JPS6364923A - Production of goethite - Google Patents

Production of goethite

Info

Publication number
JPS6364923A
JPS6364923A JP20769786A JP20769786A JPS6364923A JP S6364923 A JPS6364923 A JP S6364923A JP 20769786 A JP20769786 A JP 20769786A JP 20769786 A JP20769786 A JP 20769786A JP S6364923 A JPS6364923 A JP S6364923A
Authority
JP
Japan
Prior art keywords
goethite
carbonate
ferrous
aqueous solution
dispersibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20769786A
Other languages
Japanese (ja)
Inventor
Yukihiro Yamamoto
幸弘 山本
Koji Watanabe
渡邊 宏二
Kenichi Yugawa
湯川 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20769786A priority Critical patent/JPS6364923A/en
Publication of JPS6364923A publication Critical patent/JPS6364923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To produce dense goethite having particulate shape of strip, uniform axial ratio, narrow particle size distribution and improved dispersibility, oxidizing ferrous carbonate formed from an aqueous solution of ferrous salt to give goethite and heat-treating the goethite in an aqueous solution. CONSTITUTION:An aqueous solution of ferrous salt (e.g. aqueous solution of ferrous chloride, etc.) is treated with a carbonate (e.g. sodium carbonate, etc.) at <=70 deg.C (preferably 30-60 deg.C) to form ferrous carbonate and an oxygen- containing gas is introduced to the reaction mixture to form goethite. Then the goethite suspension in a slurry state is heat-treated at 70-250 deg.C (preferably 100-180 deg.C) to give dense goethite having improved particulate shape, dispersibility, etc., and strip shape.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ゲーサイト粒子を製造する方法の改良に関し
、更に詳しくは、粒子形状、分散性等の良好な短冊状で
緻密なゲーサイトを製造する方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an improvement in a method for producing goethite particles, and more specifically, to improving a method for producing goethite particles. It relates to a manufacturing method.

(従来の技術) ゲーサイト(α−万キシ水酸化鉄)は、黄色顔料や赤色
顔料の原料として、またマグネタイト、γ−酸化鉄、金
属鉄等の磁性材の原料として広く使用されている。
(Prior Art) Goethite (α-iron peroxyhydroxide) is widely used as a raw material for yellow pigments and red pigments, and as a raw material for magnetic materials such as magnetite, γ-iron oxide, and metallic iron.

顔料、磁性材等においては、その粒子形状を含め、顔料
、磁性材料等を塗料化する場合に、これらが高い分散性
を有していることが非常に重要である。
In the case of pigments, magnetic materials, etc., it is very important that they have high dispersibility, including their particle shape, when turning them into paints.

塗料化における分散性の良否は、原料であるゲーサイト
の粒子形状、粒度分布、分散性等に太き(影響され、ゲ
ーサイトの粒度分布幅が広かったり、分散性が悪かった
りするゲーサイトを使用して顔料、磁性材等を製造した
場合は、これらを塗料化する場合の分散性が悪(なる。
The quality of dispersibility in making paint is influenced by the particle shape, particle size distribution, dispersibility, etc. of the goethite that is the raw material. When pigments, magnetic materials, etc. are manufactured by using these materials, the dispersibility becomes poor when they are made into paints.

それ故顔料、磁性材等の原料に使用するゲーサイトとし
ては、分散性が良く、粒子の大きさが良く揃った粒度分
布幅の狭いものが望ましい。
Therefore, as goethite used as a raw material for pigments, magnetic materials, etc., it is desirable to have good dispersibility, well-uniformed particle size, and a narrow particle size distribution.

また磁性材の用途においては、ゲーサイトの還元、酸化
等の熱処理時に凝集、焼結等を生じさせないようなもの
が望ましい。
Furthermore, in applications of magnetic materials, it is desirable to use materials that do not cause agglomeration, sintering, etc. during heat treatments such as reduction and oxidation of goethite.

また磁性材、特に磁気テープ、フロッピーディスク等の
磁気記録媒体用の磁性材としては、針状のγ−酸化鉄、
金属鉄等が多用されているが、記録の高密度化に対する
要求に伴い、従来の面内磁気記録方式にかえて、垂直磁
気記録方式の開発が進められるにつれて、磁性材の粒子
形状も垂直磁気記録方式に適したものを開発する必要も
生じて−・る。
In addition, magnetic materials, especially magnetic materials for magnetic recording media such as magnetic tapes and floppy disks, include acicular γ-iron oxide,
Metallic iron is often used, but with the demand for higher density recording, perpendicular magnetic recording has been developed in place of the conventional in-plane magnetic recording, and the particle shape of the magnetic material has also changed to perpendicular magnetic. There is also a need to develop a recording method suitable for the recording method.

従来ゲーサイトの製法としては、すでに多数の方法が提
案されているが、その大部分は針状のゲーサイトの製造
を目的としたものであり、これら方法で得られるゲーサ
イトは、顔料、磁性材等の原料として多用されているが
、一般に軸比が10以上の針状で、粒子の太きさも不揃
いで、分散性もあまり良いものとはいえない。
Many methods have already been proposed for the production of goethite, but most of them are aimed at producing acicular goethite, and the goethite obtained by these methods has pigments, magnetic properties, etc. Although it is often used as a raw material for materials such as wood, it is generally needle-shaped with an axial ratio of 10 or more, the particle size is irregular, and its dispersibility is not very good.

これまで知られているゲーサイトの合成法を整理すると
以下のようになる。
The synthesis methods of goethite known so far are summarized as follows.

1 第一鉄塩水溶液に水酸化アルカリを多量に加えpH
11以上とし、生成した水酸化第一鉄を酸化してゲーサ
イトを得る方法(例えば、特開昭56−155509号
、特開昭56−169132号公@)。
1 Add a large amount of alkali hydroxide to the ferrous salt aqueous solution to adjust the pH.
11 or more and oxidizing the produced ferrous hydroxide to obtain goethite (for example, JP-A-56-155509, JP-A-56-169132 @).

2 第一鉄塩水溶液なFe  イオンに対して等全以下
のアルカリで中和して、pH8,5以下で水酸化第一鉄
を酸化してゲーサイトを得る方法(例えば、特開昭53
−73497号公報)。
2 A method of obtaining goethite by neutralizing Fe ions in an aqueous solution of ferrous salt with an alkali of equal or less concentration and oxidizing ferrous hydroxide at a pH of 8.5 or less (for example, JP-A-53
-73497).

3 第一鉄塩水溶液に過剰の炭酸塩を加え、pH9〜1
0で炭酸鉄を酸化して紡錘状ゲーサイトを得る方法(例
えば、特開昭59−232922号、特開昭60−21
307号、特開昭60−138002号公報)。
3 Add excess carbonate to the ferrous salt aqueous solution and adjust the pH to 9 to 1.
A method for obtaining spindle-shaped goethite by oxidizing iron carbonate at
No. 307, Japanese Unexamined Patent Publication No. 60-138002).

4 第−鉄塩水溶液に苛性ソーダ等の苛性アルカリ溶液
を加え、50℃以下の温度で水酸化第一鉄を生成させ、
45〜70℃の温度で重炭酸アンモニウム等の酸性炭酸
塩を加えて炭酸第一鉄にし、次いで酸素含有ガスを通気
して炭酸第一鉄をゲーサイトにする方法(特開昭50−
65499号、および特開昭49−42597号、特開
昭49−42598号、特開昭49−42599号公報
)。
4 Add a caustic alkaline solution such as caustic soda to the ferrous salt aqueous solution to generate ferrous hydroxide at a temperature of 50°C or less,
A method of converting ferrous carbonate into ferrous carbonate by adding acidic carbonate such as ammonium bicarbonate at a temperature of 45 to 70°C, and then converting ferrous carbonate into goethite by aerating oxygen-containing gas
65499, and JP-A-49-42597, JP-A-49-42598, and JP-A-49-42599).

530℃以下の温度のアルカリ水溶液に第二鉄塩溶液を
加えて水酸化第二鉄を調製し、熟成した後、120〜2
50℃の温度で水熱処理して米粒状のゲーサイトを得る
方法(特開昭58−49693号、特開昭58−496
94号、特公昭53−28158号公報等)。
Ferric hydroxide is prepared by adding a ferric salt solution to an alkaline aqueous solution at a temperature of 530°C or less, and after aging, 120-2
Method for obtaining rice-grain-like goethite by hydrothermal treatment at a temperature of 50°C (JP-A-58-49693, JP-A-58-496)
No. 94, Japanese Patent Publication No. 53-28158, etc.).

上記1.2の方法ではゲーサイトに双晶が混入したり、
結晶がはり合わさったりして分散性が低い場合がある。
In method 1.2 above, twins may be mixed into goethite,
Dispersibility may be low due to crystals sticking together.

特に1の方法では粒度分布の改善が要望されている。3
の方法では粒度分布、分散性は良好であるが、紡錘状で
あり、電子顕微鏡(TEM)の観察によると、やや緻密
性に欠けることが認められる。
In particular, in method 1, improvement in particle size distribution is desired. 3
Although the particle size distribution and dispersibility were good in the method, the particles were spindle-shaped and, according to observation using an electron microscope (TEM), were slightly lacking in density.

4および5の方法では得られろゲーサイトは、分散性が
十分によいとはいえず改良の余地がある。
The goethite obtained by methods 4 and 5 does not have sufficiently good dispersibility and there is room for improvement.

さらに4の方法においては、第一鉄塩と比較して高価な
第二鉄塩な必要とし、またゲーサイトの粒度分布幅が広
いという問題点がある。また5の方法にお℃・ても、軸
比が太き(微細な針状に近い形状を有していたり、粒度
分布幅も広い等の問題点がある。
Furthermore, method 4 requires a ferric salt, which is more expensive than a ferrous salt, and has the problem that the particle size distribution of goethite is wide. In addition, the method No. 5 has problems such as a large axial ratio (nearly a fine needle-like shape) and a wide particle size distribution even at °C.

これらの方法では粒子形状、粒度分布、分散性を十分に
満足できるゲーサイトを得ることは困難である。
With these methods, it is difficult to obtain goethite that satisfies the particle shape, particle size distribution, and dispersibility.

(発明が解決しようとする問題点) 本発明の目的は、粒子形状が短冊状で軸比(長軸と短軸
の比)が揃っていて粒度分布幅が狭く、分散性の良好な
緻密なゲーサイトの製造法を提供することである。
(Problems to be Solved by the Invention) The purpose of the present invention is to produce particles with a rectangular shape, uniform axial ratio (ratio of major axis to minor axis), narrow particle size distribution width, and dense particles with good dispersibility. The purpose of the present invention is to provide a method for producing goethite.

(問題点を解決するための手段) 本発明は、第一鉄塩水溶液から炭酸鉄を生成させ、炭酸
鉄を酸化して得たゲーサイトを、水溶液中で加熱処理す
ることによって目的を達成できることを見い出し、完成
したものである。
(Means for Solving the Problems) The object of the present invention can be achieved by generating iron carbonate from an aqueous ferrous salt solution and heat-treating goethite obtained by oxidizing the iron carbonate in the aqueous solution. It was discovered and completed.

すなわち、本発明は第一鉄塩水溶液に70℃以下の温度
で炭酸塩を加えて炭酸第一鉄を生成させた後、酸素ある
いは酸素含有ガスを供給して酸化反応を行ないゲーサイ
トを製造し、次いでスラリー状のゲーサイト懸濁液を7
0〜250℃の範囲内の温度で加熱処理を行なうことを
特徴とするゲーサイトの製造法である。特に後段のスラ
リー状のゲーサイト懸濁液を加熱することによって、ゲ
ーサイトの形を整える方法(以下形整処理と称する)で
ある。
That is, the present invention produces goethite by adding carbonate to a ferrous salt aqueous solution at a temperature of 70° C. or lower to generate ferrous carbonate, and then supplying oxygen or an oxygen-containing gas to carry out an oxidation reaction. Then, the slurry-like goethite suspension was
This is a method for producing goethite characterized by performing heat treatment at a temperature within the range of 0 to 250°C. In particular, this is a method of adjusting the shape of goethite (hereinafter referred to as shaping treatment) by heating the slurry-like goethite suspension in the latter stage.

本発明において、第一鉄塩としては硫酸第一鉄、硝酸第
一鉄、塩化第−鉄等が使用され、第一鉄塩は、一般に水
に溶解させて水溶液にして使用される。第一鉄塩の濃度
は、0.03〜1mot/を程度が適当である。
In the present invention, ferrous sulfate, ferrous nitrate, ferrous chloride, etc. are used as the ferrous salt, and the ferrous salt is generally used as an aqueous solution by dissolving it in water. The appropriate concentration of the ferrous salt is 0.03 to 1 mot/.

さらにこれまで知られているように、第一鉄塩の水溶液
中には、Cr、 Ni 、 Co、 Cu、 Mg、 
Ca等の水可溶性の塩、例えば硝酸塩、硫酸塩を少量添
加することもでき、その添加量はMe/Fe  (原子
比:MeはCr 、 Ni 、 Co、Cu 、 Mg
 %Ca等)が0.001〜0.1にするのが適当であ
る。
Furthermore, as is known so far, an aqueous solution of ferrous salt contains Cr, Ni, Co, Cu, Mg,
It is also possible to add a small amount of water-soluble salts such as Ca, such as nitrates and sulfates, and the amount added is Me/Fe (atomic ratio: Me is Cr, Ni, Co, Cu, Mg).
%Ca etc.) is suitably 0.001 to 0.1.

炭酸塩としては、炭酸第二鉄を生成するものであれば特
に制限されないが、炭酸す) IJウム、重炭酸ナトリ
ウム、炭酸アンモニウム、重炭酸アンモニウム等のナト
リウムまたはアンモニアの炭酸塩や炭酸が好適に使用さ
れる。
The carbonate is not particularly limited as long as it produces ferric carbonate, but sodium or ammonia carbonates and carbonates such as carbonate, sodium bicarbonate, ammonium carbonate, and ammonium bicarbonate are preferred. used.

炭酸塩の使用量は、第一鉄イオンに対して1〜5倍当量
、好ましくは1.5〜3,5倍当量が適当である。
The appropriate amount of carbonate to be used is 1 to 5 equivalents, preferably 1.5 to 3.5 equivalents, relative to ferrous ion.

炭酸塩を加える際の温度は、70℃以下、好ましくは1
0〜70℃が適当であり、温度が高くなると軸比が大き
くなり、粒度分布に悪影響が生じ易〜10 酸素あるいは酸素含有ガスの供給は、一般に炭酸塩を加
えることによって炭酸第一鉄を生成させたスラリー中に
直接吹きこむ方法によって行われる。酸素含有ガスとし
ては空気が便利に使用される。
The temperature when adding the carbonate is 70°C or less, preferably 1
A temperature of 0 to 70°C is appropriate; as the temperature increases, the axial ratio increases, which tends to adversely affect the particle size distribution ~ 10 Supply of oxygen or oxygen-containing gas is generally performed by adding carbonate to produce ferrous carbonate. This is done by blowing directly into the slurry. Air is conveniently used as oxygen-containing gas.

酸素含有ガスは、Fe+2の酸化速度と関連して、生成
する粒子の大きさに影響を及ぼし、Fe+2の酸化速度
が速すぎると粒子は微小になり、遅すぎると長大粒子に
なり易いので、供給量を調節することによって適宜粒子
の大きさを所望の大きさにコントロールするのが望まし
い。
Oxygen-containing gas affects the size of the particles produced in relation to the oxidation rate of Fe+2; if the oxidation rate of Fe+2 is too fast, the particles tend to become minute, and if the oxidation rate is too slow, the particles tend to become long and large. It is desirable to appropriately control the particle size to a desired size by adjusting the amount.

酸素含有ガスを供給して炭酸第一鉄をゲーサイトにする
際の温度は、均斉のとれた形状のよい粒子を生成させる
うえで20〜70℃、好ましくは30〜60℃にするこ
とがよい。温度が高すぎたり低すぎたりすると分散性が
悪く、粒度分布幅が広くなり易い。また磁気特性も悪く
なり易い。
The temperature when converting ferrous carbonate to goethite by supplying an oxygen-containing gas is preferably 20 to 70°C, preferably 30 to 60°C, in order to produce particles with a well-balanced shape. . If the temperature is too high or too low, dispersibility will be poor and the particle size distribution will tend to be wide. Furthermore, the magnetic properties tend to deteriorate.

本発明において酸素含有ガスを供給してゲーサイトにし
た後は、スラリー状のゲーサイト懸濁液を加熱処理する
ことによってゲーサイトの粒子形状が改善され、短冊状
の緻密なゲーサイトとなる。
In the present invention, after supplying an oxygen-containing gas to produce goethite, the slurry-like goethite suspension is heat-treated to improve the particle shape of the goethite, resulting in dense strip-like goethite.

ゲーサイト懸濁液の加熱処理では、温度が低いと長時間
を要し、高すぎるとα−Fezes が生成したりする
ので、温度は70〜250℃、好ましくは100〜18
0℃の範囲で行なうことがよい。加熱時間は、1時間か
ら24時間の範囲で目的を達することができる。
Heat treatment of goethite suspension takes a long time if the temperature is low, and α-Fezes may be generated if the temperature is too high, so the temperature is 70 to 250 °C, preferably 100 to 18 °C.
It is preferable to carry out the heating in the range of 0°C. The heating time can range from 1 hour to 24 hours to achieve the objective.

加熱処理の際のスラリー状懸濁液のpHは、7.5以上
で行うことができる。ただし、pH7,5〜pH11の
範囲では110℃以上とした方がよいので、オートクレ
ーブの使用が推奨される。この場合のゲーサイトスラリ
ーは、反応液そのままの炭酸塩を含む状態でもよいし、
ゲーサイトを−たん洗浄した後、再度水中へ葱濁させた
スラリーでも差し支えはない。
The pH of the slurry suspension during the heat treatment can be 7.5 or higher. However, in the range of pH 7.5 to pH 11, it is better to maintain the temperature at 110° C. or higher, so the use of an autoclave is recommended. In this case, the goethite slurry may be in a state containing carbonate as it is in the reaction solution, or
There is no problem with slurry made by washing the goethite with phlegm and then adding the green onion to the water again.

一方pHを水酸化アルカリなどを添加して高(し、pH
12以上とすると、オートクレーブを使用して150℃
以上としても、オートクレーブを使用せずに常圧で沸点
上昇を利用し、110℃あるいは80℃程度の温度で加
熱処理を行なっても十分に効果が現れる。
On the other hand, increase the pH by adding alkali hydroxide, etc.
If the temperature is 12 or higher, use an autoclave at 150°C.
In the above case, even if heat treatment is performed at a temperature of about 110° C. or 80° C. without using an autoclave, by utilizing the boiling point increase at normal pressure, a sufficient effect can be obtained.

本発明の方法によって得られるゲーサイトは、軸比がよ
く揃っているために粒度分布幅が狭く、分散性も良好で
あり、短冊状で緻密であることから、磁性材料等の原料
として用いた場合にも、特性の向上が期待できろ。
The goethite obtained by the method of the present invention has a narrow particle size distribution because of its well-aligned axial ratio, has good dispersibility, and is strip-shaped and dense, so it can be used as a raw material for magnetic materials, etc. In this case, you can expect improved characteristics.

(実施例) 実施例1 内容積30tの反応槽に、水25tを入れ炭酸ナトリウ
ム(Nat COs ) 2 K9を溶解し、窒素(N
t)ガスにより溶液の脱酸素を行なった。
(Example) Example 1 Put 25 tons of water into a reaction tank with an internal volume of 30 tons, dissolve sodium carbonate (Nat COs ) 2 K9, and add nitrogen (N
t) The solution was deoxidized by gas.

その後別途準備した塩化第一鉄(FeCl2・n H2
O)1.5Kgを溶解した水溶液5tを50℃で徐々に
反応槽中へ添加し、均一スラリーになるまで熟成を行な
った。
After that, ferrous chloride (FeCl2・n H2
5 tons of an aqueous solution in which 1.5 kg of O) was dissolved was gradually added to the reaction tank at 50° C. and aged until it became a uniform slurry.

その後50℃で反応槽中に空気を吹き込み、空気酸化を
行なって、紡錘状ゲーサイトを合成した。
Thereafter, air was blown into the reaction tank at 50° C. to perform air oxidation to synthesize spindle-shaped goethite.

次いでこのゲーサイトを水でよく洗浄し、スラリー濃度
が1〜4%となるようにして、水酸化ナトリウム(Na
OH)水溶液を添加し、全体を6N−NaOH濃度とし
、オートクレーブに移し、150〜160℃にて2時間
加熱処理を行なった。
Next, this goethite is thoroughly washed with water, the slurry concentration is 1 to 4%, and sodium hydroxide (Na
OH) aqueous solution was added to bring the whole to a 6N-NaOH concentration, transferred to an autoclave, and heat-treated at 150 to 160°C for 2 hours.

加熱処理前のゲーサイトの電子顕微鏡写真を第2図に、
加熱処理後のものを第1図に示した。いずれも同じ条件
で撮影されたもので、写真の倍率は60,000倍であ
る。
Figure 2 shows an electron micrograph of goethite before heat treatment.
The product after heat treatment is shown in FIG. Both photos were taken under the same conditions, and the magnification of the photos is 60,000x.

ゲーサイトの形状が紡錘状から短冊状に形整処理されて
いるとともに、加熱後のゲーサイトの黒色が強くなって
おり、緻密になったことがわかる。
It can be seen that the shape of the goethite has been changed from a spindle shape to a strip shape, and the black color of the goethite after heating has become stronger, indicating that it has become denser.

実施例2 実施例1の原料ゲーサイトをNaOHではな(,3M 
−Nai COs濃度とし、オートクレーブで実施例1
と同じ加熱処理を行なった。
Example 2 The raw material goethite of Example 1 was not treated with NaOH (, 3M
-Nai COs concentration and autoclave Example 1
The same heat treatment was performed.

そのは果実流側1の場合と同様に、ゲーサイトは形整処
理がなされ、短冊状で緻密なものになっていた。
As in the case of fruit flow side 1, the goethite had been shaped and had become strip-shaped and dense.

実施例3 実施例1の原料ゲーサイトを水で洗浄した後、伺も添加
せずに、スラリー状のままオートクレーブに移し、実施
例1と同じ条件で加熱処理を行なった。
Example 3 After washing the raw goethite of Example 1 with water, it was transferred in a slurry form to an autoclave without adding any additives, and heat-treated under the same conditions as in Example 1.

得られたゲーサイトは、形が短冊状になり、よく形整処
理されていた。
The obtained goethite had a rectangular shape and was well shaped.

実施例4 実施例1と同じ原料ゲーサイトを分取し、懸濁液のアル
カリ濃度を6 N NaOHとした後、常圧下110℃
で20時間加熱処理を行なった。
Example 4 The same raw material goethite as in Example 1 was separated, the alkali concentration of the suspension was adjusted to 6 N NaOH, and then heated at 110°C under normal pressure.
Heat treatment was performed for 20 hours.

得られたゲーサイトの電子顕微鏡写真(60,000倍
)を第3図に示す。この場合もきれいな短冊状で緻密な
ゲーサイトになっていることがわかる。
An electron micrograph (60,000x magnification) of the obtained goethite is shown in FIG. In this case as well, it can be seen that the game site has a neat rectangular shape and is detailed.

実施例5 1000を反応種に水を入れ、炭酸ナトリウム(Naz
CO3) 19.9 Kyを溶解し、N2ガスで脱酸素
を行なった。その後塩化第−鉄(FeC4・n Hz 
O) 24.9に9を溶解し、Fe粉でFe  をFe
  に還元処理した水溶液を50℃で添加し、炭酸第一
鉄スラリーが十分に均一になるまで熟成した。
Example 5 Water was added to the reaction species, and sodium carbonate (Naz
CO3) 19.9 Ky was dissolved and deoxidized with N2 gas. Then ferrous chloride (FeC4・n Hz
O) Dissolve 9 in 24.9 and add Fe to Fe using Fe powder.
was added at 50° C., and the slurry was aged until the ferrous carbonate slurry became sufficiently uniform.

その後40℃でスラリー中に空気を吹込み、酸化して紡
錘状ゲーサイトを得た。
Thereafter, air was blown into the slurry at 40° C. to oxidize it to obtain spindle-shaped goethite.

次いで実施例1と同僚に、水酸化ナトリウム(NaOH
)水溶液を添加して、6N−NaOHとしたスラリーを
準備し、常圧下ステンレス製容器中で80℃で20時間
加熱処理を行なった。
Example 1 and colleagues then added sodium hydroxide (NaOH
) An aqueous solution was added to prepare a slurry made into 6N-NaOH, and heat treatment was performed at 80° C. for 20 hours in a stainless steel container under normal pressure.

ゲーサイトは十分に形整処理がなされ短冊状となってい
た。
The goethite had been sufficiently shaped into a rectangular shape.

実施例1・〜実施例5における加熱処理前と処理後のゲ
ーサイトの平均粒子径、軸比、変動係数及び粒度分布範
囲を測定した結果を第1表に示す。
Table 1 shows the results of measuring the average particle diameter, axial ratio, coefficient of variation, and particle size distribution range of goethite before and after heat treatment in Examples 1 to 5.

第  1  表 これより、粒度分布は原料(処理前)のゲーサイトの粒
度分布と、形整後のゲーサイトとは同じ程度であり、非
常に良好な状態である。
Table 1 From this table, it can be seen that the particle size distribution of the raw goethite (before treatment) is about the same as that of the goethite after shaping, and is in a very good condition.

また第2図と第1図、第3図とを比較すると、同じ条件
で撮影した電子顕微鏡写真において、形整後の粒子の色
が濃くなっており、加熱処理によってゲーサイトの緻密
性が向上していることがわかる。
Furthermore, when comparing Figure 2 with Figures 1 and 3, it can be seen that in the electron micrographs taken under the same conditions, the color of the particles after shaping has become darker, indicating that the density of goethite has improved due to heat treatment. I know what you're doing.

(発明の効果) 本発明によれば、炭酸鉄よっつ(られるゲーサイトの特
徴である粒度分布幅の狭く分散性がよいという面と、高
アルカリ条件下でつくられるゲーサイトの特徴である結
晶の緻密性良好という2つの性質を兼ねそなえたゲーサ
イトが製造できる。
(Effects of the Invention) According to the present invention, the narrow particle size distribution width and good dispersibility, which are the characteristics of goethite made from iron carbonate, and the characteristics of goethite, which is produced under highly alkaline conditions, are crystallized. It is possible to produce goethite that has two properties: good density.

また高アルカリ下で使用される水酸化アルカリは、ゲー
サイトの一過後繰返して使用可能であり、原料的に見て
も経済性の高い方法である。
Furthermore, the alkali hydroxide used in a highly alkaline environment can be used repeatedly after passing through the goethite, and is a highly economical method from the viewpoint of raw materials.

本発明によって得られるゲーサイトは、短冊状で粒子形
状が揃っていることから各種用途に使用可能であり、特
に磁気材料としては緻密性が良好なところから、従来の
面内磁気記録方式に限らず垂直磁気記録方式に適用可能
なものである。
The goethite obtained by the present invention is rectangular and has a uniform particle shape, so it can be used for various purposes.In particular, as a magnetic material, it has good density, so it can be used only in conventional in-plane magnetic recording methods. First, it is applicable to perpendicular magnetic recording systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1に示したオートクレーブで形整処理
を行なったゲーサイトの粒子構造を説明する電子顕微鏡
写真(60000倍)である。第2図は、実施例1〜4
に用いた原料ゲーサイトの粒子構造を説明する電子顕微
鏡写真(60000倍)である。第3図は、常圧下で加
熱処理した実施例4におけるゲーサイトの粒子構造を説
明する電子顕微鏡写真(60000倍)である。 代理人 弁理士 茶野木 立 夫 ′]    第1割 @*、II
FIG. 1 is an electron micrograph (60,000 times magnification) illustrating the particle structure of goethite that was subjected to the shaping treatment in the autoclave shown in Example 1. Figure 2 shows Examples 1 to 4.
This is an electron micrograph (60,000x magnification) illustrating the particle structure of the raw material goethite used in the process. FIG. 3 is an electron micrograph (60,000x magnification) illustrating the grain structure of goethite in Example 4, which was heat-treated under normal pressure. Agent Patent Attorney Tatsuo Chanoki’] 1st %@*, II

Claims (1)

【特許請求の範囲】[Claims] 第一鉄塩水溶液に70℃以下の温度で炭酸塩を加えて炭
酸第一鉄を生成させた後、酸化反応を行ない、紡錘状の
ゲーサイトを生成させ、スラリー状のゲーサイト懸濁液
を70〜250℃の範囲内の温度で加熱処理を行なうこ
とを特徴とするゲーサイトの製造法。
After adding carbonate to a ferrous salt aqueous solution at a temperature of 70°C or less to generate ferrous carbonate, an oxidation reaction is performed to generate spindle-shaped goethite and a slurry-like goethite suspension. A method for producing goethite, characterized by carrying out heat treatment at a temperature within the range of 70 to 250°C.
JP20769786A 1986-09-05 1986-09-05 Production of goethite Pending JPS6364923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20769786A JPS6364923A (en) 1986-09-05 1986-09-05 Production of goethite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20769786A JPS6364923A (en) 1986-09-05 1986-09-05 Production of goethite

Publications (1)

Publication Number Publication Date
JPS6364923A true JPS6364923A (en) 1988-03-23

Family

ID=16544071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20769786A Pending JPS6364923A (en) 1986-09-05 1986-09-05 Production of goethite

Country Status (1)

Country Link
JP (1) JPS6364923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021512036A (en) * 2018-01-26 2021-05-13 ランクセス・ドイチュランド・ゲーエムベーハー Method for manufacturing goethite pigment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021512036A (en) * 2018-01-26 2021-05-13 ランクセス・ドイチュランド・ゲーエムベーハー Method for manufacturing goethite pigment

Similar Documents

Publication Publication Date Title
JPS6364923A (en) Production of goethite
JPS5891039A (en) Manufacture of needlelike alpha-feooh for magnetic recording material
JP2569580B2 (en) Method for producing acicular goethite
JPS61186225A (en) Production of acicular goethite
JP2640817B2 (en) Spindle-shaped goethite particles and method for producing the same
JPH11263623A (en) Production of magnetic powder
JP2704525B2 (en) Method for producing spindle-shaped goethite particles
JPS61140110A (en) Manufacture of acicular alpha-feooh for magnetic recording material
KR910009210B1 (en) Method for manufacturing lepidocrocite
JP3087777B2 (en) Method for producing acicular goethite particle powder
JPS639735B2 (en)
JPH0692641A (en) Production of needle gamma-feooh
JPS5950607B2 (en) Method for producing acicular magnetic iron oxide particles
JPS5946281B2 (en) Method for producing acicular Fe-Co alloy magnetic particle powder
JPS60255627A (en) Prduction of ferromagnetic powder
JPS60137832A (en) Production of iron alpha-oxyhydroxide in strip state
JPH0310579B2 (en)
JPH0255382B2 (en)
JPS61174119A (en) Production of alpha-iron oxyhydroxide
JPH09188520A (en) Production of fusiform goethite
JPS61232226A (en) Spherical hematite particle powder and production thereof
JPS60112626A (en) Manufacture of dense rod-shaped iron oxyhydroxide
JPH0971421A (en) Production of hydrated ferric oxide powder for yellow pigment
JPS62128931A (en) Production of magnetic iron oxide grain powder having spindle type
JPH0463208A (en) Manufacture of metal magnetic powder