sprayed to cool it.

〈発明が解決しよ′うとする問題点〉 本発明の対象とする気水冷却は、冷却ガスと霧化した水
の混合比により冷却能が大きく変えられる長所を持って
いる。一方、従来の冷却帯について省みると冷却帯の長
さは最大のライン速度と所定の温度範囲を冷却するに必
要な時間の積として決定される。このようにして決定さ
れる従来の冷却帯には以下のような問題点があった。
<Problems to be Solved by the Invention> Air-water cooling, which is the object of the present invention, has the advantage that the cooling capacity can be changed greatly depending on the mixing ratio of the cooling gas and the atomized water. On the other hand, considering conventional cooling zones, the length of the cooling zone is determined as the product of the maximum line speed and the time required to cool a given temperature range. The conventional cooling zone determined in this way has the following problems.

すなわち、最大のライン速度のときに所定の冷却速度が
得られるようにすると加熱帯あるいは生産処理要求でラ
イン速度が低下した時最大のライン速度と同一の所定の
温度範囲を同一速度で冷却するに必要な冷却帯長さは短
くなる。したがって、冷却終了温度に到達した点以降に
も冷却装置があり冷却が継続され冷却帯出口では所定の
冷却終了温度を維持することはできなかった。また、一
般に冷却速度については冶金的には最低速度が規定され
ることが多い。このような場合にはライン速度(処理量
)の最低速度を設定して所定の温度範囲を最低冷却速度
で冷却するに要する時間の積S冷却長を設定し、最大ラ
イン速度でもこの冷却長で所定の温度範囲を冷却できる
冷却能力(すなわち、ガス量および水量)を設定してい
た。このような装置では最大ライン速度すなわち装置を
処理量の上で最も効率良く使用しようとするとき、冶金
的に要求される条件を上まわって多大の動力を使って冷
却していたことになる。
In other words, if a predetermined cooling rate is achieved at the maximum line speed, when the line speed decreases due to a heating zone or production process request, the same predetermined temperature range as the maximum line speed can be cooled at the same rate. The required cooling zone length is reduced. Therefore, even after the cooling end temperature is reached, the cooling device is present and cooling continues, making it impossible to maintain a predetermined cooling end temperature at the outlet of the cooling zone. Further, in general, a minimum cooling rate is often specified from a metallurgical perspective. In such cases, set the minimum line speed (processing amount) and set the product S cooling length, which is the time required to cool the specified temperature range at the minimum cooling rate, and even at the maximum line speed, this cooling length is used. The cooling capacity (that is, the amount of gas and water) that can cool a predetermined temperature range was set. In such an apparatus, when the maximum line speed, that is, the apparatus is to be used most efficiently in terms of throughput, a large amount of power is used for cooling, exceeding the metallurgically required conditions.

本発明は、かかる現状に鑑みてなされたものであり、ラ
イン速度が変化した場合も、所定の温度範囲を一定の冷
却速度で冷却することができ、過大の冷却速度を、出さ
ぬため不要な動力を使用することなく、また、非常に広
範囲のライン速度および種々の冷却パターンについて同
一装置で冷却処理することができる金属帯の冷却方法を
提供することを目的とするものである。
The present invention has been made in view of the current situation, and even when the line speed changes, a predetermined temperature range can be cooled at a constant cooling rate, and an excessive cooling rate is not generated, thereby eliminating unnecessary cooling. It is an object of the present invention to provide a method for cooling metal strips that can be cooled in the same device without the use of power and for a very wide range of line speeds and different cooling patterns.

く問題点を解決するための手段〉 上記目的を達成するため、本発明の構成は、焼鈍炉等で
加熱された高温の金属帯を気水冷却するにあたって、気
水冷却装置を金属帯の移動方向に複数に分割して流量制
御ができるようにし、金属帯の処理量および板厚および
冶金学上の要求等により、気水冷却装置から成る冷却帯
の使用する分割数および水流量およびガス流量のいずれ
かあるいはすべてを設定して冷却を行うことを特徴とし
ている。
Means for Solving the Problems In order to achieve the above object, the present invention has a configuration in which an air-water cooling device is used to move the metal band when air-water cooling a high-temperature metal band heated in an annealing furnace or the like. The number of divisions, water flow rate, and gas flow rate to be used in the cooling zone consisting of the air-water cooling device can be adjusted depending on the throughput of the metal strip, plate thickness, metallurgical requirements, etc. The feature is that cooling is performed by setting any or all of the following.

〈作   用〉 上記構成とすることにより、最大ライン速度および最低
冷却速度および冷却温度範囲により決定される冷却長は
ライン移動方向に複数個に組分けされ、そのそれぞれに
供給される冷却用のガス量および水量のそれぞれあるい
は一方が制御できることとなる。
<Function> With the above configuration, the cooling length determined by the maximum line speed, minimum cooling speed, and cooling temperature range is divided into multiple groups in the line movement direction, and the cooling gas supplied to each group is divided into multiple groups in the line movement direction. The volume and/or the amount of water can be controlled.

〈実 施 例〉 以下、本発明の一実施例に係る原理図である第1図およ
び熱伝達率と伝熱面衝突速度との関係を示すグラフであ
る第2図に基づいて説明する。
<Example> The following will explain based on FIG. 1, which is a principle diagram according to an example of the present invention, and FIG. 2, which is a graph showing the relationship between heat transfer coefficient and heat transfer surface collision speed.

本発明に係る冷却装置を第1図に示す。11は鋼帯で1
2は冷却帯である。この冷却帯12の長さ1は、最大ラ
イン速度Vmax、冷却開始温度をT3.冷却終了温度
をT2とし、冶金的に要求される最低の冷却速度をCs
 1 nとすると、 として決定される。以下述べる本発明の実施例では、 V 、Il、−30m/1oin、 T 、−850℃
、T、−400℃。
A cooling device according to the present invention is shown in FIG. 11 is steel strip 1
2 is a cooling zone. The length 1 of this cooling zone 12 is determined by the maximum line speed Vmax and the cooling start temperature T3. The cooling end temperature is T2, and the metallurgically required minimum cooling rate is Cs.
1 n, it is determined as follows. In the example of the present invention described below, V, Il, -30m/1oin, T, -850°C
, T, −400°C.

C,1,−25℃/secで、l = 15mである。C, 1, -25°C/sec, l = 15m.

13は冷却ガス供給配管、14は冷却水供給配管、15
および1Bは、冷却ガス供給配管13、冷却水供給配管
14のそれぞれに設けられた流量制御弁である。冷却帯
12はその全長+5a+をa〜fの小分割冷却帯6ゾー
ンでライン長手方向に2.5m単位に分割されている。
13 is a cooling gas supply pipe, 14 is a cooling water supply pipe, 15
and 1B are flow control valves provided in each of the cooling gas supply pipe 13 and the cooling water supply pipe 14. The total length of the cooling zone 12 +5a+ is divided into six sub-divided cooling zone zones a to f in units of 2.5 m in the line longitudinal direction.

第1図の下は鋼帯11の冷却曲線であり、βが冷却帯の
設定条件である最大ライン速度50m/winで温度範
囲850℃→400℃、最低の冷却速度25℃/sec
で冷却した場合の冷却曲線である。同様の850℃→4
00℃を25’C/secで冷却する場合ライン速度が
25m/minである時の冷却曲線がαであり、a〜C
までの3ゾーンを使用して冷却し、dNfの下流3ゾー
ンは流量制御弁15および16を閉とし使用しない。ま
た、γおよびδは、最大ライン速度より小さなライン速
度で冶金的あるいは伝熱上の要求から冷却途中で冷却を
緩やかにし、所定の温度に到達して冷却帯を出す(γ)
、あるいは、所定の温度で冷却を終了する(δ)の場合
である。
The lower part of Figure 1 is the cooling curve of the steel strip 11, where β is the setting condition of the cooling zone, the maximum line speed is 50 m/win, the temperature range is 850°C → 400°C, and the minimum cooling rate is 25°C/sec.
This is the cooling curve when cooling at . Similar 850℃ → 4
When cooling 00℃ at 25'C/sec, the cooling curve when the line speed is 25m/min is α, and a to C
The three zones up to dNf are used for cooling, and the three downstream zones of dNf are not used with the flow control valves 15 and 16 closed. In addition, γ and δ are the line speeds that are lower than the maximum line speed, and due to metallurgical or heat transfer requirements, cooling is slowed down during cooling, and a cooling zone is created when a predetermined temperature is reached (γ).
, or in the case (δ) where cooling is terminated at a predetermined temperature.

ガスジェット、水滴冷却に関し、その熱伝達率αと伝熱
面衝突速度Vの関係を第4図に、αと水量密度の関係を
第5図に示す。第4図ではV、第5図では水量密度以外
の条件は固定している。両図とも両対数で示している。
Concerning gas jet and water droplet cooling, the relationship between the heat transfer coefficient α and the heat transfer surface collision velocity V is shown in FIG. 4, and the relationship between α and the water volume density is shown in FIG. Conditions other than V in FIG. 4 and water volume density are fixed in FIG. 5. Both figures are shown in logarithms.

ここで、αとVの関係はα=C,vC2すなわち、 togc = C2(logv+K)、但し、C,、C
2は定数。ここでにはV以外の条件、例えば水量密度、
伝熱面温度等で決まる値である。
Here, the relationship between α and V is α=C, vC2, that is, togc = C2 (logv+K), however, C,,C
2 is a constant. Here, conditions other than V, such as water density,
This value is determined by the heat transfer surface temperature, etc.

■m、Xおよびに1.8のときの熱伝達率をα、111
1Kとすると、 logαwaax −C2(logV 11111X 
+にlllaM)したがって これをグラフで表わすと第2図の如くとなる。
■The heat transfer coefficient when m, X and 1.8 is α, 111
1K, logαwaax −C2(logV 11111X
+llaM) Therefore, if this is represented in a graph, it will be as shown in FIG.

なお、前記実施例においては、円孔の二流体ノズルを1
50ピツチの千鳥状に銅帯の上下面にそれぞれ300m
mjllして取付け、最大ライン速度に対して1ノズル
より冷却空気250fl /ll1inおよび1ノズル
より冷却水200cc/minで冷却を行っている。伝
熱面衝突速度Vの制御は噴射空気圧により行い実施例に
おける関係を第6図に示す。
In the above embodiment, the circular hole two-fluid nozzle is
300m each on the top and bottom of the copper strip in a staggered pattern of 50 pitches.
At the maximum line speed, cooling is performed with 250fl/ll1in of cooling air from one nozzle and 200cc/min of cooling water from one nozzle. The heat transfer surface collision speed V is controlled by the injection air pressure, and the relationship in the example is shown in FIG.

〈発明の効果〉 以上述べた如く、本発明によれば、ライン速度が変化し
た場合も、所定の温度範囲を一定の冷却速度で冷却する
ことができ、過大の冷却速度を出さぬため不要な動力を
使用することなく、また、非常に広範囲のライン速度、
種々の冷却パターンについても同一装置に簡単な操作を
施すことにより適切な冷却処理をすることができる。
<Effects of the Invention> As described above, according to the present invention, even when the line speed changes, a predetermined temperature range can be cooled at a constant cooling rate, and unnecessary cooling is performed to avoid excessive cooling speed. Also a very wide range of line speeds, without the use of power
Appropriate cooling processing can be performed for various cooling patterns by performing simple operations on the same device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例にかかるもので
、第1図は原理図、第2.4図は熱伝達率と伝熱面衝突
速度との関係を示すグラフ、第3図は従来例にかかる原
理図、第5図は熱伝達率と水量密度との関係を示す図、
第6図は伝熱面衝突速度と噴出空気圧との関係を示す図
である。 また、図中の符号で11は鋼帯、12は冷却帯、13は
冷却ガス供給配管、14は冷却水供給配管、15、16
は流量制御弁である。 特許出願人 三菱重工業株式会社 (化1名) 復代理人弁理士光石士部(化1名) 第2図 Q           50           
to。
Figures 1 and 2 are related to one embodiment of the present invention, where Figure 1 is a principle diagram, Figure 2.4 is a graph showing the relationship between heat transfer coefficient and heat transfer surface collision speed, and Figure 3 is a graph showing the relationship between heat transfer coefficient and heat transfer surface collision speed. The figure shows the principle of the conventional example, and Figure 5 shows the relationship between heat transfer coefficient and water density.
FIG. 6 is a diagram showing the relationship between heat transfer surface collision speed and ejection air pressure. Also, in the figures, 11 is a steel strip, 12 is a cooling zone, 13 is a cooling gas supply pipe, 14 is a cooling water supply pipe, 15, 16
is the flow control valve. Patent applicant: Mitsubishi Heavy Industries, Ltd. (1 person in charge of chemistry) Sub-agent patent attorney Shibe Mitsuishi (1 person in charge of chemistry) Figure 2 Q 50
to.

Claims (1)

【特許請求の範囲】[Claims] 焼鈍炉等で加熱された高温の金属帯を気水冷却するにあ
たって、気水冷却装置を金属帯の移動方向に複数に分割
して流量制御ができるようにし、金属帯の処理量および
板厚および冶金学上の要求等により、気水冷却装置から
成る冷却帯の使用する分割数および水流量およびガス流
量のいずれかあるいはすべてを設定して冷却を行うこと
を特徴とする金属帯の冷却方法。
When cooling a high-temperature metal strip heated in an annealing furnace or the like, the air-water cooling device is divided into multiple sections in the direction of movement of the metal strip to control the flow rate, thereby controlling the throughput of the metal strip, the plate thickness, and the like. A method for cooling a metal band, characterized by performing cooling by setting either or all of the number of divisions of a cooling zone consisting of an air-water cooling device and the flow rate of water and gas according to metallurgical requirements.
JP20967186A 1986-09-08 1986-09-08 Method for cooling metallic strip Pending JPS6365030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20967186A JPS6365030A (en) 1986-09-08 1986-09-08 Method for cooling metallic strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20967186A JPS6365030A (en) 1986-09-08 1986-09-08 Method for cooling metallic strip

Publications (1)

Publication Number Publication Date
JPS6365030A true JPS6365030A (en) 1988-03-23

Family

ID=16576676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20967186A Pending JPS6365030A (en) 1986-09-08 1986-09-08 Method for cooling metallic strip

Country Status (1)

Country Link
JP (1) JPS6365030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138684A (en) * 1982-02-13 1983-08-17 Fuji Kagakushi Kogyo Co Ltd Recording medium for color heat transfer
JP2009144189A (en) * 2007-12-12 2009-07-02 Jfe Steel Corp Method of and apparatus for cooling steel sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221235A (en) * 1982-06-18 1983-12-22 Sumitomo Metal Ind Ltd Cooling method of steel plate
JPS6087914A (en) * 1983-10-19 1985-05-17 Nippon Steel Corp On-line cooling method of hot steel plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221235A (en) * 1982-06-18 1983-12-22 Sumitomo Metal Ind Ltd Cooling method of steel plate
JPS6087914A (en) * 1983-10-19 1985-05-17 Nippon Steel Corp On-line cooling method of hot steel plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138684A (en) * 1982-02-13 1983-08-17 Fuji Kagakushi Kogyo Co Ltd Recording medium for color heat transfer
JPS6365029B2 (en) * 1982-02-13 1988-12-14
JP2009144189A (en) * 2007-12-12 2009-07-02 Jfe Steel Corp Method of and apparatus for cooling steel sheet

Similar Documents

Publication Publication Date Title
US5137586A (en) Method for continuous annealing of metal strips
US20110270433A1 (en) Method and section for cooling a moving metal belt by spraying liquid
JP5065282B2 (en) Method and apparatus for continuously forming a bainite structure in carbon steel, in particular strip steel
AU604281B2 (en) A method for producing non-aging hot-dip galvanized steel strip
US1808152A (en) Continuous annealing apparatus
CA1270427A (en) Heat treatment of steel elements in fluidized beds
EP1359230A1 (en) Production method for steel plate and equipment therefor
EP2183535B1 (en) Furnace configured for use in both the galvannealing and galvanization of a metal strip
CA1303468C (en) Method for heat-treating steel rail head
JP2005529235A (en) Method and apparatus for patenting steel wire
JPS6365030A (en) Method for cooling metallic strip
JP3945545B2 (en) Rail heat treatment method
US2023285A (en) Heat treating
US5628842A (en) Method and apparatus for continuous treatment of a strip of hot dip galvanized steel
JP2001294941A (en) Improvement of pre-heating of metal strip, particularly improvement of pre-heating on galvanizing or annealing of it
CN210193928U (en) Salt recovery device for steel wire online salt bath heat treatment
CN102747213B (en) Cooling method for continuous heat treatment of high-strength steel
JPS6117886B2 (en)
JPH01255627A (en) Heat treatment of steel wire
CN100402674C (en) Cooling device for steel strip
JP3156108B2 (en) Continuous annealing method for cold rolled steel sheet
JP2006124817A (en) Cooling device with gas jet into steel sheet continuous annealing facility and its cooling control method
CN1401795A (en) Continuous staged or isothermal quenching cooling apparatus
JPS5665935A (en) Controlling method for cooling sheet temperature in rapid cooling zone of continuous annealing furnace
JPS6314047B2 (en)