JPS6364230A - Temperature detecting element - Google Patents

Temperature detecting element

Info

Publication number
JPS6364230A
JPS6364230A JP20670586A JP20670586A JPS6364230A JP S6364230 A JPS6364230 A JP S6364230A JP 20670586 A JP20670586 A JP 20670586A JP 20670586 A JP20670586 A JP 20670586A JP S6364230 A JPS6364230 A JP S6364230A
Authority
JP
Japan
Prior art keywords
temperature
detection element
temperature detection
reed switch
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20670586A
Other languages
Japanese (ja)
Other versions
JPH07123017B2 (en
Inventor
根本 道夫
憲太郎 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP61206705A priority Critical patent/JPH07123017B2/en
Publication of JPS6364230A publication Critical patent/JPS6364230A/en
Publication of JPH07123017B2 publication Critical patent/JPH07123017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、炊飯器、空調機等の温度検知、あるいは自動
車等の冷却水温度検知などに用いられる温度検出素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a temperature detection element used for temperature detection in rice cookers, air conditioners, etc., or cooling water temperature detection in automobiles, etc.

〈従来の技術〉 感温磁性体と永久磁石とリードスイッチとの組合せによ
る従来の温度検出素子の1例を第18図に示す。図にお
いて円筒状感温磁性体1の両側に同一断面形状を有する
永久磁石2が配置され、それら組合せ部分の中央孔部分
K IJ−ドスイッチ3が挿入形成されている。感温磁
性体1の磁束密度B対温度T特性は第19図および第2
0図の:うにキュリ一温度Tcにて急激に磁束密度Bが
低下する特性の常閉型および常開型の温度検出素子が得
られる。感温磁性体1はMn−Zn系フェライトでその
キュリ一温度Tcは一40℃〜+200℃の広範囲にわ
たり材料組成により任意に決定できる。周囲温度がTc
以下では永久磁石2の磁束は1.7?温温性性1を通り
、永久磁石外側の磁束はリードスイッチ3のリード片に
流れ込み接点をオンさせる。
<Prior Art> FIG. 18 shows an example of a conventional temperature detection element using a combination of a temperature-sensitive magnetic material, a permanent magnet, and a reed switch. In the figure, permanent magnets 2 having the same cross-sectional shape are arranged on both sides of a cylindrical temperature-sensitive magnetic body 1, and a K IJ-do switch 3 is inserted into the central hole of the combined part. The magnetic flux density B vs. temperature T characteristics of the temperature-sensitive magnetic material 1 are shown in FIGS. 19 and 2.
In Figure 0: Normally closed type and normally open type temperature sensing elements having the characteristic that the magnetic flux density B suddenly decreases at a sea urchin temperature Tc are obtained. The temperature-sensitive magnetic material 1 is made of Mn--Zn ferrite, and its Curie temperature Tc can be arbitrarily determined over a wide range from -40 DEG C. to +200 DEG C. depending on the material composition. The ambient temperature is Tc
In the following, the magnetic flux of permanent magnet 2 is 1.7? The magnetic flux outside the permanent magnet passes through the thermal property 1 and flows into the reed piece of the reed switch 3, turning on the contact.

一方温度が上昇し、キーリ一温度Tcとなると感温磁性
体1が非磁性となり、今まで感温磁性体1を流れていた
磁束がもれ磁束としてリードスイッチ3側へ流れ込み、
しかも永久磁石2の両外側よシリードスイッチ3に流れ
込んでいた磁束と打消し合い、リードスイッチ3へ加わ
る磁束がリードスイッチ3の開放磁束密度以下となシ、
リードスイッチ3の接点がオフし、温度Tcとなった事
が検出される。本温度検出素子は、感温磁性体1のキ一
り温度Tcで動作温度が検出できる定点動作型の温度検
出素子で経年変化が少く価格が安いものである。
On the other hand, when the temperature rises and reaches the temperature Tc, the temperature-sensitive magnetic body 1 becomes non-magnetic, and the magnetic flux that has been flowing through the temperature-sensitive magnetic body 1 leaks and flows into the reed switch 3 side as leakage magnetic flux.
Moreover, the magnetic flux flowing into the series reed switch 3 from both outside sides of the permanent magnet 2 cancels out, and the magnetic flux applied to the reed switch 3 becomes less than the open magnetic flux density of the reed switch 3.
The contact of the reed switch 3 is turned off, and it is detected that the temperature has reached Tc. This temperature detection element is a fixed point operation type temperature detection element that can detect the operating temperature at the key temperature Tc of the temperature sensitive magnetic body 1, and is low in price with little aging.

〈発明が解決しようとする問題点〉 しかし一般に温度検出素子は1点の温度が検出されるも
ので、たとえばサーミスタなどのように連続的な温度の
検出は不可能である。したがって従来第21図のように
磁気で動作する定点温度検出素子10とサーミスタ素子
11とを同じ基板12上に組み合わせた複合型の温度検
出素子の例のように定点温度検出と連続温度検出ができ
る。
<Problems to be Solved by the Invention> However, temperature detection elements generally detect temperature at one point, and are not capable of continuous temperature detection, such as with a thermistor. Therefore, fixed-point temperature detection and continuous temperature detection are possible, as in the conventional example of a composite temperature detection element in which a magnetically operated fixed-point temperature detection element 10 and a thermistor element 11 are combined on the same substrate 12 as shown in FIG. .

しかしこの種の温度検出素子は広い用途に適しているが
素子が2個となり価格高となる欠点がちる。
However, although this type of temperature sensing element is suitable for a wide range of applications, it has the disadvantage of being expensive because it requires two elements.

く問題点を解決するための手段〉 本発明は従来のかかる欠点を除き、外部にリード片31
.32が設けられたリードスイッチ3に外接し9両側面
または外周の2個所に設けられた電極4,5より外部に
、2本の端子6,7が引き出された円筒状の感温磁性体
1の両側面に接して円筒状の永久磁石2を設けた温度検
出素子において、リード片31.32および端子6,7
とをそれぞれ独立して引き出し、あるいはリード片31
゜32のいずれか一方と端子6,7のいずれか一方とを
電気的に接続、またはリード片31.32のそれぞれと
端子6,7のそれぞれとを電気的に接続した温度検出素
子である。
Means for Solving the Problems> The present invention eliminates the above drawbacks of the conventional method and provides a lead piece 31 on the outside.
.. A cylindrical temperature-sensitive magnetic body 1 having two terminals 6 and 7 externally drawn out from electrodes 4 and 5 provided on both sides or at two locations on the outer periphery of a reed switch 3 provided with a reed switch 3. In the temperature sensing element in which a cylindrical permanent magnet 2 is provided in contact with both sides of the lead piece 31, 32 and the terminals 6, 7.
or pull out the lead pieces 31 independently.
32 and either one of the terminals 6, 7 are electrically connected, or each of the lead pieces 31, 32 and each of the terminals 6, 7 are electrically connected.

〈作用〉 感温磁性体1に電極4.5を設けて引き出し。<Effect> Electrodes 4.5 are provided on the temperature-sensitive magnetic material 1 and pulled out.

これらをリードスイッチ3のリード片31.32の接続
を変えることによって温度検出素子は温度の変化に対し
て一点温度検出と連続温度検出の両方の機能が行える。
By changing the connections of the reed pieces 31 and 32 of the reed switch 3, the temperature detection element can perform both one-point temperature detection and continuous temperature detection functions in response to temperature changes.

〈実施例〉 本発明の温度検出素子の実施例を第1図の外観斜図およ
び第2図の分解外観斜視図について説明する。
<Example> An example of the temperature detection element of the present invention will be described with reference to an external perspective view in FIG. 1 and an exploded external perspective view in FIG.

本発明の感温磁性体1は1円筒状形状で、その両側面全
面にわたシ銀電極の焼付などの手段により、電極4.お
よび5が設けられている。この感温磁性体1の両側には
円筒状の永久磁石2がその軸方向に着磁され互に、異極
が相対抗するように組合わされ、また感温磁性体l、永
久磁石2の中心孔部分にはリードスイッチ3が挿入され
ている。
The temperature-sensitive magnetic body 1 of the present invention has a cylindrical shape, and electrodes 4. and 5 are provided. On both sides of this temperature-sensitive magnetic body 1, cylindrical permanent magnets 2 are magnetized in the axial direction and are combined so that different poles oppose each other. A reed switch 3 is inserted into the hole.

感温磁性体lの電極4.5の外周の一部にリード線が接
続されて端子6,7として外部へ出されている。感温磁
性体1はへ1n−Zn系フェライト材でその磁束密度B
対温度T特性は、第3図のととくキs−’)一温度Tc
にて急激に磁束密度Bが低下し、また一方感温磁性体1
は半導体的性質も持っており。
Lead wires are connected to a part of the outer periphery of the electrodes 4.5 of the temperature-sensitive magnetic material 1 and are brought out as terminals 6, 7 to the outside. The temperature-sensitive magnetic material 1 is made of a 1n-Zn ferrite material whose magnetic flux density is B.
The temperature vs. T characteristic is shown in Figure 3.
The magnetic flux density B suddenly decreases at
also has semiconductor properties.

その抵抗R対温度T蒔性り寸、筐4図π示寸と〉?抵抗
値Rが温度Tに対して指数関数的に減少する傾向にある
。その抵抗値Rは常温24℃で5にΩ〜100にΩ内で
、またその温度変化に対する抵抗変化率は−4〜−5係
前後であり、従来のサーミスターとほぼ同程度の性能を
有し、十分連続温度検出の素子として使用可能である。
The resistance R vs. temperature T and the π dimension shown in Figure 4 of the housing? The resistance value R tends to decrease exponentially with respect to the temperature T. Its resistance value R is within 5Ω to 100Ω at room temperature of 24°C, and its resistance change rate with respect to temperature change is around -4 to -5 coefficient, and has almost the same performance as conventional thermistors. However, it can be used as an element for continuous temperature detection.

感温磁性体1と永久磁石2の組合せの磁気回路より、キ
ーリ一温度Tc以下では第5図のように永久磁石2から
の磁束φは、感温磁性体1内を通り磁束φ1となり、永
久磁石2の外側からリードスイッチ3に流れ込みその感
動磁束密度以上となるのでリードスイッチ接点はオン状
態となる。
From the magnetic circuit of the combination of the temperature-sensitive magnetic body 1 and the permanent magnet 2, as shown in Fig. 5, below the key temperature Tc, the magnetic flux φ from the permanent magnet 2 passes through the temperature-sensitive magnetic body 1 and becomes the magnetic flux φ1, and becomes a permanent magnet. Since the magnetic flux flows from the outside of the magnet 2 into the reed switch 3 and exceeds the magnetic flux density, the reed switch contact is turned on.

ここで温度が上昇し、キーリ一温度Tcとなると第6図
のように今まで感温磁性体1を通っていた磁束がもれ磁
束としてリードスイッチ接点へ流れ込み磁束は先の磁束
と方向が逆のため相打消し合い、リードスイッチ3の開
放磁束密度以下となり従ってリードスイッチ3は接点オ
フ状態とする。
When the temperature rises and reaches the temperature Tc, the magnetic flux that has been passing through the temperature-sensitive magnetic body 1 leaks and flows into the reed switch contact as magnetic flux, as shown in Figure 6, and the magnetic flux has a direction opposite to that of the previous magnetic flux. Therefore, the phases cancel each other out, and the magnetic flux density becomes lower than the open magnetic flux density of the reed switch 3, so that the reed switch 3 is turned off.

従って従来の第19図に示す検出温度Tcの常閉型温度
スイッチの動作を示す。通常リードスイノチ3の接点容
易はIOW〜50Wで、直接リレーあるいはヒータなど
を接話することが可能である。
Therefore, the operation of the conventional normally-closed temperature switch at the detected temperature Tc shown in FIG. 19 will be described. Normally, the contact strength of the reed switch 3 is IOW ~ 50W, and it is possible to directly connect a relay or heater.

一方リード線6,7は感温磁性体1の抵抗値自体を検出
し、その特性は第4図に示されるので。
On the other hand, the lead wires 6 and 7 detect the resistance value itself of the temperature-sensitive magnetic body 1, and its characteristics are shown in FIG.

キュリ一温度Tcに依存しないで連続的な温度検出が可
能である。
Continuous temperature detection is possible without depending on the Curie temperature Tc.

従って、第1図の本発明の温度スイッチにおいては全く
同一の部品構成でリード片31.32からは定点温度検
出が可能であり、一方端子6,7を用いて回路処理を行
なえば連続の任意温度の検出ができる複合型の温度検出
素子が実現できる。
Therefore, in the temperature switch of the present invention shown in FIG. 1, it is possible to detect a fixed point temperature from the lead pieces 31 and 32 with exactly the same component configuration. A composite temperature detection element capable of detecting temperature can be realized.

第7図は1本発明の他の実施例であり、感温磁性体1の
電極4,5を円筒状の側面の任意の2ケ所に設けている
。電極4,5からはリード線が出され、端子6.7へ接
続され、端子6.7により感温磁性体1の抵抗値が検出
される。この場合。
FIG. 7 shows another embodiment of the present invention, in which electrodes 4 and 5 of the temperature-sensitive magnetic body 1 are provided at two arbitrary locations on the cylindrical side surface. Lead wires are taken out from the electrodes 4 and 5 and connected to a terminal 6.7, through which the resistance value of the temperature-sensitive magnetic body 1 is detected. in this case.

電極4,5が側面より出されているため、第2図の実施
例より電極面積が少なくなり、またリード線のとり出し
も容易である。
Since the electrodes 4 and 5 are protruded from the sides, the electrode area is smaller than in the embodiment shown in FIG. 2, and lead wires can be easily taken out.

第8図は本発明の他の実施例であシ、端子6をリードス
イッチ3のリード端子31と電気的・ンζ接続したとき
端子7とリード片32かも見た抵抗値は感温磁性体1の
抵抗とリードスイッチ3のリード片31.32とを直列
接続される。従って第9図に示すような温度特性となり
、キュ’) −Telにて抵抗値が急激に無限大となる
。このような抵抗R対温度T特性を用いると、たとえば
、温度TCIでのリミッタ−機能を持った特性となり、
後処理回路でのリミッタ機能処理回路が簡略化される利
点がある。
FIG. 8 shows another embodiment of the present invention, in which when the terminal 6 is electrically connected to the lead terminal 31 of the reed switch 3, the resistance value when looking at the terminal 7 and the lead piece 32 is the temperature-sensitive magnetic material. 1 and the lead pieces 31 and 32 of the reed switch 3 are connected in series. Therefore, the temperature characteristic becomes as shown in FIG. 9, and the resistance value suddenly becomes infinite at Q') -Tel. If such a resistance R vs. temperature T characteristic is used, for example, it becomes a characteristic with a limiter function at temperature TCI,
There is an advantage that the limiter function processing circuit in the post-processing circuit is simplified.

第10図は本発明の他の実施例で、感温磁性体1の電極
5,4からの端子6,7とリードスイッチ3のリード片
3 ]、 e 32を互に並列接続しその合成端子61
と71′から見た抵抗R対温度T特性は第11図に示す
ようにキュリ一温度TC2tでは端子短絡状態でTC2
以上の温度にて感温磁性体1の抵抗値が端子6,7′に
現われる。
FIG. 10 shows another embodiment of the present invention, in which the terminals 6 and 7 from the electrodes 5 and 4 of the temperature-sensitive magnetic body 1 and the lead pieces 3 and 32 of the reed switch 3 are connected in parallel with each other to form a composite terminal. 61
As shown in Fig. 11, the resistance R vs. temperature T characteristic as seen from
At the above temperature, the resistance value of the temperature-sensitive magnetic body 1 appears at the terminals 6 and 7'.

また第12図は本発明の他の実施例であり感温磁性体1
の両側に非磁性体のス被−サー8が配置されている。こ
の種の磁気回路の動作は第14図に示すごとく、温度T
とキューリ温度TcとがT (’rcではス被−サー8
からのもれ磁束φ4と外側の磁束φ3が打消し合いリー
ドスイッチ3は接点はオフとなり、またT > ’rc
では第15図のように永久磁石2.2′の内側からの磁
束が支配的となりリードスイッチ3の接点はオンとなる
。その合成抵抗のRと温度Tとの特性は第13図に示す
Further, FIG. 12 shows another embodiment of the present invention, and shows a temperature-sensitive magnetic body 1.
A non-magnetic spacer 8 is disposed on both sides. The operation of this type of magnetic circuit is as shown in FIG.
and the Curie temperature Tc is T (in 'rc, the temperature Tc is
The leakage magnetic flux φ4 from the outside and the magnetic flux φ3 from the outside cancel each other out, and the contact of the reed switch 3 turns off, and T >'rc
Then, as shown in FIG. 15, the magnetic flux from inside the permanent magnet 2.2' becomes dominant and the contact of the reed switch 3 is turned on. The characteristics of the combined resistance R and temperature T are shown in FIG.

第16図は第12図の実施例にて、電極からのリード端
子6,70両方がリードスイッチ3のリード片31.3
2に接続された例であり、第17図はその合成抵抗Rの
温度T特性図である。
FIG. 16 shows the embodiment of FIG. 12, in which both the lead terminals 6 and 70 from the electrodes are connected to the lead piece 31.3 of the reed switch 3.
FIG. 17 is a temperature T characteristic diagram of the combined resistance R.

〈発明の効果〉 以上に述べたように本発明によれば、従来のようにキュ
リ一温度でスイッチ動作する安定動作型温度スイッチと
サーミスタのような連続して温度を検出する連続検出用
の温度検出素子の2ケを組み合せることなく、1個で両
機能そなえているので小形で価格が安く利用の範囲は拡
大する。
<Effects of the Invention> As described above, according to the present invention, there are two types of temperature switches: a stable operation type temperature switch that operates at one Curie temperature as in the past, and a continuous detection temperature switch that continuously detects temperature such as a thermistor. Since it has both functions with one detection element without combining two detection elements, it is small and inexpensive, and the range of use is expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の温度検出素子の実施例の外観斜視図、
第2図は第1図による分解外観斜視図。 第3図は第1図に用いられる感温磁性体の磁束密度と温
度との変化の関係を示す特性曲線図、第4図は第3図に
おける抵抗と温度との変化の関係を示す特性曲線図、第
5図および第6図は本発明による温度検出素子の磁気回
路と動作を示す解説図。 第7図は本発明の他の実施例の外観斜視図、第8図は本
発明の池の実施例の外観斜視図、第9図は第8図の実施
例における端子間抵抗と温度との変化の関係を示す特性
曲線図、第10図は本発明の他の実施例の外観斜視図、
第11図は第1O図の実施例における端子間抵抗と温度
との変化の関係を示す特注曲線図、第12図は本発明の
池の実施例の外観斜視図、第13図は第12図の実施例
における端子間抵抗と温度との変化の関係を示す特性曲
線図、第14図および第15図は第12図の実施例によ
る温度検出素子の磁気回路と動作を示す解説図、第16
図は第12図の実施例において他方のリード片と端子と
を接続した温度検出素子の実施例の外観斜視図、第17
図は第16図の実施例ておける端子間抵抗と温度との変
化の関係を示す特性曲線図、第18図は従来の温度検出
素子の例の外観斜視図、第19図および第20図は第1
8図における温度検出素子における温度と磁束密度との
変化を示す特性曲線図、第21図は従来の温度検出素子
とサーミスタとを組み合わせた複合型の温度検出素子の
例の外観斜視図である。 なお、1:感温磁性体、2:永久磁石、3:リードスイ
ノチ、31,32: リード片、4,5:電極、6,7
.7’:端子、8ニス4−サー、10:定点温度検出素
子、11:サーミスタ素子。 12:基板。 第1図 3リードスイツチ 第2図 一温度(T)        Te一温度(T)第5図
    第6図 第7図 第8図     第9図 c 第10図   第11図 温度1− 第14図 第19図    第20図 第21図
FIG. 1 is an external perspective view of an embodiment of the temperature detection element of the present invention;
FIG. 2 is an exploded external perspective view of FIG. 1. Figure 3 is a characteristic curve diagram showing the relationship between changes in magnetic flux density and temperature of the temperature-sensitive magnetic material used in Figure 1, and Figure 4 is a characteristic curve diagram showing the relationship between changes in resistance and temperature in Figure 3. 5 and 6 are explanatory diagrams showing the magnetic circuit and operation of the temperature detection element according to the present invention. 7 is an external perspective view of another embodiment of the present invention, FIG. 8 is an external perspective view of an embodiment of the pond of the present invention, and FIG. 9 is a relationship between terminal resistance and temperature in the embodiment of FIG. A characteristic curve diagram showing the relationship of changes; FIG. 10 is an external perspective view of another embodiment of the present invention;
FIG. 11 is a custom-made curve diagram showing the relationship between terminal resistance and temperature in the embodiment shown in FIG. 14 and 15 are explanatory diagrams showing the magnetic circuit and operation of the temperature detection element according to the embodiment of FIG. 12.
This figure is an external perspective view of an embodiment of the temperature detection element in which the other lead piece and the terminal are connected in the embodiment of FIG.
The figure is a characteristic curve diagram showing the relationship between the inter-terminal resistance and the temperature in the embodiment of Fig. 16, Fig. 18 is an external perspective view of an example of a conventional temperature detection element, and Figs. 19 and 20 are 1st
FIG. 8 is a characteristic curve diagram showing changes in temperature and magnetic flux density in the temperature detection element, and FIG. 21 is an external perspective view of an example of a composite temperature detection element that combines a conventional temperature detection element and a thermistor. In addition, 1: Temperature-sensitive magnetic material, 2: Permanent magnet, 3: Lead wire, 31, 32: Lead piece, 4, 5: Electrode, 6, 7
.. 7': terminal, 8 varnish 4-cer, 10: fixed point temperature detection element, 11: thermistor element. 12: Substrate. Fig. 1 3 Reed switch Fig. 2 Temperature (T) Te - Temperature (T) Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9c Fig. 10 Fig. 11 Temperature 1- Fig. 14 Fig. 19 Figure 20Figure 21

Claims (1)

【特許請求の範囲】 1、外部にリード片31,32を引き出したリードスイ
ッチ3に外接し、両側面または外周2個所に設けられた
電極4,5より外部に2本の端子6,7が引き出された
円筒状の感温磁性体1の両側面に接して円筒状の永久磁
石2を設けた温度検出素子において、前記リード片31
,32の2本と前記端子6,7の2本をそれぞれ単独に
引き出した温度検出素子。 2、前記リード片31,32のいずれか一方と前記端子
6,7のいずれか一方とを電気的に接続した特許請求の
範囲第1項記載の温度検出素子。 3、前記リード片31,32のそれぞれと前記端子6,
7のそれぞれとを電気的に接続した特許請求の範囲第1
項記載の温度検出素子。
[Scope of Claims] 1. Two terminals 6, 7 are externally connected to the reed switch 3 with lead pieces 31, 32 externally drawn out from the electrodes 4, 5 provided on both sides or at two locations on the outer periphery. In the temperature detection element in which cylindrical permanent magnets 2 are provided in contact with both sides of the pulled out cylindrical temperature-sensitive magnetic body 1, the lead piece 31
, 32 and the two terminals 6 and 7 are individually drawn out. 2. The temperature detection element according to claim 1, wherein one of the lead pieces 31, 32 and one of the terminals 6, 7 are electrically connected. 3. Each of the lead pieces 31 and 32 and the terminal 6,
Claim 1 electrically connected to each of 7.
Temperature detection element described in section.
JP61206705A 1986-09-04 1986-09-04 Temperature detection element Expired - Lifetime JPH07123017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61206705A JPH07123017B2 (en) 1986-09-04 1986-09-04 Temperature detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61206705A JPH07123017B2 (en) 1986-09-04 1986-09-04 Temperature detection element

Publications (2)

Publication Number Publication Date
JPS6364230A true JPS6364230A (en) 1988-03-22
JPH07123017B2 JPH07123017B2 (en) 1995-12-25

Family

ID=16527750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61206705A Expired - Lifetime JPH07123017B2 (en) 1986-09-04 1986-09-04 Temperature detection element

Country Status (1)

Country Link
JP (1) JPH07123017B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273677A (en) * 1988-09-08 1990-03-13 Semiconductor Energy Lab Co Ltd Switching element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693084B2 (en) * 2001-08-08 2011-06-01 財団法人電力中央研究所 Nondestructive method for estimating the temperature reached by a high-temperature member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159387A (en) * 1974-11-22 1976-05-24 Hitachi Ltd KANON SUITSUCHI
JPS5212862U (en) * 1975-07-17 1977-01-29
JPS58204423A (en) * 1982-05-25 1983-11-29 東北金属工業株式会社 Delay switch
JPS5927422A (en) * 1982-08-06 1984-02-13 東北金属工業株式会社 Switch
JPS60178946U (en) * 1984-05-09 1985-11-28 株式会社村田製作所 self-holding switch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159387A (en) * 1974-11-22 1976-05-24 Hitachi Ltd KANON SUITSUCHI
JPS5212862U (en) * 1975-07-17 1977-01-29
JPS58204423A (en) * 1982-05-25 1983-11-29 東北金属工業株式会社 Delay switch
JPS5927422A (en) * 1982-08-06 1984-02-13 東北金属工業株式会社 Switch
JPS60178946U (en) * 1984-05-09 1985-11-28 株式会社村田製作所 self-holding switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273677A (en) * 1988-09-08 1990-03-13 Semiconductor Energy Lab Co Ltd Switching element

Also Published As

Publication number Publication date
JPH07123017B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
JPS6364230A (en) Temperature detecting element
JPH0140940B2 (en)
US4325042A (en) Thermo-magnetically operated switches having two different operating temperatures
US3512148A (en) Freezer warning system
JPS5914733Y2 (en) Air flow detection device
JPH0522835Y2 (en)
JPS6244351Y2 (en)
JPS606978Y2 (en) temperature sensitive switch
JPS6239326Y2 (en)
JPH0312188Y2 (en)
JPS6322598Y2 (en)
JPH0548106Y2 (en)
JPS636830Y2 (en)
JPS5847823Y2 (en) Commutator motor temperature sensitive brush device
JPH0449801Y2 (en)
JPS5856446B2 (en) Temperature sensitive reed switch
JPS6215131B2 (en)
JPS6313490Y2 (en)
JPS6116587Y2 (en)
JP3158804B2 (en) Temperature sensor
JPS58204423A (en) Delay switch
JPS60189132A (en) Temperature sensitive switch
JPS6023877Y2 (en) temperature switch
JPS6331318Y2 (en)
JPS628112Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term