JPS6364812A - Gas suspension device - Google Patents

Gas suspension device

Info

Publication number
JPS6364812A
JPS6364812A JP21033586A JP21033586A JPS6364812A JP S6364812 A JPS6364812 A JP S6364812A JP 21033586 A JP21033586 A JP 21033586A JP 21033586 A JP21033586 A JP 21033586A JP S6364812 A JPS6364812 A JP S6364812A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
suspension device
chamber
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21033586A
Other languages
Japanese (ja)
Inventor
Nobuhiro Yamamura
山村 宜弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21033586A priority Critical patent/JPS6364812A/en
Publication of JPS6364812A publication Critical patent/JPS6364812A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/002Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load by temperature regulation of the suspension unit, e.g. heat operated systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01933Velocity, e.g. relative velocity-displacement sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/052Pneumatic spring characteristics

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To simplify constitution, to reduce the weight of a device, and to improve reliability, by a method wherein, in a gas suspension device, a gas chamber, provided with a hydrogen occlusion alloy, is filled with hydrogen gas, and an alloy is heater or cooled. CONSTITUTION:A ground clearance is lowered by means of a ground clearance sensor. When a lowering amount is detected, an ECU 14 decides a necessary current amount and its direction to feed a current to a hydrogen control device 40 of each suspension device 16. A heat generating module 48 generates heat at a joint on the hydrogen occlusion alloy chamber 46 side by a Peltier effect. The generation of heat causes heating of a hydrogen occlusion alloy 42 through a fin 50 to emit hydrogen gas. Thus, the hydrogen partial pressure of a main chamber 20 is increased to expand the suspension device 16. Conversely, if a ground clearance is increased, a reverse current is fed, heat absorption is caused, and hydrogen is occluded. This constitution enables decrease of the weight of the device, and improvement of reliability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は車両用、産業機械用等のサスペンション装置に
関し、詳しくは、気体を利用して緩衝特性及び車高等を
変化させる気体サスペンション装置に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a suspension device for vehicles, industrial machinery, etc., and more particularly to a gas suspension device that uses gas to change the cushioning characteristics and vehicle height. It is.

[従来の技術] 従来、車両等の気体サスペンション装置としては、空気
を利用したエアサスペンションが一般的であった。車両
用エアサスペンションに関しては、例えば、本願出願人
の出願に係る特願昭59−276515号明細書及び本
願に添附の「トヨタソアラ新型車解説書昭和61年1月
」の扱粋に詳しく述べられているが、その概要は以下の
通りである。
[Prior Art] Conventionally, air suspensions using air have been common as gas suspension devices for vehicles and the like. Air suspensions for vehicles are described in detail, for example, in the specification of Japanese Patent Application No. 59-276515 filed by the applicant and in the "Toyota Soarer New Vehicle Manual January 1986" attached to this application. The outline is as follows.

エアサスペンションシステムには各車輪用のエアサスペ
ンションの他、車両に各1台、モータにより駆動される
ニアコンプレッサ、各エアサスペンションの空気室内で
の相変化による結露を予防するためのエアドライヤ、全
システムのエアの流れを制御するソレノイドバルブ等が
備えられている。
The air suspension system includes an air suspension for each wheel, a near compressor driven by a motor (one for each vehicle), an air dryer to prevent condensation due to phase changes in the air chamber of each air suspension, and an air dryer for the entire system. It is equipped with a solenoid valve that controls the flow of air.

これらの作用は、例えば、車高センサにより車高が低下
したことが検出されると、エアサスペンションシステム
の制御を司るコンピュータはモータを駆動してコンプレ
ッサを働かせ、エアコンブレッサ及び各エアサスペンシ
ョンのソレノイドバルブを開とすることにより各エアサ
スペンションにエアを供給して車高を元へ戻すように一
連の制御を行う、というものである。
For example, when a vehicle height sensor detects that the vehicle height has decreased, the computer that controls the air suspension system drives the motor to operate the compressor, and the air compressor and each air suspension solenoid valve are activated. By opening the air suspension, a series of controls are performed to supply air to each air suspension and return the vehicle height to its original height.

[発明が解決しようとする問題点] 従来の気体サスペンション装置では、上記の通り、各車
輪ごとの気体室を備えたサスペンション装置以外に、そ
れらに気体を供給するための気体発生源、例えば上記例
ではニアコンプレッサ、及びそれに内閣するソレノイド
バルブやエアドライヤ等が必要であった。これらの装置
は車両に1セツトでよいとはいえ、かなりの重量増とな
ることは避は難く、またこれらと各車輪のサスペンショ
ン装置との間の長い配管や各種メカニカルバルブ類の存
在はシステムを複雑化し、気体のリークの発生の原因と
なったり全システムの信頼性を低下させたりする可能性
がある。
[Problems to be Solved by the Invention] As described above, in the conventional gas suspension device, in addition to the suspension device having a gas chamber for each wheel, there is also a gas generation source for supplying gas to the suspension device, such as the above example. Therefore, a near compressor, as well as solenoid valves, air dryers, etc., were required. Although one set of these devices is sufficient for a vehicle, it is unavoidable that they add considerable weight, and the presence of long piping and various mechanical valves between these devices and the suspension devices of each wheel makes the system difficult to install. This can add complexity and can cause gas leaks and reduce overall system reliability.

本発明は上記従来技術の問題点を解決し、簡単かつ軽量
な気体サスペンションシステムを提供することを目的と
している。
The present invention aims to solve the problems of the prior art described above and to provide a simple and lightweight gas suspension system.

[問題点を解決するための手段] 上記問題点を解決するためになされた本発明は、容積可
変の気体室中の気体母を増加もしくは減少させることに
より、気体室容積及び緩衝特性を変化させる気体サスペ
ンション装置において、該気体室中に水素ガスを充填し
、かつ、水素吸蔵合金及び該水素吸蔵合金を加熱もしく
は冷却する手段を備えたことを特徴とする気体サスペン
ション装置をその要旨とするものである。
[Means for Solving the Problems] The present invention, which has been made to solve the above problems, changes the volume of the gas chamber and the buffering characteristics by increasing or decreasing the amount of gas in the variable volume gas chamber. The gist of the gas suspension device is a gas suspension device, characterized in that the gas chamber is filled with hydrogen gas, and is equipped with a hydrogen storage alloy and a means for heating or cooling the hydrogen storage alloy. be.

ここで、水素吸蔵合金とは、水素ガスと可逆的に反応し
、金属水素化物を生成することにより水素を吸蔵する周
知の金属又は合金を指し、例えばLaNi5.Ti −
Fe合金等が知られている。
Here, the hydrogen storage alloy refers to a well-known metal or alloy that absorbs hydrogen by reversibly reacting with hydrogen gas to generate a metal hydride, such as LaNi5. Ti-
Fe alloys and the like are known.

これら水素吸蔵合金は、通常、加熱されることにより水
素を放出し、冷却されることにより水素を吸蔵、すなわ
ち水素と化合する。
These hydrogen storage alloys usually release hydrogen when heated, and store hydrogen, that is, combine it with hydrogen, when cooled.

また、上記水素吸蔵合金を加熱又は冷却する手段として
、特に熱電素子を用いると、軽量、コンパクトな気体サ
スペンションシステムの構築に有利となる。熱電素子と
はペルチェ効果、すなわら異種金属又は半導体の接点に
電流を流したときに、その接点でジュール熱以外に熱の
発生又は吸収が生じる現象、を利用して、電流の向きに
より自由に加熱、冷却を行うことのできる素子である。
In addition, particularly when a thermoelectric element is used as a means for heating or cooling the hydrogen storage alloy, it is advantageous for constructing a lightweight and compact gas suspension system. Thermoelectric elements utilize the Peltier effect, a phenomenon in which when a current is passed through a contact between dissimilar metals or semiconductors, heat is generated or absorbed at the contact in addition to Joule heat. It is an element that can be heated and cooled.

FeS!z、5iGe等の材料がそのような熱雷素子と
して有用であることが知られている。通常はこのような
接点を多数並べ、モジュールとして適当な四の発熱、吸
熱(冷却)を行うようにする。
FeS! Materials such as z, 5iGe, etc. are known to be useful as such thermal lightning elements. Normally, a large number of such contacts are lined up to perform appropriate heat generation and heat absorption (cooling) as a module.

[作用] 上記本発明は以下のように作用する。外部からの指令等
により加熱・冷却手段が水素吸蔵合金を加熱すると、水
素吸蔵合金は水素を放出し、気体室内の水素分圧を上昇
させる。これにより気体室は容積を拡大し、またサスペ
ンション装置の緩衝特性が変化する。気体室の拡大は、
例えば車両用サスペンションとして利用した場合tこは
、車高上昇となる。
[Operation] The present invention described above operates as follows. When the heating/cooling means heats the hydrogen storage alloy in response to an external command or the like, the hydrogen storage alloy releases hydrogen and increases the hydrogen partial pressure in the gas chamber. This increases the volume of the gas chamber and also changes the damping characteristics of the suspension device. The expansion of the gas chamber is
For example, when used as a suspension for a vehicle, the height of the vehicle increases.

逆に加熱・冷却手段により水素吸蔵合金を冷却すると、
水素吸蔵合金は気体室内の水素を吸収し、水素分圧を減
少させる。これにより、気体室の容積は減少し、緩衝特
性も変化する。
Conversely, if the hydrogen storage alloy is cooled by heating/cooling means,
The hydrogen storage alloy absorbs hydrogen in the gas chamber and reduces the hydrogen partial pressure. This reduces the volume of the gas chamber and changes the damping properties.

[実施例] 本発明を車両の気体サスペンション装置に適用し、車高
調節のために使用する例を以下に示す。
[Example] An example in which the present invention is applied to a vehicle gas suspension system and used for vehicle height adjustment will be shown below.

本実施例のサスペンションシステムは、第2図にその概
要を示すように、車体10に取り付けられた車高センサ
12、サスペンション制御装置(以下ECUいとう。)
14及び各車輪15に取り付けられたサスペンション装
置16から成る。
As shown in FIG. 2, the suspension system of this embodiment includes a vehicle height sensor 12 attached to a vehicle body 10, and a suspension control device (hereinafter referred to as ECU).
14 and a suspension device 16 attached to each wheel 15.

各サスペンション装置16の全体の断面図を第3図に示
す。このサスペンション装置16は、ばね定数、減衰力
及び車高を変化させることのできるサスペンションとし
て設計されており、メインエアチェンバ20、サブエア
チェンバ22及び減衰力可変ショックアブソーバ24を
主要構成要素とする。このサスペンション装置16の上
部にはボルト26が埋め込まれており、これにより車体
10に固定される。また、下部は目玉部28により車輪
15のサスペンションアームに固定される。
An overall sectional view of each suspension device 16 is shown in FIG. This suspension device 16 is designed as a suspension that can change the spring constant, damping force, and vehicle height, and has a main air chamber 20, a sub air chamber 22, and a variable damping force shock absorber 24 as main components. A bolt 26 is embedded in the upper part of this suspension device 16, and is thereby fixed to the vehicle body 10. Further, the lower part is fixed to the suspension arm of the wheel 15 by the eyeball part 28.

ショックアブソーバ24はガス封入式であり、アブソー
バ24内部のオイルの流路でおるオリフィスの径を変更
するとにより減衰力特性を変更することのできるタイプ
である。メインエアチェンバ20とサブエアチェンバ2
2とはサスペンション装置16の上部に設けられたロー
タリバルブ30により3種類の通路で連通するように構
成されている。これらの3種類の通常の断面積は各々、
大、中、小となっており、これらの間の切り換えにより
ばね定数が3段階に変更される。
The shock absorber 24 is of a gas-filled type, and the damping force characteristics can be changed by changing the diameter of the orifice through which the oil flows inside the absorber 24. Main air chamber 20 and sub air chamber 2
2 is configured to communicate with the suspension device 16 through three types of passages through a rotary valve 30 provided at the upper part of the suspension device 16. Each of these three types of normal cross-sectional area is
They are large, medium, and small, and switching between these changes the spring constant in three stages.

サスペンション装置16の本発明に係る主要部の拡大断
面図を第1図に示す。メインエアチェンバ20は円筒状
の側壁32、下方の弾性部材から成るダイヤフラム34
及び上方のサブエアチェンバ22との隔壁36により郭
定される。サブエアチェンバ22は下方を上記隔壁36
、側方及び上方をハウジング部材38により郭定される
。これらメインエアチェンバ20とサブチェンバ22の
間はロータリバルブ30により3種類の通路で連通され
ることは前述の通りである。なお、メインエアチェンバ
20内には、ボトミングの衝撃を緩和するために、合成
樹脂製のバウンドストッパ31が設けられている。
An enlarged sectional view of the main parts of the suspension device 16 according to the present invention is shown in FIG. The main air chamber 20 includes a cylindrical side wall 32 and a lower diaphragm 34 made of an elastic member.
and a partition wall 36 from the sub-air chamber 22 above. The sub air chamber 22 has a lower part connected to the partition wall 36.
, laterally and upwardly defined by a housing member 38 . As described above, the main air chamber 20 and the sub-chamber 22 are communicated through three types of passages by the rotary valve 30. A bound stopper 31 made of synthetic resin is provided within the main air chamber 20 to reduce the impact of bottoming.

メインエアチェンバ20の側壁32には水素制御部40
が設けられ、この水素制御部は2本のコード41により
ECU14と接続されている。水素制御部40のメイン
エアチェンバ20側には、粉状の水素吸蔵合金42を内
包し、フィルタ44が備えられた水素吸蔵合金46が形
成される。ここで水素吸蔵合金42としては希土類系で
は1aNis、MnNi5. Ti系ではTiFe、T
1Co、T iMn、その他Ca系やMO系等の周知の
材料を使用することが可能である。水素吸蔵合金46の
隣には熱電モジュール48が設けられ、この熱電モジュ
ール48からは水素吸蔵合金室46内及び反対側のメイ
ンエアチェンバ20外の方向に多数の伝熱促進用フィン
50が突出している。
A hydrogen control unit 40 is installed on the side wall 32 of the main air chamber 20.
This hydrogen control section is connected to the ECU 14 by two cords 41. On the side of the main air chamber 20 of the hydrogen control unit 40, a hydrogen storage alloy 46 containing a powdered hydrogen storage alloy 42 and provided with a filter 44 is formed. Here, as the hydrogen storage alloy 42, rare earth metals such as 1aNis, MnNi5. Ti-based TiFe, T
It is possible to use well-known materials such as 1Co, TiMn, and other Ca-based and MO-based materials. A thermoelectric module 48 is provided next to the hydrogen storage alloy 46, and a large number of heat transfer promoting fins 50 protrude from the thermoelectric module 48 into the hydrogen storage alloy chamber 46 and outside the main air chamber 20 on the opposite side. There is.

熱電モジュール48はFeSi2.5iGe。The thermoelectric module 48 is made of FeSi2.5iGe.

S iGe (GaP)、(Cn、AO)23e等の材
料のいずれかを用いた周知のものを利用することができ
る。ここで熱電モジュール48中には多数の熱電素子が
直列に接続され、ある方向の電流に対しては水素吸蔵合
金室46側の方が熱接点となり、メインエアチェンバ2
0の外側の方が冷接点となるように組立てられている。
A well-known material using any of materials such as S iGe (GaP) and (Cn, AO)23e can be used. Here, a large number of thermoelectric elements are connected in series in the thermoelectric module 48, and for current in a certain direction, the hydrogen storage alloy chamber 46 side becomes a hot junction, and the main air chamber 2
It is assembled so that the outer side of 0 becomes the cold junction.

従って、その逆方向の電流に対しては水素吸蔵合金室4
6側が冷接点となる。さらに、この熱電モジュール48
に流す電流量と発熱量、吸熱量との関係は予め求められ
ており、ECU14に記憶されている。
Therefore, for the current in the opposite direction, the hydrogen storage alloy chamber 4
The 6th side becomes the cold junction. Furthermore, this thermoelectric module 48
The relationship between the amount of current flowing through the engine, the amount of heat generated, and the amount of heat absorbed is determined in advance and stored in the ECU 14.

上記構成を有する本実施例のサスペンション装置16の
作用を次に説明する。車高センサ12により車高が低下
したこと及びその低下準が検出されると、ECU14は
車高を元へ戻すために必要な電流量及びその向きを篩用
して、各サスペンション装fii16の水素制御装置4
0にその方向及び量の電流を供給する。水素制御装置4
0の熱電モジュール48では、その電流により各熱電素
子の水素吸蔵合金室46側の接合部でペルチェ効果によ
り熱の発生が生じる。この熱は伝熱促進用フィン50を
通じて水素吸蔵合金42に伝達される。
The operation of the suspension device 16 of this embodiment having the above configuration will be explained next. When the vehicle height sensor 12 detects that the vehicle height has lowered and the level of the decrease, the ECU 14 uses the amount of current and its direction necessary to restore the vehicle height to the original level, and calculates the amount of current required to restore the vehicle height to the original level. Control device 4
0 in that direction and amount. Hydrogen control device 4
In the thermoelectric module 48 of No. 0, the current causes heat to be generated at the junction of each thermoelectric element on the hydrogen storage alloy chamber 46 side due to the Peltier effect. This heat is transferred to the hydrogen storage alloy 42 through the heat transfer promoting fins 50.

水素吸蔵合金と水素とは下式で示される化学反応により
結合又は解離する。
The hydrogen storage alloy and hydrogen are bonded or dissociated by a chemical reaction represented by the following formula.

M (S)+n/2H2(g)RMHn (S) 十〇
・・・(1) ここでMは水素吸蔵合金、Hは水素、Qは反応生成熱、
(S)は固体、(g)は気体を表わす。
M (S) + n/2H2 (g) RMHn (S) 10... (1) Here, M is hydrogen storage alloy, H is hydrogen, Q is heat of reaction formation,
(S) represents solid, and (g) represents gas.

(1)式の反応は水素ガス(Hz(Q))の圧力及び温
度により平衡状態が定まり、種々の金属、合金の上記平
衡圧力(水素解離圧)と温度との関係は第4図の通りに
求められている。第4図において、すべての金属、合金
について温度が上昇するに従い(すなわち、横軸で左の
方へ行くに従い)水素解離圧は増加することが示される
。これは、水素吸蔵合金を上記の通り加熱させると、(
1)式の反応は右方から左方へ進み、水素ガスが水素吸
蔵合金から放出されて平衡水素分圧が上昇することを示
している。また、水素解離圧の変化の温度の変化に対す
る度合、すなわち第4図における各直線の勾配は非常に
大きいため、これら水素吸蔵合金はわずかの温度差によ
っても大きな平衡水素分圧の変化が得られるという特性
を有する。
In the reaction of equation (1), the equilibrium state is determined by the pressure and temperature of hydrogen gas (Hz (Q)), and the relationship between the above equilibrium pressure (hydrogen dissociation pressure) and temperature for various metals and alloys is shown in Figure 4. is required. In FIG. 4, it is shown that the hydrogen dissociation pressure increases for all metals and alloys as the temperature increases (that is, as you move to the left on the horizontal axis). This is because when the hydrogen storage alloy is heated as described above, (
The reaction in equation 1) progresses from right to left, indicating that hydrogen gas is released from the hydrogen storage alloy and the equilibrium hydrogen partial pressure increases. Furthermore, since the degree to which the hydrogen dissociation pressure changes with respect to the temperature change, that is, the slope of each straight line in Figure 4, is very large, these hydrogen storage alloys can obtain a large change in the equilibrium hydrogen partial pressure even with a small temperature difference. It has the following characteristics.

本実施例において使用される水素吸蔵合金42の温度−
水素解離圧の関係は、熱電モジュール48に供給する電
流量とメインエアチェンバ20内の平衡水素分圧の増減
量という関係によりECU14内に記憶されており、E
CU14はこの関係を基に所定量だけ車高を上昇させる
ために必要な電流量を決定するものである。
Temperature of hydrogen storage alloy 42 used in this example -
The relationship between the hydrogen dissociation pressure is stored in the ECU 14 based on the relationship between the amount of current supplied to the thermoelectric module 48 and the increase/decrease in the equilibrium hydrogen partial pressure in the main air chamber 20.
Based on this relationship, the CU 14 determines the amount of current required to raise the vehicle height by a predetermined amount.

このように、水素吸蔵合金42が加熱されるとメインエ
アチェンバ20内の水素分圧が上昇し、メインエアチェ
ンバ20の容積が所定量だけ増大する。すなわち、メイ
ンエアチェンバ20の下方は弾性部材でおるダイヤフラ
ム34により形成されているため、メインエアチェンバ
20自体が上昇し、サスペンション装置16の全長がの
びる。
In this way, when the hydrogen storage alloy 42 is heated, the hydrogen partial pressure within the main air chamber 20 increases, and the volume of the main air chamber 20 increases by a predetermined amount. That is, since the lower part of the main air chamber 20 is formed by the diaphragm 34 made of an elastic member, the main air chamber 20 itself rises, and the entire length of the suspension device 16 is extended.

これにより、車高の回復が行われることになる。As a result, the vehicle height will be restored.

逆に車高センサ12により車高が増加したことが検出さ
れると、ECU14は各車輪の熱電モジュール48に先
とは逆の方向の電流を流す。これにより各熱電素子の水
素吸蔵合金室46側の接合部は熱を吸収するため、伝熱
促進フィン50を介して水素吸蔵合金42は冷却され、
前記の通りメインエアチェンバ20内の水素ガスを吸収
して水素分圧を下げる。これにより車高が下げられ、車
高調整が実現される。
Conversely, when the vehicle height sensor 12 detects that the vehicle height has increased, the ECU 14 causes current to flow in the opposite direction to the thermoelectric module 48 of each wheel. As a result, the joint portion of each thermoelectric element on the side of the hydrogen storage alloy chamber 46 absorbs heat, so the hydrogen storage alloy 42 is cooled via the heat transfer promotion fins 50.
As described above, the hydrogen gas in the main air chamber 20 is absorbed to lower the hydrogen partial pressure. This lowers the vehicle height and realizes vehicle height adjustment.

このように、本実施例では従来のような重量の大きいコ
ンプレッサ等の気体圧力発生装置を必要とせず、軽量か
つコンパクトな装置でメインエアチェンバ20の容積を
変更する、すなわち車高を変更することができる。また
、気体のための配管、バルブ等はもとより、可動部分が
一切ないため、信頼性のきわめて高いシステムとなって
いる。さらに、水素吸蔵合金42は前記の通りわずかの
温度変化に対して大きな水素解離圧の変化を示すため、
熱電モジュール48の熱発生(又は吸収)能は小ざくて
済み、またそのための電源も小さくて済むという特長を
有する。
In this way, this embodiment does not require a conventional heavy gas pressure generating device such as a compressor, and can change the volume of the main air chamber 20, that is, change the vehicle height, using a lightweight and compact device. Can be done. Furthermore, since there are no moving parts, let alone piping or valves for gas, the system is extremely reliable. Furthermore, as mentioned above, since the hydrogen storage alloy 42 shows a large change in hydrogen dissociation pressure with a slight temperature change,
The thermoelectric module 48 has the advantage that the heat generation (or absorption) capacity can be small, and the power supply for it can also be small.

なお、上記実施例では水素吸蔵合金42の加熱、冷却の
ために熱電モジュール48を使用したが、これは通常の
電熱ヒータによる加熱及び循環水による冷却を用いた方
法でも同様の車高調整機能を発揮させることができる。
In the above embodiment, the thermoelectric module 48 was used to heat and cool the hydrogen storage alloy 42, but the same vehicle height adjustment function can also be achieved by heating with an ordinary electric heater and cooling with circulating water. It can be demonstrated.

[発明の効果] 本発明に係る水素吸蔵合金を利用した気体サスペンショ
ン装置を用いることにより、従来の気体サスペンション
装置システムの大幅な軽量化をはかることができ、ざら
に信頼性をも向上することができる。
[Effects of the Invention] By using the gas suspension device using the hydrogen storage alloy according to the present invention, the weight of the conventional gas suspension device system can be significantly reduced, and the reliability can also be significantly improved. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例が適用されるサスペンション装
置の主要部の断面図、第2図は実施例のサスペンション
システム全体のブロック図、第3図は実施例のサスペン
ション装置の全体の断面図、第4図は各種金属、合金の
温度と水素解離圧との関係を示すグラフである。 14・・・サスペンション制御装置 16・・・サスペンション装置 20・・・メインエアチェンバ 40・・・水素制御装置 42・・・水素吸蔵合金 48・・・熱電モジュール
Fig. 1 is a sectional view of the main parts of a suspension device to which an embodiment of the present invention is applied, Fig. 2 is a block diagram of the entire suspension system of the embodiment, and Fig. 3 is a sectional view of the entire suspension system of the embodiment. , FIG. 4 is a graph showing the relationship between temperature and hydrogen dissociation pressure for various metals and alloys. 14...Suspension control device 16...Suspension device 20...Main air chamber 40...Hydrogen control device 42...Hydrogen storage alloy 48...Thermoelectric module

Claims (1)

【特許請求の範囲】 1 容積可変の気体室中の気体量を増加もしくは減少さ
せることにより、気体室容積及び緩衝特性を変化させる
気体サスペンション装置において、該気体室中に水素ガ
スを充填し、かつ、水素吸蔵合金及び該水素吸蔵合金を
加熱もしくは冷却する手段を備えたことを特徴とする気
体サスペンション装置。 2 該加熱もしくは冷却する手段が熱電素子である特許
請求の範囲第1項記載の気体サスペンション装置。
[Scope of Claims] 1. A gas suspension device that changes the gas chamber volume and buffer characteristics by increasing or decreasing the amount of gas in the gas chamber whose volume is variable, the gas chamber being filled with hydrogen gas, and A gas suspension device comprising a hydrogen storage alloy and means for heating or cooling the hydrogen storage alloy. 2. The gas suspension device according to claim 1, wherein the heating or cooling means is a thermoelectric element.
JP21033586A 1986-09-06 1986-09-06 Gas suspension device Pending JPS6364812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21033586A JPS6364812A (en) 1986-09-06 1986-09-06 Gas suspension device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21033586A JPS6364812A (en) 1986-09-06 1986-09-06 Gas suspension device

Publications (1)

Publication Number Publication Date
JPS6364812A true JPS6364812A (en) 1988-03-23

Family

ID=16587707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21033586A Pending JPS6364812A (en) 1986-09-06 1986-09-06 Gas suspension device

Country Status (1)

Country Link
JP (1) JPS6364812A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329109A (en) * 1989-06-26 1991-02-07 Hitachi Ltd System and device for writing position information
WO2000007835A1 (en) * 1998-08-03 2000-02-17 Honda Giken Kogyo Kabushiki Kaisha Damper with vehicle height adjusting function
DE102007015867A1 (en) * 2007-04-02 2008-10-09 GM Global Technology Operations, Inc., Detroit Damping unit e.g. damper strut, for chassis of motor vehicle i.e. passenger car, has cooling device mounted at external side of vehicle, and computer unit and temperature sensor assigned to damping unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329109A (en) * 1989-06-26 1991-02-07 Hitachi Ltd System and device for writing position information
US5241435A (en) * 1989-06-26 1993-08-31 Hitachi, Ltd. Servo information recording method for a storage apparatus
WO2000007835A1 (en) * 1998-08-03 2000-02-17 Honda Giken Kogyo Kabushiki Kaisha Damper with vehicle height adjusting function
DE102007015867A1 (en) * 2007-04-02 2008-10-09 GM Global Technology Operations, Inc., Detroit Damping unit e.g. damper strut, for chassis of motor vehicle i.e. passenger car, has cooling device mounted at external side of vehicle, and computer unit and temperature sensor assigned to damping unit

Similar Documents

Publication Publication Date Title
US5813248A (en) Balanced adsorbent refrigerator
US8511111B2 (en) Automotive adsorption heat pump
JP2000511626A (en) Pulse operation control valve
KR100358338B1 (en) Driving method and apparatus of refrigeration system
JPH01230966A (en) Control of refrigerating system and thermostatic expansion valve
JPH11270612A (en) Gas spring having intermediate stop function and temperature compensating capacity
US3602429A (en) Valved heat pipe
JPH11311287A (en) Vehicular damper with car height adjusting function
CA2105982C (en) High force thermochemical actuator
US2860889A (en) Vehicle stabilizer, tilter, and leveling device
WO1996009504A1 (en) Thermal compressive device
US2805854A (en) Spring systems
JPS6364812A (en) Gas suspension device
JPH033817B2 (en)
JPH11509599A (en) Heat output device with movable regenerator
KR19990083040A (en) Controlling refrigerant in a closed loop recirculating system
CA1127402A (en) Refrigerant motor
JPH08159586A (en) Free-piston type vuilleumier cycle engine
JP3476619B2 (en) Expansion valve
JP2004359180A (en) Shock absorber having vehicle height adjusting function
US3250543A (en) Method and apparatus for thermo-electrically controlling fluid suspension units employed between two relatively movable members subject to varying loads
JPH09150615A (en) Hydraulic power source and vehicle height adjusting device for on-vehicle actuator
JPS587260Y2 (en) Refrigeration and cooling equipment
JP2007038791A (en) Suspension device
JPS6183489A (en) Heat-sensitive actuator