JPS6364443B2 - - Google Patents

Info

Publication number
JPS6364443B2
JPS6364443B2 JP5704981A JP5704981A JPS6364443B2 JP S6364443 B2 JPS6364443 B2 JP S6364443B2 JP 5704981 A JP5704981 A JP 5704981A JP 5704981 A JP5704981 A JP 5704981A JP S6364443 B2 JPS6364443 B2 JP S6364443B2
Authority
JP
Japan
Prior art keywords
gas
phase polymerization
gas phase
polymerization apparatus
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5704981A
Other languages
Japanese (ja)
Other versions
JPS57172902A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5704981A priority Critical patent/JPS57172902A/en
Publication of JPS57172902A publication Critical patent/JPS57172902A/en
Publication of JPS6364443B2 publication Critical patent/JPS6364443B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明はオレフインの気相重合方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for gas phase polymerization of olefins.

オレフインの重合方式として、近年気相重合方
式が注目されているが、従来知られた気相重合方
式では、ブロツク状重合体やチツプ状重合体が生
成しやすいとか、循環ガス中に微細な重合体が混
入しやすいとか、回収重合体中に同伴されるガス
量が多いとか、系全体の製作費が高いといつた欠
点があり、品質良好なオレフイン重合体を経済的
に長期間安定して製造することは困難とされてい
た。
In recent years, gas phase polymerization has been attracting attention as a method for polymerizing olefins. However, conventional gas phase polymerization methods tend to produce block-like polymers and chip-like polymers, and they also tend to produce fine polymers in the circulating gas. There are disadvantages such as easy contamination by coagulation, large amount of gas entrained in the recovered polymer, and high manufacturing cost of the entire system, making it difficult to produce a good-quality olefin polymer economically and stably for a long period of time. It was considered difficult to manufacture.

従来知られたオレフインの気相重合方式は、縦
型流動床式重合装置を用いるものと横型撹拌床式
重合装置を用いるものに大別される。前者の例と
しては、特公昭47―13962号があるが、そこに開
示されている方式では、生成重合体は重合装置の
ガス分配板の近傍から排出されている。しかしこ
のような方式では、生成重合体中に多量のガス成
分が同伴されこの両者を分離することが必要とな
る。この場合ガス成分は重合体と共に減圧にされ
るので、再度昇圧して循環することが不可欠とな
り著しく不経済である。また本来の循環ガス成分
は重合装置の上部にある径の大きい、いわゆる減
速帯域を通してその流速を低下させ重合体の微粉
末を沈降させてから、循環工程に供している。し
かし高圧下で運転される重合装置についてその塔
径を大きくすることは製作面からみて経済的でな
いと共にシート状重合体が生成する原因ともな
る。また上記方式では重合装置内の重合体パウダ
ーの床レベルを制御するために専用のレベル測定
装置が必要となる等の欠点も有する。
Conventionally known gas phase polymerization systems for olefins are roughly divided into those using a vertical fluidized bed polymerization apparatus and those using a horizontal stirred bed polymerization apparatus. An example of the former is Japanese Patent Publication No. 47-13962, in which the produced polymer is discharged from the vicinity of the gas distribution plate of the polymerization apparatus. However, in such a method, a large amount of gas components are entrained in the produced polymer, and it is necessary to separate the two. In this case, since the gas component is reduced in pressure together with the polymer, it is essential to increase the pressure again and circulate it, which is extremely uneconomical. In addition, the original circulating gas component passes through a large-diameter, so-called deceleration zone located in the upper part of the polymerization apparatus to reduce its flow rate and precipitate fine polymer powder before being subjected to the circulation process. However, increasing the column diameter of a polymerization apparatus operated under high pressure is not economical from a manufacturing standpoint and also causes the formation of sheet-like polymers. Furthermore, the above method also has drawbacks such as the need for a dedicated level measuring device to control the bed level of the polymer powder in the polymerization apparatus.

一方横型撹拌床式重合装置を用いる例として
は、特開昭51―86584号があるが、そこに開示さ
れている方式では、ガス成分を生成重合体とは別
途に重合装置上部から抜き出している。このよう
な方式だとガス成分中に微細な重合体が混入する
ことを避け得ず、そのため上記例では吸収塔を用
いて重合体の除去操作を行なつている。また生成
重合体は出口せきを越えて、回収容器に入れる方
式を採つているが、このような方式だと回収容器
壁にチツプ状重合体が生成しやすく長期間の安定
運転は困難である。また上記方式では重合熱除去
のため液状炭化水素を使用することが不可欠であ
り、これを用いることなく実用することは事実上
不可能といえる。また従来知られた横型撹拌床式
重合装置はいづれもホツトスポツトを生じやすく
ブロツク状重合体の生成を防ぎ難しいと共に撹拌
に大きな動力を要するという欠点も有している。
On the other hand, an example of using a horizontal stirred bed type polymerization apparatus is JP-A-51-86584, but in the method disclosed therein, the gas component is extracted from the top of the polymerization apparatus separately from the produced polymer. . In such a system, it is unavoidable that fine polymers are mixed into the gas components, so in the above example, an absorption tower is used to remove the polymers. In addition, a method is adopted in which the produced polymer is passed over the outlet weir and put into the collection container, but with this method, chip-like polymer tends to form on the walls of the collection container, making stable operation over a long period of time difficult. Further, in the above method, it is essential to use liquid hydrocarbon to remove the heat of polymerization, and it can be said that it is virtually impossible to put it into practical use without using this. Furthermore, all of the conventionally known horizontal stirred bed polymerization apparatuses have the disadvantage that hot spots are likely to occur, making it difficult to prevent the formation of block polymers, and requiring a large amount of power for stirring.

本発明は従来の気相重合法の欠点を改良し、品
質良好なオレフイン重合体を経済的に長期間安定
して製造することのできる効果の顕著な気相重合
方法を提供するものである。
The present invention improves the drawbacks of conventional gas phase polymerization methods and provides a highly effective gas phase polymerization method that can economically and stably produce olefin polymers of good quality over a long period of time.

即ち本発明は、気相重合装置にオレフインガス
と重合用触媒を導入して気相重合を行ない生成重
合体を取得すると共に未反応オレフインガスを含
むガス成分を該気相重合装置に循環させるオレフ
インの連続式気相重合方法において、気相重合装
置として内部に撹拌翼を備えた中空円筒横型容器
の下部に上部が該容器の下部内面に開口してなる
複数の小室を設け該小室の少なくとも横壁部に小
孔を有してなる気相重合装置を用い、原料オレフ
インガスを該小孔を通して気相重合装置に導入す
ると共に、循環ガス成分の全量とオーバーフロー
分の生成重合体とを気相重合装置から一緒に抜き
出し、サイクロンを用いて成分と生成重合体とに
分離することを特徴とするオレフインの気相重合
方法に関するものである。
That is, the present invention provides an olefin polymerization system in which an olefin gas and a polymerization catalyst are introduced into a gas phase polymerization apparatus to perform gas phase polymerization to obtain a polymer product, and at the same time, a gas component including unreacted olefin gas is circulated to the gas phase polymerization apparatus. In the continuous gas phase polymerization method, a plurality of small chambers each having an upper part opening to the inner surface of the lower portion of the container are provided at the bottom of a hollow cylindrical horizontal container equipped with a stirring blade inside as a gas phase polymerization apparatus, and at least the side wall of the small chambers is provided. Using a gas phase polymerization apparatus having small holes in the part, the raw olefin gas is introduced into the gas phase polymerization apparatus through the small holes, and the entire amount of circulating gas components and the overflow amount of produced polymer are subjected to gas phase polymerization. The present invention relates to a gas phase polymerization method for olefins, which is characterized in that they are extracted together from an apparatus and separated into components and produced polymers using a cyclone.

本発明では気相重合装置として、原料オレフイ
ンガスを必須とするガス成分を重合系に供給する
ための小孔を少なくとも横壁部に有する小室を複
数個その上部が重合系を構成する中空円筒横型容
器の下部内面に開口するように設けた横型流動撹
拌床式重合装置を用いることを本質とする。この
装置本体は中空円筒横型構造を有しているが、中
空円筒体内部の垂直断面直径に対する長さ比は、
通常0.5〜10、特に1〜5が好ましい。またこの
装置は必要に応じて上部に縦型円筒体等の室を設
けてもよい。この場合本体の横型中空円筒体内部
の断面直径に対する上部の縦型円筒体の断面直径
の比は通常0.6〜1.0が好ましい。撹拌装置は横型
中空円筒体の長さ方向中心に駆動軸を有し1個あ
るいは複数個の撹拌翼を有するものが用いられ
る。撹拌翼としては、パドル型、傾斜パドル型、
らせん型、重合装置内壁を掻き取るための掻板を
備えた翼等がある。撹拌翼は通常複数個設けられ
るが、重合装置内部壁と撹拌翼先端との間隔が3
〜10mm程度である場合に特に好ましい結果が得ら
れる。
In the present invention, the gas phase polymerization apparatus is a hollow cylindrical horizontal container having a plurality of small chambers each having a plurality of small chambers at least in the side wall portion for supplying gas components including the raw material olefin gas to the polymerization system, the upper part of which constitutes the polymerization system. The essence is to use a horizontal fluidized stirred bed type polymerization apparatus installed so as to open on the lower inner surface of the polymerization apparatus. The main body of this device has a hollow cylindrical horizontal structure, and the length ratio to the vertical cross-sectional diameter inside the hollow cylinder is
Usually 0.5-10, particularly 1-5 is preferred. Further, this device may be provided with a chamber such as a vertical cylindrical body in the upper part, if necessary. In this case, the ratio of the cross-sectional diameter of the upper vertical cylinder to the internal cross-sectional diameter of the horizontal hollow cylinder of the main body is usually preferably 0.6 to 1.0. The stirring device used has a drive shaft at the center in the longitudinal direction of a horizontal hollow cylinder and one or more stirring blades. Stirring blades include paddle type, inclined paddle type,
There are spiral types, blades equipped with scrapers for scraping the inner walls of the polymerization apparatus, etc. Usually, a plurality of stirring blades are provided, but the distance between the inner wall of the polymerization apparatus and the tip of the stirring blade is 3.
Particularly favorable results are obtained when the thickness is about 10 mm.

原料オレフインガスを供給するための小孔を備
えた小室は、通常、中空円筒横型容器の下部に一
定間隔で配置され且つその全体を覆うように設け
た原料オレフイン供給室に小孔を通して連通して
いる。小室を設ける部分は円筒体の最下部を中心
とする曲面部分である。円筒体中心からの角度が
30゜〜180゜、特に60゜〜120゜に相当する曲面に該小
室を設けることが好ましい。小孔の孔径は2〜6
mm程度が好ましい。小孔は斜め方向を向いていて
もよいし、バブルキヤツプを逆につけた方式でも
よい。小室の形状は円筒状等任意であるが、開口
部の径は通常8〜35mm程度が好ましく、深さは8
〜25mm程度が好ましい。またこの小室は第5図に
示すように長い溝状にして円筒体下部を横断また
は縦断するように取りつけてもよい。この場合の
開口部の径は溝の横断開口部の径をいう。小室に
設けるオレフインガス供給孔の数は小室の大き
さ、形状等によつて異なるが、第3図及び第4図
に示すような小室の場合には、通常、2〜8個程
度が好ましい。
A small chamber equipped with a small hole for supplying the raw material olefin gas is usually arranged through the small hole into a raw material olefin supply chamber that is arranged at regular intervals in the lower part of the hollow cylindrical horizontal container and covers the entire container. There is. The part where the small chamber is provided is a curved part centered on the lowest part of the cylindrical body. The angle from the center of the cylinder is
Preferably, the chamber is provided on a curved surface corresponding to an angle of 30° to 180°, in particular 60° to 120°. The diameter of the small hole is 2 to 6.
Approximately mm is preferable. The small holes may be oriented diagonally, or the bubble cap may be placed in reverse. The shape of the chamber can be arbitrary, such as cylindrical, but the diameter of the opening is usually preferably about 8 to 35 mm, and the depth is about 8 mm.
~25mm is preferable. Further, the small chamber may be formed into a long groove and installed so as to cross or longitudinally cross the lower part of the cylindrical body, as shown in FIG. The diameter of the opening in this case refers to the diameter of the transverse opening of the groove. The number of olefin gas supply holes provided in a small chamber varies depending on the size, shape, etc. of the small chamber, but in the case of a small chamber as shown in FIGS. 3 and 4, it is usually preferable to have about 2 to 8 holes.

小室相互の間隔は通常50〜300mm程度が好まし
い。このような小室を円筒体下部に設けることに
より、重合系内へのガスの分散が均一になると共
に、適正な開口比を得ることが容易となるので圧
力損失を減らし、ガス循環エネルギーを少なくす
ることができる。また静止時にも生成重合体パウ
ダーの落下がなく、さらに撹拌効率の向上がもた
らされる等の効果を示す。
The distance between the small chambers is preferably approximately 50 to 300 mm. By providing such a small chamber at the bottom of the cylinder, the gas is uniformly dispersed within the polymerization system, and it is also easy to obtain an appropriate opening ratio, which reduces pressure loss and gas circulation energy. be able to. Furthermore, even when the device is stationary, the produced polymer powder does not fall, and the stirring efficiency is further improved.

触媒は通常飽和炭化水素のスラリーとしてある
いは固体のまま供給される。この際助触媒を同時
に加えてもよくまた別途にこれを供給してもよ
い。触媒導入口の閉塞を防ぐために水素または窒
素ガスを供給することも好ましい。
The catalyst is usually supplied as a slurry of saturated hydrocarbons or as a solid. At this time, the promoter may be added at the same time or may be supplied separately. It is also preferable to supply hydrogen or nitrogen gas to prevent clogging of the catalyst inlet.

本発明はかかる方式の気相重合装置を用いると
共にガス成分の排出と生成重合体の排出とを同一
の排出口を用いて一緒に行ないこれらをサイクロ
ンに供給しサイクロンで両者を分離することを本
質とする。
The essence of the present invention is to use such a gas phase polymerization apparatus, discharge the gas components and discharge the produced polymer at the same time using the same discharge port, supply these to a cyclone, and separate the two by the cyclone. shall be.

ガス成分と生成重合体との共通排出口は、通
常、重合装置の中心より上部に設けられる。具体
的には重合装置内の撹拌翼の種類、その回転数に
より重合体パウダーのレベルが変化するので、最
適の撹拌状態を決めた後、重合体パウダーのレベ
ルに応じて排出口の高さが決められる。通常、排
出口は撹拌により重合体が持ち上がる側の重合装
置側面であつて重合装置の水平中心面から上方へ
重合装置の半径の1/3〜1の範囲の高さに設ける
ことが好ましい。
A common outlet for gas components and produced polymer is usually provided above the center of the polymerization apparatus. Specifically, the level of the polymer powder changes depending on the type of stirring blade in the polymerization equipment and its rotation speed, so after determining the optimal stirring condition, the height of the discharge port is adjusted according to the level of the polymer powder. It can be decided. Usually, the outlet is preferably provided on the side of the polymerization apparatus on the side where the polymer is lifted by stirring, at a height in the range of 1/3 to 1 radius of the polymerization apparatus upward from the horizontal center plane of the polymerization apparatus.

重合装置を出た循環ガスの全量とオーバーフロ
ー分の生成重合体との混合物はサイクロンに供給
されるが、重合装置からサイクロンまでの配管中
のガス流速は5m/sec〜30m/secであることが、
壁への重合体の付着防止上望ましい。
A mixture of the total amount of circulating gas leaving the polymerization device and the overflow amount of produced polymer is supplied to the cyclone, and the gas flow rate in the piping from the polymerization device to the cyclone is 5 m/sec to 30 m/sec. ,
Desirable for preventing polymer from adhering to walls.

サイクロンは適宜周知形式のサイクロンが用い
られる。なるべく簡単な構造のものが好ましく、
たとえば化学工学便覧1233頁(1979年,丸善発
行)に記載されている基本構造を有するもの等が
適宜用いられる。サイクロンの内面はバフ仕上げ
等をして平滑にしておく必要がある。サイクロン
下部には生成重合体の受器が設けられる。この受
器は小さい方が好ましい。また受器はその中で重
合体が溶融しないよう外部を冷却することも好ま
しい。生成重合体の系外への抜出しはボールバル
ブの間欠的開閉による間欠的な抜出しやボールバ
ルブ形式の調節弁を利用した連続抜出し等適宜の
方法を採用しうる。
As the cyclone, a well-known type of cyclone is used as appropriate. Preferably, the structure is as simple as possible.
For example, those having the basic structure described in Chemical Engineering Handbook, page 1233 (published by Maruzen, 1979) can be used as appropriate. The inner surface of the cyclone must be smoothed by buffing. A receiver for the produced polymer is provided at the bottom of the cyclone. It is preferable that this receiver be small. It is also preferred that the receiver be externally cooled to prevent the polymer from melting therein. The produced polymer may be withdrawn from the system by any appropriate method, such as intermittent withdrawal by intermittent opening and closing of a ball valve or continuous withdrawal using a ball valve type control valve.

サイクロンの入口ガス流速は5m/sec〜30m/
sec、特に10m/sec〜25m/secに保つことが好
ましい。
The gas flow velocity at the inlet of the cyclone is 5m/sec to 30m/
sec, especially preferably maintained at 10 m/sec to 25 m/sec.

サイクロンは1つの重合装置に2つ以上設置し
てもよい。
Two or more cyclones may be installed in one polymerization apparatus.

以下図面によつて本発明を説明する。 The present invention will be explained below with reference to the drawings.

第1図は本発明によるオレフインの重合の一例
を示す概略工程図である。撹拌翼1と原料オレフ
インガス供給用小室2を備えた横型重合装置3に
原料オレフインガス4が該ガス供給室5を経て供
給されると共に触媒6及び必要により水素7、冷
却用液体が供給される。原料オレフインガスは、
エチレン、プロピレン、ブテン―1、ヘキセン―
1、4―メチルペンテン―1等の通常炭素数12以
下のα―オレフインを単独であるいは2種以上の
混合物として用いられる。また、これらのオレフ
イン類に更にブタジエン、1,4―ヘキサジエ
ン、エチリデンノルボルネン等のジエン類を加え
て共重合することもできる。
FIG. 1 is a schematic process diagram showing an example of olefin polymerization according to the present invention. A raw material olefin gas 4 is supplied via the gas supply chamber 5 to a horizontal polymerization apparatus 3 equipped with a stirring blade 1 and a small chamber 2 for supplying raw material olefin gas, and a catalyst 6 and, if necessary, hydrogen 7 and a cooling liquid are also supplied. . The raw material olefin gas is
Ethylene, propylene, butene-1, hexene-
α-olefins usually having 12 or less carbon atoms, such as 1,4-methylpentene-1, are used alone or in a mixture of two or more. Furthermore, dienes such as butadiene, 1,4-hexadiene, and ethylidene norbornene can be further added to these olefins for copolymerization.

重合反応槽の温度は0〜125℃、特に20〜100℃
が好ましい。圧力は常圧〜70Kg/cm2G、特に2〜
60Kg/cm2Gが好ましい。撹拌装置の回転数は10〜
500rpm、特に20〜300rpmが好ましい。重合装置
中の循環ガス線速度は断面積基準で0.5〜25cm/
sec、特に1〜10cm/secが好ましい。触媒は通常
ポリオレフインの製造に用いられる公知のチーグ
ラー系、フイリツプス系、スタンダード系触媒が
用いられる。
The temperature of the polymerization reaction tank is 0 to 125℃, especially 20 to 100℃
is preferred. Pressure is normal pressure ~ 70Kg/cm 2 G, especially 2 ~
60Kg/cm 2 G is preferred. The rotation speed of the stirring device is 10~
500 rpm, especially 20-300 rpm is preferred. The circulating gas linear velocity in the polymerization equipment is 0.5 to 25 cm/cm based on the cross-sectional area.
sec, especially 1 to 10 cm/sec is preferred. As the catalyst, a known Ziegler type, Phillips type, or standard type catalyst, which is usually used in the production of polyolefins, is used.

循環ガスの全量とオーバーフロー分の生成重合
体は配管8を経てサイクロン9に供給され、生成
重合体は受器10に分離され、ボールバルブ1
1,12の間欠開閉により断続的に系外に抜きと
られる。サイクロンで分離されたガス成分は冷却
器13に供給され、冷却用液体を液化し、分離さ
れた冷却用液体は受槽14、冷却用液体ポンプ1
5を経て重合装置に循環される。ガス成分はガス
循環ブロワー16により重合装置に循環される。
The entire amount of circulating gas and the overflow amount of produced polymer are supplied to a cyclone 9 via a pipe 8, and the produced polymer is separated into a receiver 10 and then a ball valve 1.
It is intermittently extracted from the system by the intermittent opening and closing of 1 and 12. The gas components separated by the cyclone are supplied to the cooler 13 to liquefy the cooling liquid, and the separated cooling liquid is sent to the receiving tank 14 and the cooling liquid pump 1.
5 and then circulated to the polymerization apparatus. The gas components are circulated to the polymerization apparatus by a gas circulation blower 16.

第2図は本発明で用いる重合装置の一例を示す
概略断面図であり、aは縦断面を、bは線1′―
1′の横断面を示す。図中の番号は第1図と共通
であり、17,17′は原料オレフインガスをオ
レフインガス供給室5に導びく配管である。第3
図、第4図及び第5図はオレフインガス供給孔を
有する小室の一例を示す概略図である。
FIG. 2 is a schematic sectional view showing an example of the polymerization apparatus used in the present invention, where a is a longitudinal section and b is a line 1'--
1' cross section is shown. The numbers in the figure are the same as in FIG. 1, and 17 and 17' are piping for guiding the raw material olefin gas to the olefin gas supply chamber 5. Third
4 and 5 are schematic diagrams showing an example of a small chamber having an olefin gas supply hole.

本発明方法においてサイクロンを用いて、取得
すべき生成重合体の全量と循環ガスの全量との混
合物の分離を行なう場合には、両者が極めて効率
よく分離されると共に壁面へのパウダーの付着も
起こらない。生成重合体の抜き出しにボールバル
ブの間欠的開閉を利用する場合には、その際に生
ずる圧力変動がより効果的にパウダーの付着を防
止するという作用も示す。
In the method of the present invention, when a cyclone is used to separate the mixture of the total amount of produced polymer to be obtained and the total amount of circulating gas, both can be separated extremely efficiently and no powder will adhere to the wall surface. do not have. When intermittent opening and closing of a ball valve is used to extract the produced polymer, the pressure fluctuations that occur at that time also have the effect of preventing powder adhesion more effectively.

本発明方法は、ブロツク状重合体、チツプ状重
合体を生成することなく長期間安定に連続操作し
うると共に、循環ガス中への微細な重合体の混合
がなく、分離した生成重合体に同伴されるガス量
も少なく、さらに重合装置中の重合体床レベルを
一定に保つことができるという効果を有するので
ある。
The method of the present invention can be operated stably and continuously for a long period of time without producing block polymers or chip polymers, and there is no mixing of fine polymers into the circulating gas, which are entrained in the separated produced polymers. This has the advantage that the amount of gas used is small and the level of the polymer bed in the polymerization apparatus can be kept constant.

実施例 1 第2図に示したような40横型流動撹拌床式重
合反応槽を使用し、その下方に第3図に示したよ
うな小室を14個とりつけた。該小室は径12mm、深
さ27mmであり、各小室の側面には径3mmの孔が4
個づつあいている。
Example 1 A 40 horizontal fluidized stirred bed polymerization reactor as shown in FIG. 2 was used, and 14 small chambers as shown in FIG. 3 were installed below it. The chambers have a diameter of 12 mm and a depth of 27 mm, and there are four holes of 3 mm diameter on the side of each chamber.
They are matched one by one.

第1図に示したような上記横型流動撹拌床式重
合反応槽、サイクロン、冷却器、ブロワーおよび
流量調節器のループにガスを循環した。反応槽は
ジヤケツトに温水を流すことにより温度を調節し
た。使用したサイクロンは直径78mm、全長243mm
である。
Gas was circulated through the horizontal fluidized stirred bed polymerization reactor, cyclone, cooler, blower, and flow regulator loop as shown in FIG. The temperature of the reactor was controlled by running hot water through the jacket. The cyclone used has a diameter of 78 mm and a total length of 243 mm.
It is.

無水塩化マグネシウム1Kg、1,2―ジクロロ
エタン50gおよび四塩化チタン170gを窒素雰囲気
下、室温で16時間ボールミリングしてチタン化合
物を担体に担持させた。得られた固体物質は1g
当り35mgのチタンを含有していた。
1 kg of anhydrous magnesium chloride, 50 g of 1,2-dichloroethane, and 170 g of titanium tetrachloride were ball milled at room temperature in a nitrogen atmosphere for 16 hours to support the titanium compound on the carrier. 1g of solid material obtained
Contains 35mg of titanium per serving.

あらかじめ9.3Kgの乾燥した粉末ポリエチレン
を入れ80℃に調節した反応器に、上記固体物質
300mgとトリエチルアルミニウム5mmolを1の
ヘキサンに分散させた触媒スラリーを500ml/hr
の速度でライン6から供給し、また気相中の水
素/エチレン(モル比)を0.28、ブテン―1/エ
チレン(モル比)を0.31になるように調整しなが
ら水素、およびエチレンとブテン―1の混合物を
それぞれライン7およびライン4から供給し、か
つブロアーにより系内のガスを24m3/hrで循環さ
せた。反応槽にはパドル型撹拌翼を取り付け、
50rpmで撹拌して、全圧8Kg/cm2・Gで重合を行
なつた。
The above solid material was placed in a reactor containing 9.3 kg of dry polyethylene powder and adjusted to 80°C.
500ml/hr of catalyst slurry in which 300mg and 5mmol of triethylaluminum are dispersed in 1 part hexane.
hydrogen, and ethylene and butene-1 while adjusting the hydrogen/ethylene (molar ratio) in the gas phase to 0.28 and the butene-1/ethylene (mole ratio) to 0.31. A mixture of these was supplied from lines 7 and 4, respectively, and the gas in the system was circulated at 24 m 3 /hr using a blower. A paddle type stirring blade is attached to the reaction tank.
The polymerization was carried out at a total pressure of 8 kg/cm 2 ·G while stirring at 50 rpm.

重合中に適宜ポリマーの抜出しを行い、121時
間後に正常停止により重合を終了した。
The polymer was extracted as appropriate during the polymerization, and the polymerization was terminated due to normal termination after 121 hours.

重合終了後、白色ポリエチレン310Kg(最初に
反応槽に加えておいたポリエチレンを除く)が得
られ、ポリマーのメルトインデツクスは1.5、密
度は0.9185、かさ密度は0.29であつた。
After the polymerization was completed, 310 kg of white polyethylene (excluding the polyethylene initially added to the reaction tank) was obtained, the melt index of the polymer was 1.5, the density was 0.9185, and the bulk density was 0.29.

次に反応槽を開放点検したところ、槽内のポリ
マー付着は全く認められなかつた。
Next, when the reaction tank was opened and inspected, no polymer adhesion was observed inside the tank.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるオレフインの重合の一例
を示す概略工程図であり、第2図は本発明で用い
る重合装置の一例を示す概略断面図であり、aは
縦断面を、bは線1′―1′の横断面を示す。第3
図はオレフインガス供給孔を有する小室の一例を
示す概略図であり、aは縦断面を、bは線2′―
2′の横断面を示す。第4図及び第5図はオレフ
インガス供給孔を有する小室の他の一例を示す概
略図である。
FIG. 1 is a schematic process diagram showing an example of polymerization of olefin according to the present invention, and FIG. 2 is a schematic sectional view showing an example of a polymerization apparatus used in the present invention, where a is a longitudinal section and b is a line 1. '-1' cross section is shown. Third
The figure is a schematic diagram showing an example of a small chamber having an olefin gas supply hole, where a is a longitudinal section and b is a line 2'--
2' cross section is shown. FIGS. 4 and 5 are schematic diagrams showing other examples of small chambers having olefin gas supply holes.

Claims (1)

【特許請求の範囲】 1 気相重合装置にオレフインガスと重合用触媒
を導入して気相重合を行ない生成重合体を取得す
ると共に未反応オレフインガスを含むガス成分を
該気相重合装置に循環させるオレフインの連続式
気相重合方法において、気相重合装置として内部
に撹拌翼を備えた中空円筒横型容器の下部に上部
が該容器の下部内面に開口してなる複数の小室を
設け該小室の少なくとも横壁部に小孔を有してな
る気相重合装置を用い、原料オレフインガスを該
小孔を通して気相重合装置に導入すると共に、循
環ガス成分の全量とオーバーフロー分の生成重合
体とを気相重合装置から一緒に抜き出し、サイク
ロンを用いてガス成分と生成重合体とに分離する
ことを特徴とするオレフインの気相重合方法。 2 循環ガス成分の全量とオーバーフロー分の生
成重合体とを気相重合装置の上部に設けた排出口
から一緒に抜き出しサイクロンに供給することを
特徴とする特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. Introducing olefin gas and a polymerization catalyst into a gas phase polymerization apparatus to perform gas phase polymerization to obtain a produced polymer, and at the same time circulating gas components including unreacted olefin gas to the gas phase polymerization apparatus. In a continuous gas phase polymerization method for olefins, a plurality of small chambers are provided at the bottom of a hollow cylindrical horizontal container equipped with a stirring blade inside as a gas phase polymerization device, the upper part of which opens into the inner surface of the bottom of the container. Using a gas phase polymerization apparatus having small holes at least in the side wall, the raw olefin gas is introduced into the gas phase polymerization apparatus through the small holes, and the total amount of circulating gas components and the overflow amount of produced polymer are A method for the gas phase polymerization of olefins, which is characterized in that they are extracted together from a phase polymerization apparatus and separated into a gas component and a produced polymer using a cyclone. 2. The method according to claim 1, wherein the entire amount of the circulating gas component and the overflow polymer are extracted together from an outlet provided at the top of the gas phase polymerization apparatus and supplied to the cyclone.
JP5704981A 1981-04-17 1981-04-17 Vapor-phase polymerization of olefin Granted JPS57172902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5704981A JPS57172902A (en) 1981-04-17 1981-04-17 Vapor-phase polymerization of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5704981A JPS57172902A (en) 1981-04-17 1981-04-17 Vapor-phase polymerization of olefin

Publications (2)

Publication Number Publication Date
JPS57172902A JPS57172902A (en) 1982-10-25
JPS6364443B2 true JPS6364443B2 (en) 1988-12-12

Family

ID=13044584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5704981A Granted JPS57172902A (en) 1981-04-17 1981-04-17 Vapor-phase polymerization of olefin

Country Status (1)

Country Link
JP (1) JPS57172902A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172904A (en) * 1981-04-18 1982-10-25 Mitsui Toatsu Chem Inc Production of propylene/ethylene copolymer

Also Published As

Publication number Publication date
JPS57172902A (en) 1982-10-25

Similar Documents

Publication Publication Date Title
US4129701A (en) Horizontal reactor for the vapor phase polymerization of monomers
US6218484B1 (en) Fluidized bed reactor and polymerization process
JP5611361B2 (en) Method for producing polyolefin
JPH08333410A (en) Method of controlling temperature of fluidized bed reactor
US5241023A (en) Process and device for the gas phase polymerization of alpha-olefins
EP1041087A2 (en) Polymerization process
JPH05239109A (en) Gas-phase polymerization of alpha-olefin in fluidized-bed reactor
JPS5921321B2 (en) Monomer vapor phase polymerization method and polymerization reactor used therein
US4535134A (en) Method and apparatus for controlling the discharge of product from vapor phase polymerization of monomers in a horizontal stirred-bed reactor
US7459506B2 (en) Segmented agitator reactor
KR100645122B1 (en) Apparatus for Preparing Polyolefin Products and Methodology for Using the Same
JP4184599B2 (en) Method and apparatus for preparing polymers
KR860000246B1 (en) Polymerization reactor for olefins
EP1133350B1 (en) Prepolymerisation reactor
JPS6364443B2 (en)
JPS6364442B2 (en)
JPH0796563B2 (en) Method for injecting catalyst in Ziegler polymerization
US4372919A (en) Vapor phase polymerization apparatus for olefins
JPH0332564B2 (en)
US4525548A (en) Method for vapor phase polymerization of olefins
JPH0333163B2 (en)
JPS6126801B2 (en)
RU2050364C1 (en) Method and reaction vessel for gas-phase polymerization of alpha-olefins
JPS614705A (en) Vapor-phase polymerization of olefin
SU786907A3 (en) Method of producing polyolefins