JPS6364485B2 - - Google Patents

Info

Publication number
JPS6364485B2
JPS6364485B2 JP57024184A JP2418482A JPS6364485B2 JP S6364485 B2 JPS6364485 B2 JP S6364485B2 JP 57024184 A JP57024184 A JP 57024184A JP 2418482 A JP2418482 A JP 2418482A JP S6364485 B2 JPS6364485 B2 JP S6364485B2
Authority
JP
Japan
Prior art keywords
molten steel
temperature
slag
electrode
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57024184A
Other languages
Japanese (ja)
Other versions
JPS58141314A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57024184A priority Critical patent/JPS58141314A/en
Publication of JPS58141314A publication Critical patent/JPS58141314A/en
Publication of JPS6364485B2 publication Critical patent/JPS6364485B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/28Arrangement of controlling, monitoring, alarm or the like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Discharge Heating (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】 従来よりアーク炉を用いて還元鉄を溶融させて
溶鋼を作りその溶鋼を利用することが行なわれて
いる。上記のようにして溶鋼を作る場合炉の深部
には溶鋼が溜まり、その溶鋼の上側にはスラグの
層が一般に形成される。本発明は、上記スラグに
向けて還元鉄を逐次装入し、その還元鉄をスラグ
の層を通して溶鋼に向わせる過程においてその還
元鉄を溶解させてスラグ要素と溶鋼要素に分離さ
せ、これにより上記溶鋼を得るようにする場合に
おける上記アーク炉の制御方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Conventionally, reduced iron is melted using an arc furnace to produce molten steel, and the molten steel is utilized. When producing molten steel as described above, the molten steel accumulates in the deep part of the furnace, and a layer of slag is generally formed above the molten steel. In the present invention, reduced iron is sequentially charged into the slag, and in the process of directing the reduced iron through the slag layer to the molten steel, the reduced iron is melted and separated into a slag element and a molten steel element. The present invention relates to a method of controlling the arc furnace in order to obtain the molten steel.

上記のように還元鉄を処理する場合、上記溶鋼
の層の温度は一般に次のような理由によつてほぼ
一定の温度に保つことが要求される。即ち、 (イ) 溶鋼の温度が低くなり過ぎると溶鋼本来の性
質即ち溶融状態を維持できなくなり固化してし
まう。
When treating reduced iron as described above, the temperature of the molten steel layer is generally required to be maintained at a substantially constant temperature for the following reasons. That is, (a) If the temperature of molten steel becomes too low, it becomes impossible to maintain the original properties of molten steel, that is, the molten state, and it solidifies.

(ロ) 溶鋼の温度が高過ぎると炉の損傷をもたらし
たり、エネルギーの損失を増大させる。
(b) If the temperature of molten steel is too high, it will cause damage to the furnace and increase energy loss.

また上記スラグの温度も次のような理由によ
つてほぼ一定の温度に保つことが要求される。
即ち、 (ハ) スラグの温度が低くなり過ぎると還元鉄の溶
解能力が減退し還元鉄が直接に高温度の溶鋼の
中に入り込む。するとその高温の溶鋼の中にお
いて炭素と酸素とが急激に反応して膨張し
(COボイリング)、爆発現象を示して極めて危
険である。
Furthermore, the temperature of the slag is required to be maintained at a substantially constant temperature for the following reasons.
That is, (c) If the temperature of the slag becomes too low, the ability to dissolve reduced iron decreases, and the reduced iron directly enters the high-temperature molten steel. Then, carbon and oxygen react rapidly in the high-temperature molten steel and expand (CO boiling), causing an explosive phenomenon that is extremely dangerous.

(ニ) スラグの温度が高過ぎるとエネルギー損失が
著しく増大するばかりか炉の損傷が大幅に増加
する。
(d) If the temperature of the slag is too high, not only will the energy loss increase significantly, but the damage to the furnace will also increase significantly.

これらの見地から、上記溶鋼及びスラグ層の温
度は夫々適正な温度に維持することが必要であ
る。しかし、電源電圧の変動、炉の周囲温度の変
動によつて上記溶鋼及びスラグの温度は夫々種々
に変動する。この場合従来より行なわれている供
給電力の調節あるいはアーク長の調節による制御
方法では、溶鋼あるいはスラグの温度を是正しよ
うとした場合に、他方もそれに追従して温度が変
化してしまい、一方を適正な温度にすれば他方は
それ自体の適正温度から外れてしまう問題があつ
た。
From these viewpoints, it is necessary to maintain the temperatures of the molten steel and the slag layer at appropriate temperatures. However, the temperatures of the molten steel and slag vary due to variations in power supply voltage and ambient temperature of the furnace. In this case, with conventional control methods that involve adjusting the power supply or adjusting the arc length, if an attempt is made to correct the temperature of the molten steel or slag, the temperature of the other will follow suit, causing one to change. There was a problem that if one set the temperature to the proper temperature, the other would deviate from its own proper temperature.

そこで本発明は上記問題点を除くようにしたも
ので、スラグ及び溶鋼いずれの温度も夫々個別に
コントロールして各々を適正温度に保つことがで
きるようにしたアーク炉の制御方法を提供しよう
とするものである。
Therefore, the present invention aims to eliminate the above-mentioned problems, and provides a method for controlling an arc furnace in which the temperatures of both slag and molten steel can be controlled individually to maintain each at an appropriate temperature. It is something.

以下本願の実施例を示す図面について説明す
る。第1図及び第2図に於て、アーク炉1は凹状
の炉体2とその上部の開口部を塞ぐ様にした炉蓋
3とから構成されている。炉体2は周知の如く、
鋼材その他で形成される炉殻4の内面に耐火物5
を備えさせて形成されている。この炉体2の内部
空間には、その操業状態に於て、溶鋼6とその溶
鋼6の上面を覆うスラグ7とが第2図に示される
如く存在する。上記炉体2には溶鋼6の温度を検
出する為の溶鋼温度検出器8とスラグ7の温度を
検出する為のスラグ温度検出器9とが取付けられ
ている。これらの温度検出器8,9としては例え
ば熱電対が用いられる。炉体2には又溶鋼6を流
出させる為の出鋼樋10が周知の如く備えられて
いる。一方炉蓋3は鋼材でもつて水冷構造に構成
されたり、或は耐火物で構成されたりする。この
炉蓋3の中央部分には環状の絶縁材11を介して
アーク発生用の複数の電極12が備えさせてあ
る。電極12は夫々図示外の電極昇降装置によつ
て上下動させられる様になつている。尚第2図に
於て左側の電極12は下降している状態を、右側
の電極はやや上昇した状態を夫々示している。炉
蓋3には又還元鉄を装入する為の投入シユート1
3が取付けられている。この投入シユート13は
還元鉄を炉体2の中央部付近に投入し得るように
なつている。
The drawings showing the embodiments of the present application will be described below. In FIGS. 1 and 2, an arc furnace 1 is comprised of a concave furnace body 2 and a furnace lid 3 that closes an opening at the top of the furnace body 2. As shown in FIGS. As is well known, the furnace body 2 is
A refractory material 5 is placed on the inner surface of a furnace shell 4 made of steel or other material.
It is formed with the following. In the internal space of the furnace body 2, in its operating state, molten steel 6 and slag 7 covering the upper surface of the molten steel 6 exist as shown in FIG. A molten steel temperature detector 8 for detecting the temperature of molten steel 6 and a slag temperature detector 9 for detecting the temperature of slag 7 are attached to the furnace body 2. For example, thermocouples are used as these temperature detectors 8 and 9. The furnace body 2 is also provided with a tapping trough 10 for flowing out the molten steel 6, as is well known. On the other hand, the furnace cover 3 is made of steel and has a water-cooled structure, or is made of refractory material. A plurality of electrodes 12 for arc generation are provided at the center of the furnace lid 3 via an annular insulating material 11. The electrodes 12 are each moved up and down by an electrode lifting device (not shown). In FIG. 2, the electrode 12 on the left side is shown in a lowered state, and the electrode on the right side is shown in a slightly raised state. The furnace lid 3 also has a charging chute 1 for charging reduced iron.
3 is installed. This charging chute 13 is designed to be able to charge reduced iron near the center of the furnace body 2.

次に第3図には前記アーク炉1への電力供給及
びその制御系統が示されている。即ち高圧或は特
高電源21からの電力は断路器22、遮断器23
を介して炉用変換器24の一次側に導かれる。炉
用変圧器24はタツプ切替器25を備えてその二
次側の出力を調節できるようになつている。炉用
変圧器24の二次側出力は前記アーク炉1におけ
る電極12に供給される。一方断路器22を通つ
た電力の一部は計器用変圧器27を介してアーク
炉制御盤28及び自動電極制御装置29に送られ
それ等を動作させる。アーク炉制御盤28は、炉
用変圧器24の一次側及び二次側に備えられた変
流器30,31による電流の検出値と、電圧検出
端32からの電圧の検出値とを入力して、アーク
炉1の電極12に所要の適切な電力が供給される
ようにタツプ切替器25を切替作動させる。また
制御盤28は非常時には遮断器23を遮断する。
又自動電極制御装置29は、変流器31からの電
流検出値及び電圧検出端32からの電圧検出値を
入力して、電極12を昇降させる為の電極昇降装
置33を制御する。これによつて電極12は適切
な長さのアークが生ずる高さのところに位置す
る。
Next, FIG. 3 shows the power supply to the arc furnace 1 and its control system. That is, the power from the high voltage or extra high power source 21 is passed through the disconnector 22 and the circuit breaker 23.
It is guided to the primary side of the furnace converter 24 through the. The furnace transformer 24 is equipped with a tap changer 25 to adjust the output on its secondary side. The secondary output of the furnace transformer 24 is supplied to the electrode 12 in the arc furnace 1 . On the other hand, a part of the electric power passing through the disconnector 22 is sent to an arc furnace control panel 28 and an automatic electrode control device 29 via an instrument transformer 27 to operate them. The arc furnace control panel 28 receives the detected current values from the current transformers 30 and 31 provided on the primary and secondary sides of the furnace transformer 24 and the detected voltage value from the voltage detection terminal 32. Then, the tap changer 25 is switched so that the appropriate power required is supplied to the electrode 12 of the arc furnace 1. Further, the control panel 28 shuts off the circuit breaker 23 in an emergency.
Further, the automatic electrode control device 29 inputs the current detection value from the current transformer 31 and the voltage detection value from the voltage detection terminal 32 to control the electrode lifting device 33 for raising and lowering the electrode 12. This places the electrode 12 at a height where an arc of appropriate length occurs.

次に第1図及び第2図に示されたアーク炉1の
操業について説明する。先ず炉体2内への初装入
が行なわれる。この初装入には、還元鉄だけでは
溶解させにくい為スクラツプ又はスクラツプと還
元鉄の混合物が使用される。その装入量は炉体2
の全装入量の例えば20%位即ち例えば100トンの
炉の場合には約20トンにされる。またその初装入
がスクラツプだけの場合には一般のスクラツプ製
鋼法と同様のバツチ装入をすればよいが、スクラ
ツプと還元鉄の混合の場合には装入物が炉体2の
内壁へ付着しないように炉体2の底部の中央部に
盛り上げる方がよい。上記のように初装入を行な
つたならば、炉蓋3を被せたのち電極12に電力
を供給してアークを発生させ、前記初装入で装入
したスクラツプ又はスクラツプと還元鉄の混合物
を溶解させる。尚上記初装入は前回の溶鋼を少し
残しておくという方法を取つてもよい。
Next, the operation of the arc furnace 1 shown in FIGS. 1 and 2 will be explained. First, initial charging into the furnace body 2 is performed. For this initial charging, scrap or a mixture of scrap and reduced iron is used because reduced iron alone is difficult to dissolve. The charging amount is 2
For example, about 20% of the total charge amount, for example, about 20 tons in the case of a 100-ton furnace. In addition, if the initial charging is only scrap, batch charging similar to the general scrap steelmaking method may be used, but if scrap and reduced iron are mixed, the charging material will stick to the inner wall of the furnace body 2. It is better to build it up in the center of the bottom of the furnace body 2 to prevent it. If the initial charging is carried out as described above, after covering the furnace lid 3, electric power is supplied to the electrode 12 to generate an arc, and the scrap charged in the initial charging or the mixture of scrap and reduced iron is dissolve. Incidentally, for the above-mentioned initial charging, a method may be used in which a small amount of the molten steel from the previous time is left.

上記のような初装入物が溶解して炉体2の底部
に溶融物が出来たならば、電極12への電力の供
給を継続してその電極12からアーク14を発生
させ続けると共に、投入シユート13から還元鉄
15を第2図に示される如く連続的に装入する。
上記の様にして装入される還元鉄15としてはそ
の形状がペレツト状、小塊状、ブリケツト状のも
のが用いられる。そして還元鉄の装入とその溶解
を継続的に行なう炉の操業の定常状態において
は、第2図に示されるように炉体2内の空間の底
部に溶鋼6が溜まりその上にスラグ7が浮いた状
態となつている。この場合、溶鋼6の比重は7〜
7.5程度でその温度は1580℃前後となつており、
スラグ7の比重は1.5〜3(還元鉄の投入を停止し
たときには2.5〜3)でその温度は1600℃前後と
なつている。上記溶鋼6の温度は、溶鋼として利
用し得る(固まらない)程度の低温から、熱エネ
ルギーの損失あるいは炉体2の内壁面の損傷が過
度とならない程度の高温までの範囲で設定され
る。またスラグ7の温度は、還元鉄の溶解能力が
減退しない程度の低温から、熱エネルギーの損失
あるいは炉体2の内壁面の損傷が過度とならない
程度の高温までの範囲で設定される。尚スラグ7
の温度はそのスラグの組成によつて変わるもので
ある。上記定常状態において、投入シユート13
から投入された還元鉄15は先ずスラグ7の中に
入る。スラグ7の中において還元鉄15は溶解さ
れて溶鋼要素(鉄分)とスラグ要素(スラグ分)
に分離する。そして溶鋼要素はその比重が大きい
為に下方へ移動し溶鋼6の中に混入する。又スラ
グ要素はその周囲のスラグ7の中に混入する。
Once the initial charge as described above is melted and a molten material is formed at the bottom of the furnace body 2, power is continued to be supplied to the electrode 12 to continue generating the arc 14 from the electrode 12, and the Reduced iron 15 is continuously charged from the chute 13 as shown in FIG.
The reduced iron 15 charged in the above manner may be in the form of pellets, small lumps, or briquettes. In the steady state of operation of the furnace, where reduced iron is continuously charged and melted, molten steel 6 accumulates at the bottom of the space inside the furnace body 2, and slag 7 is on top of it, as shown in FIG. It is in a floating state. In this case, the specific gravity of the molten steel 6 is 7~
At around 7.5, the temperature is around 1580℃,
The specific gravity of the slag 7 is 1.5 to 3 (2.5 to 3 when the input of reduced iron is stopped), and its temperature is around 1600°C. The temperature of the molten steel 6 is set within a range from a low temperature that allows it to be used as molten steel (does not solidify) to a high temperature that does not cause excessive loss of thermal energy or damage to the inner wall surface of the furnace body 2. The temperature of the slag 7 is set within a range from a low temperature that does not reduce the melting ability of reduced iron to a high temperature that does not cause excessive loss of thermal energy or damage to the inner wall surface of the furnace body 2. Slag 7
The temperature varies depending on the composition of the slag. In the above steady state, the input chute 13
The reduced iron 15 introduced from the slag first enters the slag 7. In the slag 7, the reduced iron 15 is melted into a molten steel element (iron) and a slag element (slag).
Separate into Since the molten steel element has a large specific gravity, it moves downward and mixes into the molten steel 6. The slag element also mixes into the slag 7 around it.

次に上記操業状態において溶鋼6及びスラグ7
の温度を変更する操作は次の様に行なう。即ち電
極12への投入電力を変更(この操作は例えば前
記制御盤28によつて行なう。)したり、或は電
極12を昇降(この操作は例えば前記電極制御装
置29によつて行なう。)させて電極12の下端
と溶鋼6との間に形成されるアーク14の長さを
変更する。次にその操作を第4図に基いて説明す
る。この第4図は還元鉄15の投入量が毎分1ト
ンである場合の電極12に対する供給電力及びア
ーク14の長さと溶鋼6及びスラグ7の温度変化
の関係を示すグラフである。尚アーク14は炉の
内部で発生しているものである為その目視が困難
である。したがつてアーク14の長さを推定する
手段としてはそのアークの長さと一定の関係にあ
る力率(電極12に供給される電力の力率)が一
般に用いられ、第4図においても縦軸は力率の値
で目盛つてある。(アークの長さと力率との関係
は、アークの長さが長くなれば力率が高くなりア
ークの長さが短かくなれば力率も低くなる関係と
なつている。) (1) 先ず、アーク炉1において還元鉄15の投入
及び溶解が定常的に行なわれておりしかも溶鋼
6及びスラグ7の温度が一定の温度に保たれて
いる場合には、供給電力と力率との関係は溶鋼
の0℃/分の温度変化の曲線とスラグの0℃/
分の温度変化曲線との交点(A)の状態となつてい
る。
Next, in the above operating state, molten steel 6 and slag 7
The operation for changing the temperature of is performed as follows. That is, changing the power input to the electrode 12 (this operation is performed, for example, using the control panel 28) or raising and lowering the electrode 12 (this operation is performed, for example, using the electrode control device 29). The length of the arc 14 formed between the lower end of the electrode 12 and the molten steel 6 is changed. Next, the operation will be explained based on FIG. FIG. 4 is a graph showing the relationship between the power supplied to the electrode 12, the length of the arc 14, and the temperature changes of the molten steel 6 and slag 7 when the amount of reduced iron 15 input is 1 ton per minute. Incidentally, since the arc 14 is generated inside the furnace, it is difficult to visually observe it. Therefore, as a means of estimating the length of the arc 14, the power factor (the power factor of the electric power supplied to the electrode 12), which has a constant relationship with the length of the arc, is generally used. is scaled by the power factor value. (The relationship between arc length and power factor is such that the longer the arc, the higher the power factor, and the shorter the arc, the lower the power factor.) (1) First of all, , when the reduced iron 15 is constantly charged and melted in the arc furnace 1 and the temperatures of the molten steel 6 and slag 7 are kept constant, the relationship between the supplied power and the power factor is as follows. Curve of temperature change at 0℃/min for molten steel and 0℃/min for slag
The state is at the intersection point (A) with the temperature change curve for 20 minutes.

(2) スラグ温度検出器9によりスラグ7の温度が
低下したことが検出された為にスラグ7の温度
だけを上昇例えば3℃/分させたい場合には、
供給電力を上昇させアーク長を長くする。即ち
供給電力及び力率を(B)で示される点まで夫々上
昇させる。(この時には電極12は第2図にお
いて右側に示されるもののように上昇させられ
て、その電極12と溶鋼6との間で発生するア
ーク14の長さは長くなる。)この状態で炉を
運転することにより溶鋼6の温度はそのままで
スラグ7の温度のみが上昇する。そしてスラグ
温度検出器9によつてスラグ7の温度が所望の
温度となつたことが検出されたならば、再び電
力及び力率をもとの(A)で示される点まで戻す。
するとその後は、溶鋼6及びスラグ7を上記の
変更された温度状態に保つことが出来る。
(2) If the slag temperature detector 9 detects that the temperature of the slag 7 has decreased and you want to increase only the temperature of the slag 7, for example by 3°C/min,
Increase the supplied power and lengthen the arc length. That is, the supplied power and power factor are respectively increased to the point shown in (B). (At this time, the electrode 12 is raised as shown on the right side in FIG. 2, and the length of the arc 14 generated between the electrode 12 and the molten steel 6 becomes longer.) The furnace is operated in this state. By doing so, only the temperature of the slag 7 increases while the temperature of the molten steel 6 remains the same. When the slag temperature detector 9 detects that the temperature of the slag 7 has reached the desired temperature, the electric power and power factor are returned to the original point (A).
Thereafter, the molten steel 6 and slag 7 can be maintained at the changed temperature.

(3) スラグ7の温度だけを下降させたい場合に
は、供給電力を低下させアーク長を短かくす
る。即ち供給電力及び力率を第4図の例えば(C)
で示される点まで下降させる。あとは前記(2)と
同様の操作を行なえばよい。
(3) If it is desired to lower only the temperature of the slag 7, reduce the supplied power and shorten the arc length. In other words, the supplied power and power factor are expressed as (C) in Figure 4, for example.
Lower it to the point indicated by . All that remains is to perform the same operations as in (2) above.

(4) 溶鋼温度検出器8により溶鋼6の温度が低下
したことが検出された為に、溶鋼6の温度のみ
を上昇させたい場合(例えば2℃/分)には、
供給電力を上昇させアーク長を短かくする。即
ち電力及び力率を(D)で示される様な状態にす
る。この状態で炉を運転することにより溶鋼の
温度のみが2℃/分で上昇する。そして溶鋼温
度検出器8によつてその溶鋼の温度が所望の温
度となつたことが検出されたならば再び電力及
び力率を(A)で示される状態に戻せば、溶鋼6及
びスラグ7をその達成した温度状態に保持する
ことが出来る。
(4) If you want to increase only the temperature of molten steel 6 (for example, 2°C/min) because the molten steel temperature detector 8 has detected that the temperature of molten steel 6 has decreased,
Increase the supplied power and shorten the arc length. That is, the electric power and power factor are set to the state shown in (D). By operating the furnace in this state, only the temperature of the molten steel increases at a rate of 2°C/min. When the molten steel temperature detector 8 detects that the temperature of the molten steel has reached the desired temperature, the electric power and power factor are returned to the state shown in (A), and the molten steel 6 and slag 7 are It is possible to maintain the achieved temperature state.

(5) 溶鋼6の温度だけを下降させたい場合には、
供給電力を低下させアーク長を長くする。即
ち、電力及び力率を例えば(E)で示されるような
状態にする。そして後は前記(4)と同様の操作を
行なえばよい。
(5) If you want to lower only the temperature of molten steel 6,
Decrease the power supply and increase the arc length. That is, the electric power and power factor are set to the state shown in (E), for example. After that, the same operation as in (4) above can be performed.

以上は電極12への供給電力とアーク長との双
方を変更してスラグあるいは溶鋼の温度変更を行
なう場合について説明した。しかし各々に要求さ
れる温度変更の如何(例えば一方を下げて他方を
上昇させたり、あるいはいずれも夫々所定の温度
変化で昇温あるいは降温させたりする場合)によ
つては、供給電力あるいはアーク長のいずれか一
方のみを制御して、溶鋼及びスラグに夫々所定の
温度変更を行なわせてもよい。
The above has described the case where the temperature of the slag or molten steel is changed by changing both the power supplied to the electrode 12 and the arc length. However, depending on the temperature change required for each (for example, lowering one and increasing the other, or increasing or decreasing the temperature with a predetermined temperature change, respectively), the power supply or arc length may vary. It is also possible to control only one of them to change the temperature of the molten steel and slag to predetermined values, respectively.

一方、アーク炉1に対する還元鉄の投入量(一
定時間当りの投入量)の変更があると、それまで
と同様の供給電力量あるいはアーク長での運転で
はスラグ7あるいは溶鋼6の温度が変化してしま
う。このような場合にその温度の変化を補正して
元の温度状態に戻す為には、還元鉄の変更された
投入量での供給電力及びアーク長と溶鋼及びスラ
グの温度変化との関係(例えば第5図に示される
ような還元鉄の投入量が毎分1.2トンである場合
の上記関係を示すグラフ)に基づいて前記と同様
の操作を行なえばよい。
On the other hand, if there is a change in the amount of reduced iron input to the arc furnace 1 (the amount input per certain period of time), the temperature of the slag 7 or molten steel 6 will change if the operation is performed at the same amount of power or arc length as before. It ends up. In such a case, in order to correct the temperature change and return to the original temperature state, the relationship between the supplied power and arc length at the changed input amount of reduced iron and the temperature change of molten steel and slag (for example, The same operation as above may be performed based on the graph shown in FIG. 5 which shows the above relationship when the input amount of reduced iron is 1.2 tons per minute.

以上のような操作は、アーク炉の種々の定格に
基づいて第4図あるいは第5図に示されたような
関係を予め算出しておいたり、あるいは実験的に
そのような関係を求めておき、それらの関係を予
め記憶させたコンピユータその他の制御装置によ
り、温度検出器8,9の検出温度に基づいて前記
アーク炉制御盤28あるいは自動電極制御装置2
9を自動的に制御して行なうことが好ましい。し
かし溶鋼及びスラグの温度検出器8,9によつて
それら溶鋼6及びスラグ7の温度を検出しなが
ら、前記のように供給電力の調節やアーク長の調
節(電極12の昇降)を手動で行なつてもよい。
The above operations can be performed by calculating the relationships shown in Figures 4 or 5 in advance based on the various ratings of the arc furnace, or by determining such relationships experimentally. , the arc furnace control panel 28 or the automatic electrode control device 2 is controlled based on the detected temperatures of the temperature detectors 8 and 9 by a computer or other control device that stores these relationships in advance.
9 is preferably carried out under automatic control. However, while the temperatures of the molten steel 6 and slag 7 are being detected by the molten steel and slag temperature detectors 8 and 9, the power supply and the arc length (elevating and lowering the electrode 12) are manually adjusted as described above. It's okay to get old.

以上のようにこの発明にあつては、還元鉄を装
入し、それを溶鋼要素とスラグ要素とに分離さ
せ、溶鋼要素を溶鋼6の中に混入させるものであ
るから、溶鋼6を逐次増加させられる特長があ
る。
As described above, in this invention, reduced iron is charged, it is separated into a molten steel element and a slag element, and the molten steel element is mixed into the molten steel 6, so that the molten steel 6 is gradually increased. There are features that make it possible.

しかも本発明にあつては、電極12と溶鋼6と
の間にアーク14を発生させることによつて、上
記スラグ7及び溶鋼6の温度を保持しておくこと
のできる特長もある。
Furthermore, the present invention has the advantage that by generating an arc 14 between the electrode 12 and the molten steel 6, the temperatures of the slag 7 and the molten steel 6 can be maintained.

更に本発明の優れた特長は、上記還元鉄を溶解
させる場合において、電源電圧の変動による投入
電力の変動、炉の周囲温度の変化、炉のダスト集
塵を行なうことによる炉内の雰囲気の温度の変化
その他種々の要因によりスラグ7あるいは溶鋼6
の温度に変動が生じた場合、それを適切に是正で
きる点にある。即ち、 (1) スラグ7の温度が低下したときには、溶鋼6
の温度をそのままに保持してスラグ7の温度の
みを上昇させることができ、 (2) スラグ7の温度が上昇したときには、溶鋼6
の温度をそのままに保持してスラグ7の温度の
みを下降させることができ、 (3) 溶鋼6の温度が低下したときには、スラグ7
の温度をそのままに保持して溶鋼6の温度のみ
を上昇させることができ、 (4) 溶鋼6の温度が上昇したときには、スラグ7
の温度をそのままに保持して溶鋼6の温度のみ
を下降させることができる画期的特長がある。
Furthermore, the excellent feature of the present invention is that when melting the above-mentioned reduced iron, fluctuations in the input power due to fluctuations in the power supply voltage, changes in the ambient temperature of the furnace, and temperature of the atmosphere inside the furnace due to dust collection of the furnace are avoided. Slag7 or molten steel6 due to changes in
The point is that if a change in temperature occurs, it can be corrected appropriately. That is, (1) When the temperature of the slag 7 decreases, the molten steel 6
(2) When the temperature of slag 7 rises, the temperature of molten steel 6 can be increased.
(3) When the temperature of molten steel 6 decreases, the temperature of slag 7 can be lowered while maintaining the same temperature.
(4) When the temperature of molten steel 6 rises, the temperature of slag 7 can be increased.
It has an epoch-making feature that only the temperature of the molten steel 6 can be lowered while maintaining the temperature of the molten steel 6 as it is.

これによりスラグ層7及び溶鋼6の温度をいず
れも適切な温度にすることができ、その結果、ス
ラグ7の側では還元鉄15の適温状態での溶解を
可能にしかつスラグによる炉体の損傷を防止でき
ると同時に、溶鋼6の側では、エネルギー損失を
少なくしかつ炉の損傷も少なくした最適状態での
溶鋼の溶融状態の保持を可能にできるという優れ
た有用性がある。
This allows the temperatures of both the slag layer 7 and the molten steel 6 to be set to appropriate temperatures, and as a result, the reduced iron 15 can be melted at an appropriate temperature on the slag 7 side, and the furnace body can be prevented from being damaged by the slag. At the same time, on the molten steel 6 side, there is an excellent utility in that it is possible to maintain the molten state of the molten steel in an optimal state with less energy loss and less damage to the furnace.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本願の実施例を示すもので、第1図はア
ーク炉の平面図、第2図は―線断面図、第3
図は電力供給及び制御の系統図、第4図及び第5
図は供給電力及び力率と溶鋼及びスラグの温度変
化との関係を示すグラフ。 2……炉体、6……溶鋼、7……スラグ、12
……電極、14……アーク。
The drawings show an embodiment of the present application, and FIG. 1 is a plan view of an arc furnace, FIG. 2 is a cross-sectional view taken along the line ``-'', and FIG.
The diagrams are power supply and control system diagrams, Figures 4 and 5.
The figure is a graph showing the relationship between supplied power and power factor and temperature changes of molten steel and slag. 2... Furnace body, 6... Molten steel, 7... Slag, 12
...Electrode, 14...Arc.

Claims (1)

【特許請求の範囲】[Claims] 1 炉体の内部に形成されている溶融空間には、
溶鋼とその溶鋼の上面を覆うようにしたスラグと
を存置させ、一方上記溶鋼の上方にはアークを発
生するようにした電極を昇降可能に配設し、上記
電極に電力を供給することにより上記アークを発
生させて上記スラグ及び溶鋼を加熱する一方、還
元鉄を上記溶融空間に装入することによりその還
元鉄を溶解させてスラグ要素と溶鋼要素とに分解
させ、スラグ要素はスラグの中に混入させる一方
溶鋼要素は上記溶鋼の中に混入させている過程に
おいて、上記溶鋼及びスラグの温度を夫々溶鋼温
度検出器及びスラグ温度検出器で検出し、上記ス
ラグの温度が低下したときには、上記電極への供
給電力を増加させると共に、電極を上昇させてア
ーク長を長くすることにより、溶鋼の温度を一定
にしたままでスラグの温度を上昇させ、上記スラ
グの温度が上昇したときには、上記電極への供給
電力を低下させると共に電極を下降させてアーク
長を短かくすることにより、溶鋼の温度を一定に
したままでスラグの温度を低下させ、上記溶鋼の
温度が低下しときには、上記電極への供給電力を
増加させると共に電極を下降させてアーク長を短
かくすることにより、スラグの温度を一定にした
ままで溶鋼の温度を上昇させ、上記溶鋼の温度が
上昇したときには、上記電極への供給電力を低下
させると共に電極を上昇させてアーク長を長くす
ることにより、スラグの温度を一定にしたままで
溶鋼の温度を低下させることを特徴とするアーク
炉の制御方法。
1. In the melting space formed inside the furnace body,
Molten steel and slag covering the upper surface of the molten steel are placed, and an electrode capable of generating an arc is disposed above the molten steel so as to be movable up and down. While generating an arc to heat the slag and molten steel, reduced iron is charged into the melting space to melt the reduced iron and decompose it into a slag element and a molten steel element, and the slag element is dissolved in the slag. During the process of mixing the molten steel elements into the molten steel, the temperatures of the molten steel and slag are detected by a molten steel temperature detector and a slag temperature detector, respectively, and when the temperature of the slag decreases, the temperature of the molten steel and slag are detected by the electrodes. By increasing the power supplied to the slag and elevating the electrode to lengthen the arc length, the temperature of the slag is raised while the temperature of the molten steel remains constant. By lowering the power supplied to the molten steel and lowering the electrode to shorten the arc length, the temperature of the slag is lowered while keeping the temperature of the molten steel constant. By increasing the supplied power and lowering the electrode to shorten the arc length, the temperature of the molten steel is increased while keeping the slag temperature constant, and when the temperature of the molten steel rises, the supply to the electrode is increased. A method of controlling an arc furnace characterized by lowering the temperature of molten steel while keeping the temperature of the slag constant by lowering the electric power and raising the electrode to lengthen the arc length.
JP57024184A 1982-02-17 1982-02-17 Controlling method of arc furnace Granted JPS58141314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57024184A JPS58141314A (en) 1982-02-17 1982-02-17 Controlling method of arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57024184A JPS58141314A (en) 1982-02-17 1982-02-17 Controlling method of arc furnace

Publications (2)

Publication Number Publication Date
JPS58141314A JPS58141314A (en) 1983-08-22
JPS6364485B2 true JPS6364485B2 (en) 1988-12-12

Family

ID=12131244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57024184A Granted JPS58141314A (en) 1982-02-17 1982-02-17 Controlling method of arc furnace

Country Status (1)

Country Link
JP (1) JPS58141314A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068172A (en) * 1983-09-22 1985-04-18 Mitsubishi Heavy Ind Ltd Detection of profiling for welding
SE441411C (en) * 1984-02-21 1987-03-15 Metallurg Consult Ab WAY TO CONTROL AN ELECTROTHERMIC PROCESS
JPS60178997U (en) * 1984-05-09 1985-11-28 昭和電炉興業株式会社 Demand control circuit in automatic electrode control device
JP4725101B2 (en) * 2004-12-27 2011-07-13 大同特殊鋼株式会社 Scale charging equipment for arc furnace

Also Published As

Publication number Publication date
JPS58141314A (en) 1983-08-22

Similar Documents

Publication Publication Date Title
US3472650A (en) Electric-arc steelmaking
AU571109B2 (en) Method and apparatus for continuous steelmaking
US4543124A (en) Apparatus for continuous steelmaking
US4514218A (en) Reduced iron melting method using electric arc furnace
US4216010A (en) Aluminum purification system
JPS6294792A (en) Method and device for continuously preheating charging material for steel-making furnace
US6693947B1 (en) Method to protect the anode bottoms in batch DC electric arc furnace steel production
US20070133651A1 (en) Method for controlling foaming of slag in an electric arc furnace
US4147887A (en) Electric smelting furnace
JPS6364485B2 (en)
CA1107515A (en) Continuous smelting and refining of cement copper
US5015287A (en) Steel melting and secondary-refining method
GB1418356A (en) Method of and apparatus for the continuous production of steel from ore
JP4077533B2 (en) Metal melting method
US3891427A (en) Method for melting prereduced ore and scrap
US4133967A (en) Two-stage electric arc - electroslag process and apparatus for continuous steelmaking
RU2661322C2 (en) Method for manufacture of bimetallic electrode by electroslag cladding
US3556771A (en) Processes for producing steel
US3690867A (en) Electric-arc steelmaking
WO1997017475A1 (en) Process for melting and refining ferrous scrap through use of oxygen injection
RU2049119C1 (en) Method for making high-grade steel in electric arc furnace
RU2033432C1 (en) Method to perform smelting in an arc furnace
JPH0120208B2 (en)
JP2001316715A (en) Method for melting cold iron source
Uetani et al. The Technology for the Control of the Silicon Content in Hot Metal