JPS6364030A - Matrix display device - Google Patents
Matrix display deviceInfo
- Publication number
- JPS6364030A JPS6364030A JP61209886A JP20988686A JPS6364030A JP S6364030 A JPS6364030 A JP S6364030A JP 61209886 A JP61209886 A JP 61209886A JP 20988686 A JP20988686 A JP 20988686A JP S6364030 A JPS6364030 A JP S6364030A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- electrodes
- electrode
- display device
- matrix display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011159 matrix material Substances 0.000 title claims abstract description 49
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 59
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 238000002834 transmittance Methods 0.000 claims abstract description 10
- 239000004988 Nematic liquid crystal Substances 0.000 claims description 7
- AQCDIIAORKRFCD-UHFFFAOYSA-N cadmium selenide Chemical compound [Cd]=[Se] AQCDIIAORKRFCD-UHFFFAOYSA-N 0.000 claims description 6
- 239000011669 selenium Substances 0.000 claims description 4
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000004990 Smectic liquid crystal Substances 0.000 claims description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052711 selenium Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 claims 1
- 238000000034 method Methods 0.000 description 11
- 238000012935 Averaging Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009125 cardiac resynchronization therapy Methods 0.000 description 1
- 230000003098 cholesteric effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、平板状のX−Yマトリクス表示装置に係るも
のであり、2値表示のオフィス用表示装置、或は中間調
を有する壁社ト型カラーTV等に利用でき、特に低コス
ト、高画質という点に特徴を有するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a flat X-Y matrix display device, and is suitable for use in office display devices with binary display, or wall type display devices with halftones. It can be used for color TVs, etc., and is particularly characterized by low cost and high image quality.
従来の技術
従来、平板型表示装置としては、プラズマディスプレイ
、フラノ)CRT、螢光表示管、液晶等が代表的である
。前三者は発光型であり、現状では発光効率が低いこと
、駆動電圧が比較的高いこと、大型化が困難等の問題を
かかえている。一方、液晶表示装置は、低電圧、低電力
、大型化の容易さ等より益々、フルカラー大型化へ向け
ての開発が活発に進められている。液晶でフルカラー表
示を実現するには、通常液晶は単にライトパルプとして
用いられ、赤、青、緑の色フィルターを細帯状ないし点
状に設けることにより2次元面上での加法混色によりカ
ラー像が表示される。第4図にツィステッドネマチック
型(以下TNと略す)液晶表示モードを用いた従来のX
−Yマトリクス型パネルの構成と動作について述べる。2. Description of the Related Art Conventionally, typical flat panel display devices include plasma displays, Furano CRTs, fluorescent display tubes, and liquid crystal displays. The first three types are light-emitting types, and currently have problems such as low luminous efficiency, relatively high driving voltage, and difficulty in increasing their size. On the other hand, liquid crystal display devices are being actively developed toward full-color and large-sized devices due to low voltage, low power consumption, and ease of increasing size. To achieve a full-color display with a liquid crystal, the liquid crystal is usually used simply as a light pulp, and a color image is created by additive color mixture on a two-dimensional surface by providing red, blue, and green color filters in the form of strips or dots. Is displayed. Figure 4 shows the conventional X using twisted nematic (hereinafter abbreviated as TN) liquid crystal display mode.
-The configuration and operation of the Y matrix type panel will be described.
第5図は第4図の正面図で行電極3、列電極140配置
を示している。TN型マトリクスパネル15は、一対の
ガラス基vi1,2に、各々設けられた酸化インジウム
等よりなる透明行電極3と透明列電極14に、誘電率異
方性が正のネマチック液晶18がはさまれており、ガラ
ス基板1,2の外側に一対の偏光板10゜1)が設けら
れて構成されている。カラーパネルを構成する場合には
赤、青、緑のカラーフィルタ一層が、それぞれ行ないし
列電t】上に規則的に設けられる。パネル15は簡略化
して図示しであるが、通常、行ないし列電極上或は色フ
ィルタ一層がある場合は色フィルタ一層上に、液晶分子
の配向を規定する為の配向処理層が設けられおり、液晶
分子は各基板表面では、はぼ基板と平行に配列しており
、分子の配列方向は一方の基板と他方の基板では、通常
のTNモードの場合はぼ90°向きが異なり、一方の基
板から他方の基板に向かって分子の配列方向は徐々にね
じれており、結局、側基板間でほぼ90°のねじれを生
じるように、側基板表面にあらかじめ配向処理がなされ
ている。通常のTNモード以外のたとえばS B E
(Super Birefringence Effe
ctの略)モードでは上記分子のねじれ角は180°〜
360°にして使用する場合もある。FIG. 5 is a front view of FIG. 4 and shows the arrangement of row electrodes 3 and column electrodes 140. The TN type matrix panel 15 has a nematic liquid crystal 18 having a positive dielectric constant anisotropy sandwiched between transparent row electrodes 3 and transparent column electrodes 14 made of indium oxide, etc., which are respectively provided on a pair of glass substrates vi1 and vi2. A pair of polarizing plates 10° 1) are provided on the outside of the glass substrates 1 and 2. When constructing a color panel, one layer of red, blue, and green color filters are regularly provided on each row or column electrode. Although the panel 15 is shown in a simplified manner, an alignment treatment layer is usually provided on the row or column electrodes, or on the color filter layer if there is one color filter layer, for regulating the alignment of liquid crystal molecules. On the surface of each substrate, the liquid crystal molecules are arranged parallel to the substrate, and the direction of arrangement of the molecules is approximately 90° different between one substrate and the other in the case of normal TN mode, The direction in which the molecules are arranged is gradually twisted from one substrate to the other, and the surfaces of the side substrates are pre-aligned so that a twist of approximately 90° is produced between the side substrates. For example, S B E other than normal TN mode
(Super Birefringence Effe
(abbreviation for ct) mode, the torsion angle of the above molecules is 180° ~
Sometimes it is used at 360°.
以上が従来の液晶マトリクスパネルの1例であるが、従
来の技術での最大の難点は、
(1)一般に単純X−Yマ) IJクス表示パネルに於
て、N本の走査線(ここではたとえば行電極3)を有す
るパネルを線順次信号によって駆動した場合、オンすべ
き画素とオフとなるべき画素をはさむ電極間に印加され
る実効値電圧の比率Rは、いわゆる電圧平均化法と称す
る駆動法を採用して、Rが最大となる様に最適化した場
合
R= ((N”” + 1)/ (N”” −
1)) ””となる。すなわち単純マトリクス構成の
パネルではオフ画素にもクコストーク電圧が印加されて
しまうためコントラストの低下をきたす。たとえばN=
100本の場合、R=1.1となりオン画素にはオフ画
素に対応する電極間に印加される実効値電圧の10%L
か余計に印加されずこの10%の電圧差で表示のコント
ラストをつけなければならない。The above is an example of a conventional liquid crystal matrix panel, but the biggest difficulty with conventional technology is (1) generally a simple X-Y matrix) In an IJ display panel, N scanning lines (here For example, when a panel with row electrodes 3) is driven by a line-sequential signal, the ratio R of the effective value voltage applied between the electrodes sandwiching the pixel to be turned on and the pixel to be turned off is determined by the so-called voltage averaging method. When the driving method is adopted and optimized to maximize R, R = ((N”” + 1)/ (N”” −
1)) ””. In other words, in a panel with a simple matrix configuration, the Kukostalk voltage is applied even to off-pixels, resulting in a decrease in contrast. For example, N=
In the case of 100 lines, R = 1.1, and the on pixel has 10% L of the effective value voltage applied between the electrodes corresponding to the off pixel.
Display contrast must be achieved with this 10% voltage difference without applying any additional voltage.
すなわち単純マトリクスパネルに使用する表示媒体は輝
度−電圧特性がシャープで明確なしきい値特性を有して
いなければコントラストに優れた表示にはならない。従
来のTNセルでは、このシャープさが不十分なため、N
=64 (R= 1.134)でもアクティブマトリク
スパネルに匹敵するコントラストにはならないのが実状
である。一方TNセルは前記引用例にも示されている通
り一般にセルの光透過特性が光波長に依存し、いわゆる
旋光分散を生じ輝度−電圧特性が波長によって相当異な
る。That is, unless the display medium used in a simple matrix panel has sharp luminance-voltage characteristics and clear threshold characteristics, a display with excellent contrast cannot be achieved. In conventional TN cells, this sharpness is insufficient, so N
= 64 (R = 1.134), the reality is that the contrast is not comparable to that of an active matrix panel. On the other hand, in a TN cell, as shown in the cited example, the light transmission characteristics of the cell generally depend on the wavelength of light, resulting in so-called optical rotational dispersion, and the brightness-voltage characteristics vary considerably depending on the wavelength.
また図のようにカラーフィルタという誘電体層が透明電
極の上に設けられているときは、フィルタ層が液晶と直
列に挿入されろことになる為、電極間に印加されたこの
オンとオフの電圧比が液晶層ではさらに低下しカラーパ
ネルのコントラストはモノクロパネルより相当悪化する
という欠点があった。In addition, when a dielectric layer called a color filter is provided on a transparent electrode as shown in the figure, the filter layer must be inserted in series with the liquid crystal, so the on and off voltage applied between the electrodes is There was a drawback that the voltage ratio was further reduced in the liquid crystal layer, and the contrast of the color panel was considerably worse than that of the monochrome panel.
(2)上記単純X−Yマトリクス型表示バネに於けるコ
ントラスト、視野角、色再現性等の悪さを克服する為に
アクティブマトリクスと称するパネル構成が採用されて
いる。アクティブマトリクス型表示パネルでは、マトリ
クスを構成する各画素点に薄膜トランジスタ(以下TP
Tと略す)等の3端子スイツチ素子やP−Nジャンクシ
ョンや金属−絶縁体−金属(以下MIMと略す)等の2
端子非直線抵抗素子を設けることにより液晶自体のしき
い値特性の悪さを克服し、高コントラスト優れた色再現
性を実現している。しかるにアクティブマトリクスパネ
ルでは、アクティブマトリクスアレーを低コスト、高歩
留りで製造することが困難な為、アクティブマトリクス
パネルはパネルコストが高価になることが最大の難点で
ある。(2) In order to overcome the poor contrast, viewing angle, color reproducibility, etc. of the simple XY matrix type display spring, a panel configuration called an active matrix is adopted. In an active matrix display panel, a thin film transistor (hereinafter referred to as TP) is installed at each pixel point that makes up the matrix.
3-terminal switch elements such as T), PN junctions, metal-insulator-metal (hereinafter abbreviated as MIM), etc.
By providing a terminal nonlinear resistance element, the poor threshold characteristics of the liquid crystal itself can be overcome, and high contrast and excellent color reproducibility are achieved. However, the biggest drawback of active matrix panels is that the panel cost is high because it is difficult to manufacture active matrix arrays at low cost and with high yield.
発明が解決しようとする問題点
本発明は以上述べた従来の液晶単純マトリクス表示装置
のコントラストの悪さないしは液晶アクティブマトリク
ス表示装置の高コストという問題点を解決せんとするも
のである。Problems to be Solved by the Invention The present invention seeks to solve the above-mentioned problems of the poor contrast of conventional liquid crystal simple matrix display devices and the high cost of liquid crystal active matrix display devices.
問題点を解決するための手段
本発明では、電圧印加で光透過率が増大するゲストホス
ト液晶層が第一の透明帯状室))と画素電極間に挟まれ
ており上記画素電極側には上記第一の帯状電極と直交す
る方向に第二の帯状電極を有し第二の帯状電極と画素電
極間に光導電素子が設けられおり、前記第一及び第二の
電極に電圧印加手段を設けた構成のマトリクス表示装置
によって従来の問題点を解決せんとするものである。Means for Solving the Problems In the present invention, a guest-host liquid crystal layer whose light transmittance increases when a voltage is applied is sandwiched between a first transparent band-shaped chamber () and a pixel electrode, and the pixel electrode A second strip electrode is provided in a direction perpendicular to the first strip electrode, a photoconductive element is provided between the second strip electrode and the pixel electrode, and a voltage applying means is provided to the first and second electrodes. The present invention aims to solve the problems of the conventional method by using a matrix display device having a similar structure.
作用
上記手段によって従来の液晶単純マトリクス表示装置の
コントラストの悪さないしは液晶アクティブマトリクス
表示装置の高コストという問題点を解決し、低コストの
パネルで大容量で高画質の表示を実現できるものである
。Effect: The above means solves the problems of poor contrast of conventional liquid crystal simple matrix display devices and high cost of liquid crystal active matrix display devices, and makes it possible to realize high-capacity, high-quality display with a low-cost panel.
実施例
以下に本発明のマトリクス表示装置の一実施例について
、図面を用いて説明する。Embodiment An embodiment of the matrix display device of the present invention will be described below with reference to the drawings.
本発明のマトリクス表示装置は、基本的に反射型である
。まず第1図に従ってパネル構成について説明する。細
帯状の透明電極3を有する第一の透明基板1の電極面側
と細帯状の電極4と画素電極5.6の間に光導電素子7
を介在させた第二の透明基板2の電極面が相対向してお
り、前記第一及び第二の基板の細帯状の電極群3.4が
互いに直交するごとく配置されX−Yマトリクス型の電
極を構成しており、両電極間にGH液晶8がはさまれて
いる。GH液晶の一例として正の誘電率異方性を有しか
つ二色性色素を溶解したネマチック液晶が両店板にほぼ
水平に初期配向処理されている。前記第一の基板1の外
側には必要に応じて偏光板が設けられる。照明光は表示
を観察する第一の基板側を照らす。上記第一、第二基板
上の細帯状の電極群には第1図では図示は省略しである
が、電圧を印加する手段が備えられている。以上の如き
構成によりX−Yマトリクス電極間にGH液晶層と光導
電素子が直列に挿入されることになる。The matrix display device of the present invention is basically of a reflective type. First, the panel configuration will be explained according to FIG. 1. A photoconductive element 7 is placed between the electrode surface side of the first transparent substrate 1 having the thin strip-shaped transparent electrode 3 and the thin strip-shaped electrode 4 and the pixel electrode 5.6.
The electrode surfaces of the second transparent substrate 2 with a A GH liquid crystal 8 is sandwiched between the two electrodes. As an example of the GH liquid crystal, a nematic liquid crystal having positive dielectric anisotropy and dichroic dye dissolved therein is initially aligned almost horizontally on both plates. A polarizing plate is provided on the outside of the first substrate 1 as required. The illumination light illuminates the first substrate side on which the display is viewed. Although not shown in FIG. 1, the strip-shaped electrode groups on the first and second substrates are provided with means for applying a voltage. With the above configuration, the GH liquid crystal layer and the photoconductive element are inserted in series between the XY matrix electrodes.
本発明で重要な第二の基板側の光導電素子アレーの詳細
を第2図に示す。透明基板2上に細帯状の透明ないし不
透明のバスバー電極4、この両側に画素電極5.6が設
けられており、バスバー電極4と画素電極5.6をまた
がる如く光導電素子層7が設けられている。光導電素子
N7をバスバー電極4と画素電極5,6との間に挿入す
る方法には表面型とバルク型があるが、第2図の例は表
面型を示す。第2図では、光導電素子層7は短冊状にバ
タン化されて設けられているが表示領域全面に渡って設
けてあってもかまわない。第3図に光導電素子をバルク
型に設けた例の1画素部を示す。Details of the photoconductive element array on the second substrate side, which is important in the present invention, are shown in FIG. A strip-shaped transparent or opaque busbar electrode 4 is provided on a transparent substrate 2, and pixel electrodes 5.6 are provided on both sides of the busbar electrode 4, and a photoconductive element layer 7 is provided so as to straddle the busbar electrode 4 and the pixel electrode 5.6. ing. There are two types of methods for inserting the photoconductive element N7 between the bus bar electrode 4 and the pixel electrodes 5 and 6: a surface type and a bulk type, and the example shown in FIG. 2 shows the surface type. In FIG. 2, the photoconductive element layer 7 is provided in a strip-like pattern, but it may be provided over the entire display area. FIG. 3 shows one pixel section in which a photoconductive element is provided in a bulk type.
ここでは画素電極間をつなぐ電極9も画素電極5゜6と
同じく透明であり、バスバー電極4とこの透明電極9で
光導電層7をはさむ構成になっている。Here, the electrode 9 connecting the pixel electrodes is also transparent like the pixel electrodes 5.6, and the photoconductive layer 7 is sandwiched between the busbar electrode 4 and the transparent electrode 9.
これによって光導電層は膜厚方向の光導電性が利用され
ることになる。この場合も光導電素子層は表示領域全面
に渡って設けてあってもかまわない。This allows the photoconductive layer to utilize its photoconductivity in the film thickness direction. In this case as well, the photoconductive element layer may be provided over the entire display area.
以上光4電素子の構成に関して表面型とバルク型のもの
について述べたが、要は本発明では光導電素子とGH液
晶が電掻間に直列に挿入されることになるから容量性カ
ップリングによる液晶への電圧配分を極力抑える為に光
導電素子の電気容量は液晶素子のそれに較べて出来るだ
け小さいことが望ましく、表面型では電極幅を小さく、
バルク型では両電極の重なり面積(第3図に於ける領域
10)を小さくすることが重要である。第2図ないし第
3図では1つの画素電極を2分割した構成について示し
た勿論画素電極は1画素当り1つにしてもかまわない。Above, we have described the surface type and bulk type photoconductive elements, but the point is that in the present invention, the photoconductive element and the GH liquid crystal are inserted in series between the electric gaps, so capacitive coupling is used. In order to suppress the voltage distribution to the liquid crystal as much as possible, it is desirable that the capacitance of the photoconductive element be as small as possible compared to that of the liquid crystal element.
In the bulk type, it is important to reduce the overlapping area of both electrodes (region 10 in FIG. 3). Although FIGS. 2 and 3 show a configuration in which one pixel electrode is divided into two, it goes without saying that the number of pixel electrodes may be one per pixel.
また光導電素子とバスバー電極や画素電極を設ける順序
は上に述べたものに限定されるものではない。本発明に
用いる透明電極としては、酸化インジウム、酸化スズ、
金属薄膜などが利用でき第二の基板側の細帯状の電極群
ないしは画素電極には前記透明電極膜を用いてもよいし
またアルミ、クロム、金、タンタル、ニクロム等の不透
明金TI4膜を用いてもよい。Furthermore, the order in which the photoconductive element, busbar electrodes, and pixel electrodes are provided is not limited to the above-mentioned order. The transparent electrode used in the present invention includes indium oxide, tin oxide,
A thin metal film can be used, and the transparent electrode film may be used for the strip-shaped electrode group or pixel electrode on the second substrate side, or an opaque gold TI4 film such as aluminum, chromium, gold, tantalum, or nichrome may be used. You can.
画素電極5.6が透明性の場合、第二の基vi2の背後
には反射板16を設ける。画素電極5,6が光反射性の
場合は反射板16は必ずしも必要としない。When the pixel electrode 5.6 is transparent, a reflective plate 16 is provided behind the second substrate vi2. When the pixel electrodes 5 and 6 are light reflective, the reflective plate 16 is not necessarily required.
ここでは液晶分子を特定方向にかつ電極面に対して適当
なチルト角(ディスクリネイション欠陥を防ぐ為)を有
するように配向させる為の配向膜の図示は省略しである
。分子配向処理はポリイミドなどの有機薄膜を電極面に
塗布、乾燥後、布などで一方向にラビング処理したり、
電極面にSiO等を斜方莫着したり、ディッピングなど
によって分子配向剤を基板に吸着させる等の公知の方法
によって行われる。Here, illustration of an alignment film for aligning liquid crystal molecules in a specific direction and at an appropriate tilt angle (to prevent disclination defects) with respect to the electrode surface is omitted. Molecular orientation treatment involves coating an organic thin film such as polyimide on the electrode surface, drying it, and then rubbing it in one direction with a cloth.
This is carried out by a known method such as diagonally depositing SiO or the like on the electrode surface or adsorbing a molecular alignment agent onto the substrate by dipping or the like.
本発明では偏光板を用いないかないしは1枚のみを用い
て電圧によって光透過率を増大するネガ型のGH液晶が
用いられる。何故ならTNやSBE液晶モードのように
偏光板を2枚必要とするものでは、光線は2枚の偏光板
を通過してはじめて強度変調される。偏光板は通常基板
の外側に設けざるを得ないから、光導電素子は偏光板の
外側に設けられることになり、画素が小さい時は、画素
に丁度対応した光導電素子にその画素を通過した光を照
射させることは、困難になり、基板の厚み分だけ解像度
が悪化せざるを得ない。この点GH液晶モードでは光導
電素子を基板の内面に形成できるから解像度の優れた表
示が得られる。In the present invention, a negative type GH liquid crystal is used, which uses no or only one polarizing plate and whose light transmittance is increased by voltage. This is because in a mode that requires two polarizing plates, such as a TN or SBE liquid crystal mode, the intensity of the light beam is modulated only after passing through the two polarizing plates. Since the polarizing plate usually has to be installed on the outside of the substrate, the photoconductive element must be installed outside the polarizing plate, and when the pixel is small, the photoconductive element that corresponds exactly to the pixel passes through the pixel. It becomes difficult to irradiate the substrate with light, and the resolution inevitably deteriorates by the thickness of the substrate. In this respect, in the GH liquid crystal mode, a photoconductive element can be formed on the inner surface of the substrate, so a display with excellent resolution can be obtained.
本発明に於けるGH液晶には各種のものが使用できる。Various kinds of GH liquid crystals can be used in the present invention.
すなわち(1)誘電率異方性(以下Δεと略す)が正の
ネマチック液晶を基板に平行に初期配向させておき電圧
印加で基板に垂直方向を向かせるもの(2)Δεが正の
ネマチック液晶を側基板に平行でかつ90°ねじれるよ
うに初期配向させておき電圧印加で基板に垂直方向を向
かせるもの(3)Δεが負のネマチック液晶を基板に垂
直に初期配向させておき電圧印加で基板に水平方向を向
かせるもの、(4)カイラルスメクチック液晶を基板に
水平に初期配向させておき印加電圧の極性で基板に水平
ではあるが異った方向を向かせるもの、以上では偏光板
を少なくとも1枚使用する、(5)Δε正のネマチック
−コレステリンク混合液晶を電圧無印加でフォーカルコ
ニックないしグランジャン配向状態のものを電圧印加で
基板に垂直方向を向かせるもの、(6)Δεが負のネマ
チソクーコレステリフク混合液晶を電圧無印加でフォー
カルコニックないしグランジャン配向状態のものを電圧
印加で基板に水平方向を向かせるもの、(7)、 (1
)の状態の液晶層を2層重ね各層の液晶分子軸が互いに
直交するように配置し電圧印加で各層の液晶分子が基板
に垂直な方向を向くようにするもの以上(5)〜(7)
では偏光板を使用する必要はない。勿論GH液晶モード
であるから上記(1)〜(7)のいずれのモードに於い
ても、分子の長軸方向と短軸方向で可視光の吸収に異方
性を有する正または負の2色性染料が液晶中に添加され
ている。Namely, (1) a nematic liquid crystal with a positive dielectric constant anisotropy (hereinafter abbreviated as Δε) is initially oriented parallel to the substrate and then oriented perpendicularly to the substrate by applying a voltage; (2) a nematic liquid crystal with a positive dielectric constant anisotropy (hereinafter abbreviated as Δε); (3) A nematic liquid crystal with a negative Δε is initially aligned perpendicular to the substrate and is turned perpendicular to the substrate by applying a voltage. (4) A type in which the chiral smectic liquid crystal is initially aligned horizontally on the substrate and then oriented horizontally but in a different direction depending on the polarity of the applied voltage. (5) A nematic-cholesterlink mixed liquid crystal with a positive Δε in a focal conic or Grandjean orientation state when no voltage is applied, and which can be oriented perpendicularly to the substrate by applying a voltage; (7), (1) Negative nematic cholesteric mixed liquid crystal in a focal conic or Grandjean alignment state with no voltage applied, which is made to orient horizontally to the substrate by applying a voltage.
) Two layers of liquid crystal layers are stacked and arranged so that the liquid crystal molecular axes of each layer are orthogonal to each other, and when a voltage is applied, the liquid crystal molecules of each layer are oriented perpendicular to the substrate (5) to (7)
There is no need to use a polarizing plate. Of course, since it is a GH liquid crystal mode, in any of the modes (1) to (7) above, there are two positive or negative colors that have anisotropy in absorption of visible light in the long axis direction and short axis direction of the molecule. A color dye is added to the liquid crystal.
上記光導電素子としてはポリビニルカルバゾーン系、フ
タロシアニン系等の有機光導電体ないしはカドミウムセ
レナイド(CdSe)、カドミウムセレン(CdS)、
シリコン(Si)、セレン(S e)等の無機光導電体
が利用出来る。The photoconductive elements include organic photoconductors such as polyvinylcarbazone and phthalocyanine, cadmium selenide (CdSe), cadmium selenium (CdS),
Inorganic photoconductors such as silicon (Si) and selenium (Se) can be used.
本発明のマトリクスパネルによって高コントラストが得
られる理由について説明する。The reason why high contrast can be obtained by the matrix panel of the present invention will be explained.
本発明のマトリクスパネルの電極(たとえば第一の細帯
状電極を走査電極、第二の基板上のバスバー電極を信号
電極として)に例えば公知の電圧平均化法による電圧を
印加すると光導電素子とOH液晶層の直列系に電圧が印
加される。When a voltage is applied to the electrodes of the matrix panel of the present invention (for example, the first thin strip electrode is used as a scanning electrode and the busbar electrode on the second substrate is used as a signal electrode) by a known voltage averaging method, a photoconductive element and an OH A voltage is applied to the series system of liquid crystal layers.
ここに電圧平均化法による信号とは、電極選択時には、
オンすべき画素には、±■。、オフスヘき画素には±(
12/a)xVo 、非選択時に走査電極の数)の電圧
が印加される如く行、列電極に電圧を印加するものであ
る。Here, the signal obtained by the voltage averaging method means that when selecting an electrode,
±■ for pixels that should be turned on. , ±(
12/a) Voltages are applied to the row and column electrodes so that xVo (the number of scanning electrodes when not selected) is applied.
オン画素(ここではより大きい電圧が印加される方の画
素をオン画素と呼ぶ)とオフ画素の各電極間に印加され
る実効値電圧の比率(R)は電圧平均化法の場合は先に
述べた通りR= ((N””+ t)/ (N”” −
1))””となるが、実際の液晶層に印加される電圧は
光導電素子に印加される分だけ低下する。しかし何等か
の電圧差がオン画素とオフ画素に印加できる。液晶がネ
ガ型(電圧印加と共に透過率が大となるモード:偏光板
を用いるOH液晶では偏光板の偏光軸を液晶分子軸にた
いして適切な配置にすればネガ型モードに設定出来る)
に構成されている場合、より大きな電圧の印加されたオ
ン画素では光透過率が良くなる。In the voltage averaging method, the ratio (R) of the effective value voltage applied between each electrode of an on pixel (here, the pixel to which a larger voltage is applied is called an on pixel) and an off pixel is determined first. As mentioned, R = ((N””+ t)/ (N”” −
1)) However, the actual voltage applied to the liquid crystal layer is reduced by the amount applied to the photoconductive element. However, some voltage difference can be applied to the on and off pixels. The liquid crystal is negative type (a mode in which the transmittance increases as voltage is applied: in OH liquid crystal that uses a polarizing plate, it can be set to negative mode by appropriately arranging the polarization axis of the polarizing plate with respect to the liquid crystal molecule axis)
In this case, the light transmittance is improved in ON pixels to which a larger voltage is applied.
その結果光導電素子により強い光が当り光導電素子の電
気抵抗はより低下し、その結果オン画素には益々強い電
圧が印加され透過率は更に向上し光導電素子の抵抗は更
に低下する。すなわちオン画素にはフィードバックがか
かり光導電素子に配分されていた電圧分が益々液晶層側
に印加されることになる。ところがオフ画素では例えば
液晶層に印加されている電圧がしきい値以下の電圧であ
ればここでは光透過率は変化せず従って光導電素子の抵
抗も変化せずフィードバックがかからず光透過率は低い
ままである。すなわちOH液晶をライトパルプとして用
いることにより光導電素子への光照射光量を変え、光導
電素子の電気抵抗を非直線的に変えることによりオン画
素とオフ画素に印加される電圧の比率を増幅することが
できる訳である。この結果電圧平均化法からくる制約か
ら解放され走査線数(N)が大きい大容量表示に於ても
高コントラスト、高視野角を得ることができ、カラーフ
ィルタを設けたカラーパネルの場合は広色再現性等の高
画質化が実現出来る。As a result, stronger light is applied to the photoconductive element, and the electrical resistance of the photoconductive element is further reduced.As a result, an increasingly stronger voltage is applied to the ON pixel, the transmittance is further improved, and the resistance of the photoconductive element is further reduced. In other words, feedback is applied to the ON pixel, and the voltage that was distributed to the photoconductive element is increasingly applied to the liquid crystal layer side. However, in an off pixel, for example, if the voltage applied to the liquid crystal layer is below the threshold value, the light transmittance does not change, and therefore the resistance of the photoconductive element does not change either, and no feedback occurs and the light transmittance decreases. remains low. In other words, by using OH liquid crystal as a light pulp, the amount of light irradiated to the photoconductive element is changed, and by non-linearly changing the electrical resistance of the photoconductive element, the ratio of the voltage applied to the on pixel and the off pixel is amplified. This means that it is possible. As a result, it is freed from the constraints imposed by the voltage averaging method, and high contrast and wide viewing angles can be obtained even in large-capacity displays with a large number of scanning lines (N). High image quality such as color reproducibility can be achieved.
発明の効果
従来単純マトリクス液晶表示装置では、パネル構成がシ
ンプルな為低コストではあるが走査線数(N)が大きく
なるとオン画素とオフ画素に印加される電圧の比率が1
に近ずく為、コントラストの低下、視野角の狭さが大き
な問題であった。またTNモードやSBEモードではし
きい値特性が比較的急峻なためある程度までマトリクス
駆動できるがOH液晶モードは視野角依存性の点でTN
やSBEより有利ではあるにも拘らずしきい値特性が不
十分なためマトリクス駆動には適さなかった。しかるに
本発明ではOH液晶がTNやSBEとは異なって偏光板
が不要かないしは1枚でも光通過率を変化させる得るこ
とから光導電素子と組み合わすのに最適であり本発明に
よってOH液晶をマトリクス表示に有効に利用できるよ
うになった。走査線数Nが大の大容量表示に於てもコン
トラストの低下を来たさない方法として従来アクティブ
マトリクスが用いられている。液晶アクティブマトリク
ス表示装置では、高コントラスト、広色再現性が実証さ
れ液晶カラーTVが実用化されている。しかるにアクテ
ィブマトリクスではアクティブマトリクスアレーを製造
するのに半導体、絶縁体、金属等の薄膜を数回形成しま
たそれらの薄膜を高精度でバタン化するフォト工程を何
回も必要とし製造コストの上昇、歩留りの悪化という問
題点を有しおり特にA4版以上の大型パネルをアクティ
ブマトリクスで製造するにはコストの上昇もさることな
がら満足出来る装置自体が未開発なのが実状である。本
発明では光導電素子アレーを有する基板側でさえ1〜3
回程変のバタン化工程でよ〈従来のアクティブマトリク
ス形成技術に較べてはるかに簡易かつ高歩留り、低コス
トで尚かつ高画質を提供するマトリクスパネルを構成出
来る。Effects of the Invention Conventional simple matrix liquid crystal display devices have a simple panel configuration and are therefore low in cost, but as the number of scanning lines (N) increases, the ratio of voltages applied to on pixels and off pixels decreases to 1.
Because the camera is close to In addition, in TN mode and SBE mode, matrix drive is possible to some extent because the threshold characteristics are relatively steep, but in OH liquid crystal mode, TN mode has a relatively steep threshold characteristic.
Although it is more advantageous than SBE or SBE, it is not suitable for matrix driving due to insufficient threshold characteristics. However, in the present invention, unlike TN and SBE, OH liquid crystal does not require a polarizing plate or can change the light transmittance even with just one polarizing plate, so it is suitable for combination with a photoconductive element. It can now be used effectively for matrix display. Conventionally, an active matrix has been used as a method that does not cause a decrease in contrast even in large-capacity display with a large number of scanning lines N. In liquid crystal active matrix display devices, high contrast and wide color reproducibility have been demonstrated, and liquid crystal color TVs have been put into practical use. However, in order to manufacture an active matrix array, active matrix arrays require the formation of thin films of semiconductors, insulators, metals, etc. several times, and the photo process of converting these thin films with high precision many times, which increases manufacturing costs. There is a problem of deterioration in yield, and in particular, in order to manufacture large panels of A4 size or larger using active matrix, not only the cost increases but also the fact is that a satisfactory device itself has not been developed yet. In the present invention, even on the substrate side having the photoconductive element array, 1 to 3
By using a batting process with different steps, it is possible to construct a matrix panel that is much simpler and has a higher yield than conventional active matrix forming technology, and provides high image quality at a low cost.
第1図は本発明のマトリクス液晶表示装置の斜視図、第
2図は第1図のマトリクスパネルに用いる光導電素子ア
レーの1部拡大正面図、第3図は同じく第1図のマトリ
クスパネルに用いる他の構成の光導電素子アレーの1画
素部の拡大正面図、第4図は従来の透過型液晶表示装置
の斜視図、第5図は第4図の電極部の正面図である。
1.2・・・・・・透明基板、3,14・・・・・・透
明電極、4・・・・・・バスバー電極、5,6・・・・
・・画素電極、7・・・・・・光導電素子層、8・・・
・・・GH液晶層、10.1)・・・・・・偏光板、1
2・・・・・・光源、15・・・・・・従来の液晶X−
Yマトリクスパネル、16・・・・・・反射板、18・
・・・・・TN液晶層。
代理人の氏名 弁理士 中尾敏男 はか1名第 3 図
14 口
’−、/−−ノ
第5図FIG. 1 is a perspective view of a matrix liquid crystal display device of the present invention, FIG. 2 is a partially enlarged front view of a photoconductive element array used in the matrix panel of FIG. 1, and FIG. FIG. 4 is a perspective view of a conventional transmission type liquid crystal display device, and FIG. 5 is a front view of the electrode portion of FIG. 4. 1.2...Transparent substrate, 3,14...Transparent electrode, 4...Busbar electrode, 5,6...
...Pixel electrode, 7...Photoconductive element layer, 8...
...GH liquid crystal layer, 10.1) ...Polarizing plate, 1
2...Light source, 15...Conventional liquid crystal X-
Y matrix panel, 16...Reflector, 18.
...TN liquid crystal layer. Name of agent Patent attorney Toshio Nakao Number 3 Figure 14 Figure 5
Claims (8)
層が第一の透明帯状電極と画素電極間に挟まれており上
記画素電極側には上記第一の帯状電極と直交する方向に
第二の帯状電極を有し第二の帯状電極と画素電極間に光
導電素子が設けられおり、前記第一及び第二の電極に電
圧印加手段を設けてなることを特徴とするマトリクス表
示装置。(1) A guest-host liquid crystal layer whose light transmittance increases when a voltage is applied is sandwiched between the first transparent band-shaped electrode and the pixel electrode, and on the pixel electrode side there is a liquid crystal layer extending in a direction perpendicular to the first band-shaped electrode. 1. A matrix display device comprising two strip-shaped electrodes, a photoconductive element provided between the second strip-shaped electrode and a pixel electrode, and voltage applying means provided to the first and second electrodes.
される画素点の各々に設けられていることを特徴とする
特許請求の範囲第(1)項記載のマトリクス表示装置。(2) The matrix display device according to claim (1), wherein a photoconductive element is provided at each pixel point constituted by the first strip electrode and the pixel electrode.
シアニン系等の有機光導電体ないしはカドミウムセレナ
イド(CdSe)カドミウムセレン(CdS)、シリコ
ン(Si)、セレン(Se)等の無機光導電体より成る
ことを特徴とする特許請求の範囲第(1)項記載のマト
リクス表示装置。(3) The photoconductive element must be made of an organic photoconductor such as polyvinylcarbazole or phthalocyanine, or an inorganic photoconductor such as cadmium selenide (CdSe), cadmium selenium (CdS), silicon (Si), or selenium (Se). A matrix display device according to claim (1), characterized in that:
ク液晶、誘電率異方性が負のネマチック液晶、ネマチッ
ク・コレステリック混合液晶、カイラルスメクチック液
晶より選ばれたものに2色性染料を添加したものよりな
ることを特徴とする特許請求の範囲第(1)項記載のマ
トリクス表示装置。(4) A dichroic dye is added to the guest-host liquid crystal selected from nematic liquid crystal with positive dielectric anisotropy, nematic liquid crystal with negative dielectric anisotropy, nematic-cholesteric mixed liquid crystal, and chiral smectic liquid crystal. A matrix display device according to claim (1), characterized in that the matrix display device comprises:
の色フィルターが設けられていることを特徴とする特許
請求の範囲第(1)項記載のマトリクス表示装置。(5) The matrix display device according to claim (1), wherein the first strip electrode or the pixel electrode is provided with red, blue, and green color filters.
光板を設けることを特徴とする特許請求の範囲第(1)
項記載のマトリクス表示装置。(6) Claim (1) characterized in that at least a polarizing plate is provided on the substrate side having the first strip electrode.
The matrix display device described in Section 1.
反射板を設けることを特徴とする特許請求の範囲第(1
)項記載のマトリクス表示装置。(7) When the pixel electrode is transparent, a light reflecting plate is provided behind the second substrate.
) The matrix display device described in item 2.
選択時には、オンすべき画素には、±V_0、オフすべ
き画素には±(1−2/a)×V_0、非選択時には|
V_0/a|(但しa=√N+1なる実数、Nは第一な
いし第二帯状電極の数)の電圧が印加される如く構成さ
れていることを特徴とする特許請求の範囲第(1)項記
載のマトリクス表示装置。(8) Between the first strip electrode and the second strip electrode, when selecting the electrode, ±V_0 for pixels to be turned on, ±(1-2/a)×V_0 for pixels to be turned off, When not selected |
Claim (1) characterized in that the device is configured so that a voltage of V_0/a| (where a=√N+1, a real number, N is the number of the first to second strip electrodes) is applied. The matrix display device described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61209886A JPH0718999B2 (en) | 1986-09-05 | 1986-09-05 | Matrix display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61209886A JPH0718999B2 (en) | 1986-09-05 | 1986-09-05 | Matrix display |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6364030A true JPS6364030A (en) | 1988-03-22 |
JPH0718999B2 JPH0718999B2 (en) | 1995-03-06 |
Family
ID=16580275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61209886A Expired - Fee Related JPH0718999B2 (en) | 1986-09-05 | 1986-09-05 | Matrix display |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0718999B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5536933A (en) * | 1993-12-20 | 1996-07-16 | Sharp Kabushiki Kaisha | Light information device and method for producing the same |
US5657100A (en) * | 1992-02-03 | 1997-08-12 | Sharp Kabushiki Kaisha | Optical transmittance adjusting device having a matrix of electrodes each connected to a photoconductor smaller than the electrode |
-
1986
- 1986-09-05 JP JP61209886A patent/JPH0718999B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5657100A (en) * | 1992-02-03 | 1997-08-12 | Sharp Kabushiki Kaisha | Optical transmittance adjusting device having a matrix of electrodes each connected to a photoconductor smaller than the electrode |
US5536933A (en) * | 1993-12-20 | 1996-07-16 | Sharp Kabushiki Kaisha | Light information device and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0718999B2 (en) | 1995-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4761058A (en) | Biasing liquid crystal displays having capacitors and transistors | |
US6466290B2 (en) | Fringe field switching mode LCD | |
CN101351743B (en) | Liquid crystal display device and television receiver | |
US20080088759A1 (en) | Liquid Crystal Display Device | |
KR101169401B1 (en) | Vertically aligned nematic mode liquid crystal display having large tilt angles and high contrast | |
US7230666B2 (en) | Liquid crystal display with nonconductive portions in specific areas | |
WO1996018929A1 (en) | Liquid crystal display element and method of manufacturing the same | |
JPH04507010A (en) | optical encoding device | |
CN100478748C (en) | One pixel full color display device using cholesteric mixture | |
JPS6364031A (en) | Matrix display device | |
JPH0766124B2 (en) | Emissive display device | |
US6646710B2 (en) | Light modulator | |
KR100671101B1 (en) | Dispersed cholesteric liquid crystal display with color filter | |
US5852486A (en) | Liquid crystal display with alternative electrode structure | |
JPS60202423A (en) | Color liquid crystal display device | |
JPS6364030A (en) | Matrix display device | |
US6147666A (en) | Multipole liquid crystal display | |
JP3332863B2 (en) | Optical modulator | |
US7369197B2 (en) | Polarizer, panel for a liquid crystal display, and liquid crystal display, including a scattering layer | |
US7567320B2 (en) | Electro-optical device with liquid crystal | |
JPS6364032A (en) | Matrix display device | |
JP2991714B2 (en) | Color display | |
JP2533302B2 (en) | Liquid crystal element | |
CN100451799C (en) | Vertically aligned nematic mode liquid crystal display having large tilt angles and high contrast | |
US20020140647A1 (en) | System and method for a liquid crystal display utilizing a high voltage bias mode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |