JPS6364362A - Integrated circuit - Google Patents

Integrated circuit

Info

Publication number
JPS6364362A
JPS6364362A JP61207859A JP20785986A JPS6364362A JP S6364362 A JPS6364362 A JP S6364362A JP 61207859 A JP61207859 A JP 61207859A JP 20785986 A JP20785986 A JP 20785986A JP S6364362 A JPS6364362 A JP S6364362A
Authority
JP
Japan
Prior art keywords
circuit
circuits
input
control
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61207859A
Other languages
Japanese (ja)
Inventor
Goro Kitsukawa
橘川 五郎
Ryoichi Hori
堀 陵一
Yoshiki Kawajiri
良樹 川尻
Takao Watabe
隆夫 渡部
Kiyoo Ito
清男 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61207859A priority Critical patent/JPS6364362A/en
Publication of JPS6364362A publication Critical patent/JPS6364362A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique

Abstract

PURPOSE:To reduce wiring delay, and to increase the speed of the control of currents by forming a plurality of input circuits for control input signals and shortening the wiring length of a control signal conductor and minimizing loading capacity. CONSTITUTION:An output phi1 from a circuit 1A and an output phi2 from a circuit 1B each control the currents of circuit groups 2A, 2B. Two control signal input circuits 1A, 1B are shaped, and arranged on the mutually reverse sides of memory cell arrays 5. Since the memory cell arrays 5 generally take a large occupying area on a chip, the wiring length of the outputs phi1, phi2 can be shortened by isolating the control signal input circuits 1A, 1B. The number of load circuits can also be decreased, and the time constant of the wirings of the outputs phi1, phi2 is diminished by double effects, thus increasing the response speed of the load circuit groups 2A, 2B.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は集積回路に係り、特に配線抵抗による遅延を低
減し、高速動作全可能とするためのチップ構成に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an integrated circuit, and particularly to a chip configuration for reducing delays due to wiring resistance and enabling high-speed operation.

〔従来の技術〕[Conventional technology]

メモIJ L S Iや論理LSIの様な集積回路では
チップ内の複数の回路ブロックの消費心力を動作モード
によって側脚する方式が広く用いられている。例えばメ
モリLSIではメモリセルアノ−と。
In integrated circuits such as memo IJLSIs and logic LSIs, a method is widely used in which the power consumption of a plurality of circuit blocks within a chip is divided depending on the operation mode. For example, in a memory LSI, there is a memory cell anno.

入・出力回路、デコーダ回路、センス回路等の周辺回路
より成るが、待機時にはメモリの1青報保持だけが必要
であり周辺回路の大部分の動作は不要である。従って待
機時の消費電力を動作時に比べ大幅に削減することがで
きる。、、また池の種類のLSI例えば論4LSIでも
、チップを複a1固の回路ブロックに分け、動作モード
によっては不要な回路ブロックの′にカを削減すること
が可能である。
It consists of peripheral circuits such as input/output circuits, decoder circuits, and sense circuits, but during standby, it is only necessary to hold one report in the memory, and most of the peripheral circuits do not need to operate. Therefore, power consumption during standby can be significantly reduced compared to during operation. . . . Also, even in the case of a small-sized LSI, such as a 4LSI, it is possible to divide the chip into multiple A1 circuit blocks, and depending on the operation mode, it is possible to reduce the power to unnecessary circuit blocks.

以下メモリLSIを例にとって説明する。上記の様にメ
モIJ L S Iの待機時と動作時を切換えるための
制御入力信号として通常チップセレクト入力信号(C8
)あるいは特にダイナミックRA Mで、まローアドレ
スストローブ入力信号(RASJが用いられている。
A description will be given below using a memory LSI as an example. As mentioned above, the chip select input signal (C8
) or especially in dynamic RAM, the row address strobe input signal (RASJ) is used.

従来こV動作時と待機時の一力制御を行72うためパル
ス′賊流・原力析是案されている(特公昭53−321
91゜第2図(a)はこの概念を示す構成図であり、(
b)はその動作波形を示す。同9(alで外部からの制
御入力C8はその入力回路1で適当なンベルの信号φに
変換し、2で示した回路群のイ流と制御する。2の構成
回路((は6の様なバイポーラトランジスタを用いた回
路等がある。これらの被制御回路の構成によって当然φ
のイ言号レベルは異なったものになる1、第2図(b)
ばC8,φの波形を示す。ここでは説明の便宜上、待機
時にはC8が高レベル、φが低レベルであり、動作時に
はC8が低レベル、φが高レベル:rtCなるとしてい
る。
Conventionally, in order to perform single-force control during V operation and standby, a pulse flow/source analysis method has been proposed (Japanese Patent Publication No. 53-321).
91° Figure 2 (a) is a block diagram showing this concept, and (
b) shows its operating waveform. The control input C8 from the outside in the same 9 (al) is converted into a signal φ of an appropriate level by the input circuit 1, and is controlled with the current of the circuit group shown in 2. There are circuits using bipolar transistors, etc. Naturally, depending on the configuration of these controlled circuits, φ
The level of the A word becomes different1, Figure 2 (b)
For example, the waveform of C8,φ is shown. For convenience of explanation, it is assumed here that during standby, C8 is at a high level and φ is at a low level, and during operation, C8 is at a low level and φ is at a high level: rtC.

このφは多数の被y制御回路を尭動する必要があり配線
も長くなる。このため配線抵抗R1や負荷容量C+が大
きくなり、φの立上シ、立下り波形は入力回路1の近端
と遠端では第2(b)図の実線と破線の床に差が生じる
。このとき入力回路1の出力近端での立ち上り時間(1
0〜90%)がfrlとすると、A端での立ち上り時間
t2□は1.−r〒”+(Z2C,π7や− と表わさ
れる。例えばt、、=Ins、C1=5 p)’、R+
 =500Ωの場合tr2ば5.6nsとなる。この様
にφの−A澗でつ立上り時間が遅くなるので遠端に接続
された負荷回路2の応答速度が趨くなる。でらにφの負
荷回路数が多いので、φの波形にリンギングやオーバー
シュートが生じやすくなり、負荷回路2の動作が不安定
になる恐れがある。以上従来技術における電流制御用信
号入力の配線抵抗ンてよる信号遅延の問題について述べ
たが、この問題は4流制御用入力信号の場合だけでなく
、他のたとえばアドレス入力信号などの場合も同法に問
題となることは勿論である。
This φ requires moving a large number of y-controlled circuits, and the wiring becomes long. Therefore, the wiring resistance R1 and the load capacitance C+ become large, and the rising and falling waveforms of φ differ between the solid line and the broken line in FIG. 2(b) at the near end and the far end of the input circuit 1. At this time, the rise time (1
0 to 90%) is frl, the rise time t2□ at the A end is 1. −r〒”+(Z2C, π7 or −.For example, t,, =Ins, C1=5 p)', R+
=500Ω, tr2 is 5.6ns. In this way, since the rise time of φ becomes slower at -A, the response speed of the load circuit 2 connected to the far end becomes slower. Furthermore, since there are a large number of load circuits for φ, ringing and overshoot are likely to occur in the waveform for φ, and the operation of the load circuit 2 may become unstable. The problem of signal delay due to wiring resistance of current control signal input in the conventional technology has been described above, but this problem is not only in the case of 4-current control input signals, but also in other cases such as address input signals. Of course, this is a legal problem.

〔発明が消失しょうとする間d点〕[Point d while the invention is about to disappear]

上記の従来技術には制御信号φの配線遅延や波ブ杉の歪
みについて考慮されておらず、LSIつ高速化、たとえ
ばメモリのアクセス時間等の動作速度の高速化のうえで
問題があつ文。
The above-mentioned conventional technology does not take into account the wiring delay of the control signal φ and the distortion of the waveform, which poses a problem in increasing the speed of LSI, for example, increasing the operating speed of memory access time.

本発明の目的は制御信号線の配線遅延や反形歪み?減少
させ、集積回路の高速化を可能(′こすることにある。
Is the purpose of this invention the wiring delay and countershape distortion of control signal lines? It is possible to reduce the speed of integrated circuits and increase the speed of integrated circuits.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、制−入力信号の入力回路をa数個設け、上
述した制御信号線φの配線長や負荷容量を減少をせるこ
とにより達成できる。また他の手段として、ただ1個の
利創信号入力回路を特に高速性を要求される負荷回路群
の近情に配置することlこより達成できる。
The above object can be achieved by providing a number of control input signal input circuits and reducing the wiring length and load capacitance of the control signal line φ. As another means, this can be achieved by arranging only one innovative signal input circuit in close proximity to a group of load circuits that require particularly high speed performance.

〔作用〕[Effect]

上で述べた2つの手段のいずれか一方を用いることによ
り、制御信号線φのd己@抵抗と負荷容量を減少し、も
って配線遅延?小さくすることができる。
By using either of the two methods mentioned above, the resistance and load capacitance of the control signal line φ can be reduced, thereby reducing the wiring delay. Can be made smaller.

〔実施例〕〔Example〕

以下不発明全実施例を用いて説明する。 The invention will be explained below using all the non-inventive examples.

萬1図は不発明の第1の実施例を示すチップ配置である
。この図でC3と記したのが制御入力信号2よびそのポ
ンディングパッドである。5はその他のアドンス入力、
メモリ出力等の入出力用ポンディングパッド7!?fを
示す。4はメモリ之ルアン−1lAとIBは制御入力信
号を処理する2:固の入力回路でおる。回路IAの出力
φ+、IBの出力φ2は各々回路群2A、2Bの成流を
制御する。
Figure 1 shows a chip arrangement showing a first embodiment of the invention. In this figure, C3 indicates the control input signal 2 and its bonding pad. 5 is other add input,
Ponding pad 7 for input/output such as memory output! ? Indicates f. 4 is a memory circuit; 11A and IB are fixed input circuits for processing control input signals; The output φ+ of the circuit IA and the output φ2 of the IB control the flow of the circuit groups 2A and 2B, respectively.

この様に本実、fIし1]では制御信号入力回路をIA
In this way, in the actual case, the control signal input circuit is
.

IBと21固設けIAとIBをメモリセルアレー5の瓦
いに反対側に配置する。一般にメモリセルアレー5はチ
ップ上の占有直積が大きいので、  LAとIBに分離
することによりφ1.φ2の配線長を短くすることがで
きる。また負荷回路数を減少することもでき、2重の効
果により、φ1φ2の配線時定数を減少させ、負荷回路
群2A、2Bの応答を高速イヒすることができる。
Fixed IA and IB 21 are arranged on opposite sides of the memory cell array 5. In general, the memory cell array 5 occupies a large direct product on the chip, so by separating it into LA and IB, φ1. The wiring length of φ2 can be shortened. Furthermore, the number of load circuits can be reduced, and due to the double effect, the wiring time constant of φ1φ2 can be reduced, and the response of the load circuit groups 2A and 2B can be made faster.

次に不実施例の効果を、従来IBの位置に1回路のみ配
置した場δとの遅延時間0り差で述べる。
Next, the effect of the non-embodiment will be described in terms of the difference in delay time from δ when only one circuit is placed at the position of the conventional IB.

前述の数1直例を用いると不実施例では信号の配線長を
従来の1/2以下にでさ、また負荷の回路数がAるOで
、CI、R+ を元来の各々1/2にでである。
Using the direct example of Equation 1 above, in the non-embodiment, the signal wiring length can be reduced to less than 1/2 of the conventional one, and the number of load circuits is A to O, and CI and R+ are each reduced to 1/2 of the original. It's Nide.

この様シζφの遠端での立上り時間t7□は詑釆の5、
6 n sからλ9nsに改善でさる。負荷回路はφl
、φ2の脹嘉の50%点で応答を開始すると仮定すると
、2A群が動作を開始するまでの遅延時間は約1,3 
ns (−=、X (5,6−2,9)ns  )高速
化できる。回路群2人に特に高速化が必要なアドレスバ
ッファ回路が含まれる様にすると、アクセス時間を1.
3ns高速化することができる。
In this way, the rise time t7□ at the far end of ζφ is 5,
The improvement is from 6 ns to λ9 ns. The load circuit is φl
, assuming that the response starts at the 50% point of φ2, the delay time until the 2A group starts operating is approximately 1.3
ns (-=, X (5,6-2,9)ns) The speed can be increased. If the two circuit groups include an address buffer circuit that requires particularly high speed, the access time will be reduced to 1.
The speed can be increased by 3 ns.

なお本実施例ではC3のポンディングパッドから入力回
路IAに至る配線が長くなる。しかしび百入力信号の配
線開廷は以下に示す理由から増加しない。C8入力の立
下り時間(10−90%)のうちポンディングパッド上
での立下り時間tflu回路IAの入力部での立下シ時
間tf2としポンディングパッドからIAまでの配線抵
抗、配線容量を各々几2.C2とすると、t12はV石
π]〒Z、2Qπ斤と表わされる。しかし入力の11.
がもともと3ns程度と大きいうえ、負荷の回路数が1
個のみであるのでCzl″iはとんど配線容量だけであ
りC2は1pF程度になる。したがって、几2=500
Ωとして*”tgを求めると 32+ (2,2x0.
5 )2=3.2nsとなシ、立ち下り時間はポンディ
ングパッドの位iより0.2ns劣化するだけである。
Note that in this embodiment, the wiring from the bonding pad of C3 to the input circuit IA becomes long. However, the number of wiring connections for 100 input signals does not increase for the following reasons. Of the falling time (10-90%) of the C8 input, the falling time on the bonding pad is tflu The falling time at the input part of the circuit IA is tf2, and the wiring resistance and wiring capacitance from the bonding pad to IA are 2 each. If C2, t12 is expressed as V stone π]〒Z, 2Qπ catty. However, input 11.
is originally as long as about 3 ns, and the number of load circuits is 1.
Czl″i is mostly just the wiring capacitance, and C2 is about 1 pF. Therefore, 几2=500
If we calculate *”tg as Ω, we get 32+ (2,2x0.
5) Since 2=3.2 ns, the fall time is only 0.2 ns worse than that of the bonding pad.

すなわち、遅延時間の増加はほとんどないと言える。以
上により本実施例を用いてアクセス時間を1.3ns$
/、少させることができる。なお41図では入力回路が
LA、IBと2個の場合を示したが。
In other words, it can be said that there is almost no increase in delay time. As described above, using this embodiment, the access time is reduced to 1.3ns$.
/ can be reduced. Note that Fig. 41 shows the case where there are two input circuits, LA and IB.

その個数をさらに増して高速化することができる。The number can be further increased to increase the speed.

第3図は本発明の42の実施例である。チップ内の符号
は第1図に対応させている。本実施例では制御入力C8
をただ1個の入力回路IAで受ける。本実施例ではこの
IAをメモリセルアレー4に対してポンディングパッド
の皮付側に配置する。
FIG. 3 shows 42 embodiments of the invention. The symbols inside the chip correspond to those in FIG. In this embodiment, control input C8
is received by only one input circuit IA. In this embodiment, this IA is arranged on the skinned side of the bonding pad with respect to the memory cell array 4.

この様なポンディングパッドの配置は制御入力信号のピ
ン配置の要請により起こりうる。IAの出力φ1で2A
、2B金共通に駆動する。この場合回路*2Aの方に特
に高速に直流制御する必要があるアドレスバッファ回路
を含むと有効である。
This arrangement of the bonding pads may occur depending on the pin arrangement of the control input signal. 2A at IA output φ1
, 2B gold are commonly driven. In this case, it is effective to include an address buffer circuit that requires especially high-speed DC control in circuit *2A.

回路#2Bはそれほど高速化を要しない回路である。φ
鳶の負荷容量は2A、2Bを共通に駆動するので大きい
。そのため第1図の実、4NJに比べ。
Circuit #2B is a circuit that does not require high speed. φ
The load capacity of Tobi is large because it drives 2A and 2B in common. Therefore, compared to the fruit in Figure 1, 4NJ.

回路IAの遅延時間が増加するが、2Aの近・遠端の配
置線遅延は第1図と而じである。メモリのアクセス時間
で見ると第1図に比べIAの遅延時間の増力ロ分遅れる
だけである。入力回路が1個だけなので待機時直流は第
1図の例より減少させることができる。
Although the delay time of circuit IA increases, the arrangement line delays at the near and far ends of 2A are the same as in FIG. In terms of memory access time, compared to FIG. 1, it is only delayed by the IA delay time increase. Since there is only one input circuit, the DC current during standby can be reduced compared to the example shown in FIG.

次にここでは不発明のチップ構成を適用すると特に効果
が大きいアクセス時間が1Qns前後のスタティックメ
モリやダイナミックメモリの電流制御回路の具体的実施
例を示す。なお1本発明は第1図、第3図の実施例で示
した様にチップ制御信号の入力回路の配置に関するもの
であり、その回路構成や被制御回路の回路構成は以下の
実施例に限定されるものではない。
Next, a specific example of a current control circuit for a static memory or a dynamic memory with an access time of about 1Qns, which is particularly effective when the uninvented chip structure is applied, will be shown. Note that the present invention relates to the arrangement of the chip control signal input circuit as shown in the embodiments of FIGS. 1 and 3, and the circuit configuration and the circuit configuration of the controlled circuit are limited to the following embodiments. It is not something that will be done.

第4図で回路lは制御入力信号C8の入力回路でその出
力φで周辺回路の直流を制御する。周辺回路はここでは
21,22.23の3種類の電流制御方法の異なる回路
を例示している。次にこれらの回路の動作を簡単に説明
する。回路1は2段/7’l ρ、−jl )Q  ノ
・/ /CJ  l−Q +  ρSin Q  / 
 /< A  ゼー →−CiVO8複合型ドライバ)
の3段構成であう。
In FIG. 4, the circuit l is an input circuit for the control input signal C8, and its output φ controls the direct current of the peripheral circuit. The peripheral circuits shown here include circuits 21, 22, and 23 that use three different current control methods. Next, the operations of these circuits will be briefly explained. Circuit 1 has two stages /7'l ρ, -jl )Q ノ・/ /CJ l-Q + ρSin Q /
/<A See →-CiVO8 compound driver)
It is probably a three-tiered structure.

例えばTTL(トランジスタートランジスターロジック
)インタフェースの入力信号nを% fAit圧V c
 cに近い大きな振・罷のφに増惺・整形する。
For example, the input signal n of a TTL (transistor-transistor logic) interface is % fAit pressure V c
Increase and shape the φ with a large wave and crease close to c.

初段のCMOSインバータの入力レベルH’1rTLイ
ンタフェースを仮定すると高レベル(2,4V )。
Input level of first stage CMOS inverter H'1rAssuming TL interface, high level (2.4V).

低レベル(0,8Vlと損・陽が小さいので常時電流が
流nる。21はCΔ(OSインバータのd流をnチャネ
ルMO8(ΔL+  )を直列に挿入し制御するもので
、pチャネルMO8(Mz )は出力を一定にするもの
である。前述した様に21の入力A1がTTLインタフ
ェースレベルのアドレス入カニi号であっても八(+の
オン、万)をφでtil到することにより待機時の電流
を0とすることができる。
Low level (0.8 Vl, low loss and positive current, so current flows constantly. 21 is for controlling the d current of CΔ (OS inverter by inserting n channel MO8 (ΔL+) in series, p channel MO8 ( Mz) is to keep the output constant.As mentioned above, even if the input A1 of 21 is the address input number i at the TTL interface level, by reaching 8 (+ on, 10,000) with φ, The current during standby can be set to zero.

回路22はバ・fパーラの差動アンプの心流源を。Circuit 22 is the heart current source of the differential amplifier of B/F Parla.

チャネル八(O81M3 )で可成し、その電流をφで
佃J御するものである。また回路23は特願沼59−1
52865に記載した構b2例であり、バイポーラ差動
アンプの足軽流源をバイポーラトランジスタQ1と抵抗
kL+で1成し、Q、、、)−\−スをnMO8M4と
N(6で制j御する。Vc++はチップ内で発生した基
準電圧である。待機時はへ■4をオフ。
This is achieved by channel 8 (O81M3), and its current is controlled by φ. Also, circuit 23 is Tokuganuma 59-1
52865, the current source of the bipolar differential amplifier is made up of a bipolar transistor Q1 and a resistor kL+, and the Q, , )-\- source is controlled by nMO8M4 and N(6). .Vc++ is the reference voltage generated within the chip.Turn off 4 during standby.

MSをオンし、差動アンプの電流を0とする。動作時に
はM4にオン、MsをオフすることによりVcsをQ+
のベースに印加し所定のKC<を差動アンプに流す。こ
の様にして21,22.23の電流を動作時と待機時に
オン、オフさせることができる。
Turn on the MS and set the current of the differential amplifier to 0. During operation, Vcs is set to Q+ by turning on M4 and turning off Ms.
A predetermined KC< is applied to the base of the differential amplifier. In this way, the currents 21, 22, and 23 can be turned on and off during operation and during standby.

入力回路1の最終段のi3icMO8ドライバは周器の
様K 4動能力が犬すく、その出力φの立上りは速い。
The i3ic MO8 driver at the final stage of the input circuit 1 has a high K4 dynamic capability like a frequency generator, and its output φ rises quickly.

この高速性を生かすためにφの配線による遅延時間を減
少させる必要があり第1図や第3図で示した制御信号の
入力回路のチップ配置は有効である。なお第4図の回路
1,21,22.23の他にバイポーラ、Δ10s)ラ
ンジスタあるいは両者を用いた種々の回路構成があるが
ここでは省略する。
In order to take advantage of this high speed, it is necessary to reduce the delay time due to the wiring of φ, and the chip layout of the control signal input circuit shown in FIGS. 1 and 3 is effective. In addition to the circuits 1, 21, 22, and 23 shown in FIG. 4, there are various circuit configurations using bipolar transistors, Δ10s transistors, or both, but these are omitted here.

〔発明の効果〕 以上に述べた叩く不発明7てよれば、待機時と動作時て
電流の増減と行なうメモ’) L S Iをはじめとす
る集積回路に2いて、そのit流11]御用入力の入力
回路を複数設けたり、そのチップ位iを工夫することに
より、電流の葡」御を高速化することができる。その高
速化の効果として例えばメモリのアクセス時間を前述の
球に1.3ns程度速めることができる。このためアク
セス時間が1Qns程度のスタティックメモリやダイナ
ミックメモリに適用すると効果が大きい。
[Effects of the invention] According to the above-mentioned non-inventions 7, the memo that increases and decreases the current during standby and operation is used in integrated circuits such as LSI, and its IT style 11] is commonly used. By providing a plurality of input circuits or by devising the chip position i, it is possible to speed up the current control. As an effect of this speed increase, for example, the memory access time can be increased by about 1.3 ns compared to the above-mentioned sphere. Therefore, it is highly effective when applied to static memory or dynamic memory with an access time of about 1Qns.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例のチップ構成を示す平面
図、第2図は従来例の電流制御回路とその波形図、第3
図は本発明の第2の実施例のチップ構成の平面図、第4
図は電流制御回路の一実施例と示す回路図である。 C8・・・ゴ」御入力信号、φ、φ1.φ2・・・チッ
プ内制御信号、1.IA、IB・・・制御信号入力回路
。 2.21,22.23・・・被制御回路、4・・・メモ
リセルアレー、5・・・ボンディングパラh”群、tr
+ 。 1、−・・立上り時間、10〜90%、tfl、tt2
・・・立下り時間、10〜90%。 首 7 図 1浅)−如み滞鳴iでI順 第 2区 (迂〕
FIG. 1 is a plan view showing the chip configuration of the first embodiment of the present invention, FIG. 2 is a conventional current control circuit and its waveform diagram, and FIG.
The figure is a plan view of the chip configuration of the second embodiment of the present invention.
The figure is a circuit diagram showing one embodiment of a current control circuit. C8...Go'' input signal, φ, φ1. φ2...in-chip control signal, 1. IA, IB...Control signal input circuit. 2.21, 22.23... Controlled circuit, 4... Memory cell array, 5... Bonding para h" group, tr
+. 1,--Rise time, 10-90%, tfl, tt2
...Fall time, 10-90%. Neck 7 Figure 1 Shallow) - I-order 2nd ward (around)

Claims (1)

【特許請求の範囲】[Claims] 1、少なくとも1個上の外部信号を入力するための入力
端子群、該外部信号を入力として動作する少なくとも1
個以上の第1の回路群、該第1の回路の出力を受けて動
作する少なくとも1個以上の第2の回路群からなる集積
回路において、該入力端子から該第1の回路の一部に到
る信号配線長が、少なくとも該第1の一部の回路から該
第2の一部の回路に到る信号配線長より長くなるように
、該第1の一部の回路と該第2の一部の回路を設置した
ことを特徴とする集積回路。
1. A group of input terminals for inputting at least one external signal; at least one input terminal group that operates with the external signal as input;
In an integrated circuit consisting of at least one first circuit group and at least one or more second circuit group that operates in response to the output of the first circuit, a part of the first circuit is connected from the input terminal to a part of the first circuit. The first part of the circuit and the second part of the circuit are arranged such that the total signal wiring length is longer than the signal wiring length from the first part of the circuit to the second part of the circuit. An integrated circuit characterized by having some circuits installed.
JP61207859A 1986-09-05 1986-09-05 Integrated circuit Pending JPS6364362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61207859A JPS6364362A (en) 1986-09-05 1986-09-05 Integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61207859A JPS6364362A (en) 1986-09-05 1986-09-05 Integrated circuit

Publications (1)

Publication Number Publication Date
JPS6364362A true JPS6364362A (en) 1988-03-22

Family

ID=16546716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61207859A Pending JPS6364362A (en) 1986-09-05 1986-09-05 Integrated circuit

Country Status (1)

Country Link
JP (1) JPS6364362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297125A (en) * 1991-03-14 1992-10-21 Mitsubishi Electric Corp Semiconductor device
JP2010003386A (en) * 2008-06-23 2010-01-07 Spansion Llc Semiconductor device, semiconductor system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297125A (en) * 1991-03-14 1992-10-21 Mitsubishi Electric Corp Semiconductor device
JP2010003386A (en) * 2008-06-23 2010-01-07 Spansion Llc Semiconductor device, semiconductor system

Similar Documents

Publication Publication Date Title
KR900008023B1 (en) Large scale semiconductor logic circuitry
US4918339A (en) Data output circuit
US6633196B2 (en) Device and method for limiting the extent to which circuits in integrated circuit dice electrically load bond pads and other circuit nodes in the dice
US4611133A (en) High speed fully precharged programmable logic array
KR900013616A (en) Integrated circuit layout
US6847576B2 (en) Layout structures of data input/output pads and peripheral circuits of integrated circuit memory devices
US6011710A (en) Capacitance reducing memory system, device and method
US5396129A (en) Semiconductor integrated circuit apparatus comprising clock signal line formed in a ring shape
JPS63299513A (en) Output circuit
US6157203A (en) Input circuit with improved operating margin using a single input differential circuit
JPS5819794A (en) Semiconductor memory
JPS6364362A (en) Integrated circuit
EP0041844B1 (en) Semiconductor integrated circuit devices
JP3878285B2 (en) Signal line drive circuit for semiconductor device
JPS62291788A (en) Memory circuit
US6393575B1 (en) Semiconductor device having input buffers
US20030146434A1 (en) Semiconductor memory device
KR0145220B1 (en) Semiconductor memory device and circuit arrangement method with improved input characteristics
JPS6182455A (en) Semiconductor integrated circuit device
JPH0993108A (en) Input/output (i/o) buffer circuit
KR970051140A (en) Semiconductor memory device sharing address pin and data pin
KR100548537B1 (en) packet command driving type memory device with improved I/O structure
JP2915319B2 (en) Semiconductor device
JPH01143521A (en) Integrted circuit constitution
JPH04290261A (en) Layout method for semiconductor circuit