JPS6363946A - Cryostat for spectrometry - Google Patents

Cryostat for spectrometry

Info

Publication number
JPS6363946A
JPS6363946A JP20775386A JP20775386A JPS6363946A JP S6363946 A JPS6363946 A JP S6363946A JP 20775386 A JP20775386 A JP 20775386A JP 20775386 A JP20775386 A JP 20775386A JP S6363946 A JPS6363946 A JP S6363946A
Authority
JP
Japan
Prior art keywords
sample
cryostat
sample chamber
cryogen
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20775386A
Other languages
Japanese (ja)
Inventor
Minoru Sagara
相良 実
Motoi Suhara
須原 基
Yuhei Muto
武藤 雄平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20775386A priority Critical patent/JPS6363946A/en
Publication of JPS6363946A publication Critical patent/JPS6363946A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control

Abstract

PURPOSE:To remove measuring noises caused by bubbles generated from a cryogen during the measurement, by setting a sample chamber on the side of a cryostat body while a sample base as heat good conductor is provided in the sample chamber. CONSTITUTION:A cryostat body 11 is filled with a liquid nitrogen 103 as refrigerant. A sample chamber 12 sticks out horizontally from the side of the body 11. A copper sample base 13 as heat good conductor having a sample 105 thereon is inserted into the sample chamber 12. Without the sample base 13, the sample chamber 12 will not be cooled as exposed to radiation heat from outside. The horizontal layout of the sample 105 eliminates the need for a specified fixed means. Furthermore, as the sample chamber 12 is of a lateral type, a passage 14 of a vapor gas is formed in the sample 105 so constant as to generate bubbles 113 only on the side of the body 11. Thus, there is no bubble intercepting the optical path of the excitation light 15 intermittently thereby eliminating noises during the measurement.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は半導体結晶の物性評価法などとして広く行な
われている固体試料の低温での分光学的測定に用いる試
料冷却装置である分光測定用クライオスタットに関する
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention relates to a sample cooling device used for low-temperature spectroscopic measurements of solid samples, which is widely used as a method for evaluating the physical properties of semiconductor crystals. This invention relates to a cryostat for spectrometry.

(従来の技術) 半導体素子の開発、製造に際しては、その素子の構成材
料の半導体結晶の評価法に比較的簡便で精度が亮く情報
量も多い分光学的測定が広く行なわれている1例えば、
GaAs単結晶基板上へ複数のAl2GaAs結品層を
成長させて製造する半導体レーザ素子の特性の良否は、
成長したA12GaAs結晶の良否に大きく依存するの
で、結晶評価法として分光学的測定の一つであるフォト
ルミネッセンス測定が行なわれる。以下、このフォトル
ミネッセンス測定の一例として説明する。
(Prior art) When developing and manufacturing semiconductor devices, spectroscopic measurements are widely used as a method for evaluating semiconductor crystals, which are the constituent materials of the devices, as they are relatively simple, highly accurate, and provide a large amount of information1. ,
The quality of the characteristics of a semiconductor laser device manufactured by growing multiple Al2GaAs crystalline layers on a GaAs single crystal substrate is determined by:
Since the quality largely depends on the quality of the grown A12GaAs crystal, photoluminescence measurement, which is one of the spectroscopic measurements, is used as a crystal evaluation method. An example of this photoluminescence measurement will be described below.

フォトルミネッセンス測定装置の概略の構成は第2図に
示すようになっている。すなわち、放電管、ガスレーザ
等の光源21がらの励起光を、レンズ22で集光しクラ
イオスタット23内で冷却された試料24に照射すると
、この試料から蛍光が発せられる。この蛍光をレンズ2
5で集光して分光器26に導入し分光して検出器27、
記録計28によってフォトルミネッセンススペクトル(
光励起による蛍光スペクトル)が得られる。上記試料2
4としてGaAs単結晶を測定する場合、光源21とし
てはアルゴンイオンレーザ、分光器26は可視・近赤外
用分光器、検出器27は光電子増倍管を用いるのが普通
である。
The schematic configuration of the photoluminescence measuring device is shown in FIG. That is, when excitation light from a light source 21 such as a discharge tube or a gas laser is focused by a lens 22 and irradiated onto a sample 24 cooled within a cryostat 23, fluorescence is emitted from the sample. Lens 2
5, the light is collected and introduced into a spectrometer 26, and the light is dispersed into a detector 27,
The photoluminescence spectrum (
A fluorescence spectrum due to optical excitation) is obtained. Sample 2 above
4, when measuring a GaAs single crystal, the light source 21 is usually an argon ion laser, the spectrometer 26 is a visible/near-infrared spectrometer, and the detector 27 is a photomultiplier tube.

試料であるGaAs単結晶はクライオスタット23内に
配置され、寒剤により冷却されることが多い。この理由
は、第1に試料を冷却した方が強い蛍光が得られ測定し
易いこと、第2に測定されるフォトルミネッセンススペ
クトルの形が鋭くなり、微細な構造が1131測される
ので詳細な解析ができることである。
A GaAs single crystal, which is a sample, is placed in a cryostat 23 and is often cooled with a cryogen. The reasons for this are: firstly, cooling the sample allows for stronger fluorescence and easier measurement; secondly, the shape of the measured photoluminescence spectrum becomes sharper and 1131 fine structures can be measured, making it easier to analyze in detail. This is something that can be done.

次に試料24を冷却するクライオスタット23は寒剤や
冷却方法により種々の種類があるが、簡便でかつ温度精
度の良い方式として行なわれるのは第3図に示すように
、硬質ガラスまたは石英ガラス製で下部に試料室101
が設けられたクライオスタット本体102の中に寒剤の
例えば液体窒素103を満たし、上記試料室に配置され
た試料筒104に試料105 を載置し寒剤中に浸漬さ
れる。いわゆる「じやぶ漬け」である、そしてじやぶ漬
けされた試料105に励起光106を照射し、試料から
発せられる蛍光を分光測定して液体窒素温度でのフォト
ルミネッセンススペクトルが得られる。これは試料を冷
却せずに室温で測定するのに比べ、蛍光の強度は50〜
100倍強く、スペクトル幅は172以下と鋭くなり、
試料の結晶性を判定する重要な情報となる。
Next, the cryostat 23 that cools the sample 24 has various types depending on the cryogen and cooling method, but the one that is simple and has good temperature accuracy is one made of hard glass or quartz glass, as shown in Figure 3. Sample chamber 101 at the bottom
A cryostat body 102 equipped with a cryostat is filled with a cryogen such as liquid nitrogen 103, and a sample 105 is placed in a sample cylinder 104 disposed in the sample chamber and immersed in the cryogen. The sample 105, which is so-called "Jiyabu pickled", is irradiated with excitation light 106 and the fluorescence emitted from the sample is spectroscopically measured to obtain a photoluminescence spectrum at liquid nitrogen temperature. Compared to measuring at room temperature without cooling the sample, the fluorescence intensity is 50~
It is 100 times stronger and the spectral width is sharper than 172,
This is important information for determining the crystallinity of the sample.

ところで、寒剤に液体ヘリウムを使うのは、クライオス
タットを二重の魔法瓶としなければならないことや、液
体ヘリウムが高価であることから、定常的には行ない難
く、簡便でない、また、試料を寒剤に漬たさず、間接的
に冷却する方法は試料の温度が寒剤の温度までは下がり
切らないのに加え、強い励起光の照射によって試料が加
熱されるため、試料内の温度むら、温度上昇があり試料
温度を再現性良く制御することが辺しく、定常的に行な
われない。
By the way, using liquid helium as a cryogen requires a double thermos flask for the cryostat, and liquid helium is expensive, so it is difficult to use on a regular basis and is not convenient. In indirect cooling methods, the temperature of the sample does not completely drop to the temperature of the cryogen, and the sample is heated by irradiation with strong excitation light, resulting in temperature unevenness and temperature rise within the sample. Controlling the sample temperature with good reproducibility is difficult and cannot be done regularly.

以上に述べたようなことから第3図に示したクライオス
タットによるじゃぶ漬けの手段が簡便かつ正確な試料温
度設定方法として広く行なオ)れている。
Because of the above-mentioned reasons, the method of soaking with a cryostat shown in FIG. 3 is widely used as a simple and accurate method for setting the sample temperature.

しかし、第3図のクライオスタットには以下に述べる三
つの大きな問題がある。第1に、寒剤として用いる液体
窒素は絶えず沸騰して泡立っており、励起光や蛍光の光
路を通過する気泡113が測定中のノイズの源となるこ
とである。第2に、一般的に試料は形や大きさが不揃い
であり、かつ、割れやすいので試料105を試料台10
4に簡便、かつ、確実に固定する方法がないことである
。第3に、試料室101はクライオスタット本体102
の下部に設けられているため、顕微鏡下で励起光照射位
はを設定して所定位置の分光測定を行なう、いわゆる顕
微分光の手法が使えないし、通常の分光測定においても
光軸合わせの作業に手間がかかることである。
However, the cryostat shown in FIG. 3 has three major problems as described below. First, the liquid nitrogen used as a cryogen constantly boils and bubbles, and the bubbles 113 passing through the optical path of the excitation light and fluorescence become a source of noise during measurement. Second, since samples are generally irregular in shape and size and are easily broken, the sample 105 is placed on the sample stand 10.
4. There is no simple and reliable method for fixing. Thirdly, the sample chamber 101 is connected to the cryostat main body 102.
Because it is located at the bottom of the camera, it is not possible to use the so-called microspectroscopy method, which involves setting the excitation light irradiation position under a microscope and performing spectroscopic measurements at a predetermined position. It is time consuming.

(発明が解決しようとする問題点) この発明は分光測定用クライオスタットにおける問題点
である寒剤、−例の液体窒素の発する泡によって測定時
に生ずるノイズを除去し、かつ、簡便かつ安定な試料保
持を実現し、さらに顕′#鏡下での分光測定を可能なら
しめる。
(Problems to be Solved by the Invention) This invention eliminates the noise that occurs during measurement due to the bubbles generated by a cryogen, such as liquid nitrogen, which is a problem in cryostats for spectroscopic measurements, and also provides simple and stable sample holding. This makes it possible to perform spectroscopic measurements under a microscope.

[発明の構成] (問題点を解決するための手段) この発明にかかる分光測定用クライオスタットは、試料
室に配置された試料を液体寒剤により直接冷却する分光
測定用クライオスタットにおいて、試料室がクライオス
タット本体の側部に設置され、かつ、前記試料室内には
熱の良導体でなる試料台を具備したことを特徴とするも
ので、測定時に寒剤、−例の液体窒素から発する泡によ
る測定のノイズを防除する。
[Structure of the Invention] (Means for Solving Problems) A cryostat for spectrometry according to the present invention is a cryostat for spectrometry that directly cools a sample placed in a sample chamber with a liquid cryogen, in which the sample chamber is connected to the cryostat main body. The sample table is installed on the side of the sample chamber, and is equipped with a sample stage made of a good thermal conductor, which prevents measurement noise caused by foam generated from cryogen, liquid nitrogen, etc., during measurement. do.

(作用) この発明にかかるクライオスタットは、試料台に沿って
寒剤の液体窒素が横型の試料室に流入し、試料台上に水
平に載置された試料を浸して「じやぶ漬け」となり、し
かも試料は水平に配置されるから特別な固定手段を要し
ない。また、試料室内で寒剤が気化したガスは試料室が
横型のためクライオスタット本体側に動く際に連接し、
試料室の気化ガスの流路が定常的に形成される。従って
試料の近傍で光路を断続的に遮る気泡がなくなることか
ら分光測定中のノイズも生じない。さらに、試料室がク
ライオスタット本体の側部に突出した構造をしているた
め、通常の顕微鏡下にクライオスタットを設置して励起
光の照射位置を確認して」11定する顕微側光も可能と
なり、従来のクライオスタットで避けられなかった叙上
の三つの問題がすべて解決される。
(Function) In the cryostat according to the present invention, liquid nitrogen as a cryogen flows into the horizontal sample chamber along the sample stage, and immerses the sample placed horizontally on the sample stage, resulting in "jiyabuzuke". Since the sample is placed horizontally, no special fixing means are required. In addition, since the sample chamber is horizontal, the gas from the vaporized cryogen in the sample chamber connects with the cryostat when it moves toward the cryostat body.
A flow path for vaporized gas in the sample chamber is constantly formed. Therefore, since there are no air bubbles that intermittently block the optical path near the sample, no noise occurs during spectroscopic measurements. Furthermore, since the sample chamber has a structure that protrudes from the side of the cryostat body, it is possible to perform microscopic side illumination, which can be determined by installing the cryostat under a normal microscope and checking the irradiation position of the excitation light. All three problems mentioned above that were unavoidable with conventional cryostat are solved.

(実施例) 以下、この発明の一実施例につき第1図を参照して説明
する。なお、説明において従来と変わらない部分につい
ては図面に従来と同じ符号をつけて示し説明を省略する
(Example) An example of the present invention will be described below with reference to FIG. In addition, in the description, parts that are the same as in the prior art are indicated by the same reference numerals as in the prior art in the drawings, and the description thereof will be omitted.

第1図のクライオスタット本体11は従来と同様の石英
ガラス製の魔法瓶で、寒剤として液体窒素103が満た
されている。そして、試料室12はクライオスタット本
体11の側面から水平方向に突出している。そしてこの
試料室12の内部には試料105を載せた銅製の試料台
13が挿入されている。試料台13には二つの機能があ
る。
The cryostat main body 11 in FIG. 1 is a thermos made of quartz glass similar to the conventional one, and is filled with liquid nitrogen 103 as a cryogen. The sample chamber 12 projects horizontally from the side surface of the cryostat main body 11. A copper sample stage 13 on which a sample 105 is placed is inserted into the sample chamber 12 . The sample stage 13 has two functions.

第1は、銅やアルミニウムのような熱の良導体で作られ
た試料台13を試料室12に挿入してはじめて寒剤の液
体窒素103が試料室12内を潰すようになることであ
る。試料室12には分光測定を行うために遮熱のめっき
が施されてないので、試料台13がないと外界からの幅
射熱によって試料室12は冷却せず、液体窒素が流入し
てもたちまち気化してしまい、試料室12内を潰すこと
がない。さらに、試料105の上方には気化した窒素ガ
スの流路14が定常的に形成され、クライオスタット本
体側で気泡113となるから、励起光15の光路を断続
的に遮る気泡はなく、測定時のノイズがなくなる。
The first is that the cryogen liquid nitrogen 103 does not collapse the inside of the sample chamber 12 until the sample stage 13 made of a good thermal conductor such as copper or aluminum is inserted into the sample chamber 12. The sample chamber 12 is not coated with heat-shielding plating to perform spectroscopic measurements, so without the sample stage 13, the sample chamber 12 will not be cooled by radiant heat from the outside world, and even if liquid nitrogen flows in. It vaporizes immediately, and the inside of the sample chamber 12 is not crushed. Furthermore, a flow path 14 for vaporized nitrogen gas is constantly formed above the sample 105, and bubbles 113 are formed on the cryostat main body side, so there are no bubbles that intermittently block the optical path of the excitation light 15, and during measurement. Noise disappears.

第2は、試料台13で試料105を固定することである
。ただ、従来のように試料を垂直に固定するのではなく
、水平に保持するだけで特別の細工は不要であり、本実
施例では銅片を曲げただけのものとした。なお、本実施
例のクライオスタットの寸法は、クライオスタット本体
が外径60nm、試料室が内径5mで長さ30mに形成
され、顕微分光用の顕微鏡ステージに充分納まる大きさ
として顕微分光が可能である。
The second is to fix the sample 105 on the sample stage 13. However, instead of fixing the sample vertically as in the conventional case, the sample was simply held horizontally, and no special work was required, and in this example, the copper piece was simply bent. The dimensions of the cryostat of this example are such that the cryostat main body has an outer diameter of 60 nm, the sample chamber has an inner diameter of 5 m, and a length of 30 m, which is large enough to fit on a microscope stage for microscopic spectroscopy.

この実施例のクライオスタットを用いた液体窒素温度(
77K)でのフォトルミネッセンス測定では、従来のよ
うな寒剤の気化ガスの気泡によるノイズは全<aXされ
ず、順調に測定できた。得られたスペクトルは、正しく
液体窒素温度でのピークエネルギ、半値幅を示し、試料
が液体窒素に「じやぶ漬け」となっていて、試料温度が
寒剤温度に一致していることが確認できた。さらに、測
定時間(こついても、面倒な光軸合わせ作業が著しく軽
減でき、従来要した時間の173程度で測定することが
できた。また、顕微鏡下での、いわゆる顕微分光も容易
に行うことができた。
Liquid nitrogen temperature (
In the photoluminescence measurement at 77K), the noise caused by the bubbles of the vaporized gas of the cryogen, which was the case in the past, was not affected by all <aX, and the measurement was successful. The obtained spectrum correctly showed the peak energy and half-width at the liquid nitrogen temperature, confirming that the sample was "soaked" in liquid nitrogen and that the sample temperature matched the cryogen temperature. . Furthermore, the measurement time (even if it is difficult, the troublesome work of aligning the optical axis can be significantly reduced, and the measurement can be performed in about 173 seconds compared to the conventional method. In addition, so-called microscopic spectroscopy under a microscope can be easily performed. was completed.

本実施例ではクライオスタットの材料として石英ガラス
を用いたが、硬質ガラスや金属を使用しても本発明の主
旨に沿った構造が得られるのは明らかである。また、試
料台の材料として銅を用いたが、他の材料でも熱の良導
体であれば使用できる。次に分光測定の例としてフォト
ルミネッセンス測定を行なったが、ラマン散乱、光伝導
、光反射吸収等の分光測定でも本発明のクライオスタッ
トは使用できる。また、寒剤として液体窒素を用いたが
、温度を変えるために別の液体寒剤を用いることができ
る。
Although quartz glass was used as the material for the cryostat in this embodiment, it is clear that a structure in accordance with the gist of the present invention can be obtained even if hard glass or metal is used. Further, although copper was used as the material for the sample stage, other materials can be used as long as they are good thermal conductors. Next, photoluminescence measurements were performed as an example of spectroscopic measurements, but the cryostat of the present invention can also be used for spectroscopic measurements such as Raman scattering, photoconduction, and optical reflection/absorption. Also, although liquid nitrogen was used as the cryogen, other liquid cryogens can be used to change the temperature.

〔発明の効果〕〔Effect of the invention〕

本発明によるクライオスタットによれば、試料は寒剤に
「じやぶ漬け」の状態でありながら、気化した寒剤の気
泡の影響を受けず、簡単な試料固定法でよく、簡便、迅
速で、かつ、温度精度が良くノイズのない分光測定が可
能となった。さらに、顕微分光も容易に行なえるように
なった。
According to the cryostat according to the present invention, although the sample is "jiyabuke" in the cryogen, it is not affected by the bubbles of the vaporized cryogen and requires a simple sample fixation method, which is simple, quick, and temperature-controlled. Highly accurate and noise-free spectroscopic measurements are now possible. Furthermore, microscopic spectroscopy has become easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる分光測定用クライオスタットの
一実施例を示す断面図、第2図は分光測定の一例のフォ
トルミネッセンス測定装置の構成の概略図、第3図は従
来の分光測定用クライオスタットを示す断面図である。 11・・・クライオスタット本体 12・・・試料室      13・・・試料台14・
・・窒素ガスの流路  15・・・励起光103・・・
寒剤
Fig. 1 is a cross-sectional view showing an embodiment of a cryostat for spectrometry according to the present invention, Fig. 2 is a schematic diagram of the configuration of a photoluminescence measurement device as an example of spectrometry, and Fig. 3 is a conventional cryostat for spectrometry. FIG. 11... Cryostat main body 12... Sample chamber 13... Sample stage 14.
...Nitrogen gas flow path 15...Excitation light 103...
cryogen

Claims (1)

【特許請求の範囲】[Claims] 試料室に配置された試料を液体寒剤により直接冷却する
分光測定用クライオスタットにおいて、試料室がクライ
オスタット本体の側部に設置され、かつ前記試料室内に
は熱の良導体でなる試料台を具備したことを特徴とする
分光測定用クライオスタット。
In a cryostat for spectrometry that directly cools a sample placed in a sample chamber with a liquid cryogen, the sample chamber is installed on the side of the cryostat body, and the sample chamber is equipped with a sample stage made of a good thermal conductor. A cryostat for spectroscopic measurements.
JP20775386A 1986-09-05 1986-09-05 Cryostat for spectrometry Pending JPS6363946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20775386A JPS6363946A (en) 1986-09-05 1986-09-05 Cryostat for spectrometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20775386A JPS6363946A (en) 1986-09-05 1986-09-05 Cryostat for spectrometry

Publications (1)

Publication Number Publication Date
JPS6363946A true JPS6363946A (en) 1988-03-22

Family

ID=16544972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20775386A Pending JPS6363946A (en) 1986-09-05 1986-09-05 Cryostat for spectrometry

Country Status (1)

Country Link
JP (1) JPS6363946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504595A (en) * 2000-07-18 2004-02-12 ゲルザン エスタブリッシュメント Gem inspection equipment
JP2013108998A (en) * 2013-03-13 2013-06-06 Hamamatsu Photonics Kk Spectrometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504595A (en) * 2000-07-18 2004-02-12 ゲルザン エスタブリッシュメント Gem inspection equipment
JP2013108998A (en) * 2013-03-13 2013-06-06 Hamamatsu Photonics Kk Spectrometer

Similar Documents

Publication Publication Date Title
Cirisan et al. Stark broadening measurement of Al II lines in a laser-induced plasma
PL164530B1 (en) Method of determining chemical composition of molten metal and apparatus therfor
TW567310B (en) Instrument for examining a gemstone
US4549807A (en) Process for measuring fluorescence
US6515738B1 (en) Method of determining the authenticity and the geographical origin of gemstones such as beryls
JPS6363946A (en) Cryostat for spectrometry
CN113884462A (en) Method and system for measuring nitrogen element in nitrogen-doped monocrystalline silicon
Harris et al. Vibrational energy transfer to metal surfaces probed by sum generation: CO/Cu (100) and CH3S/Ag (111)
Trivellin et al. Full optical contactless thermometry based on LED photoluminescence
Sarkozy et al. The Chicago Water Isotope Spectrometer (ChiWIS-lab): A tunable diode laser spectrometer for chamber-based measurements of water vapor isotopic evolution during cirrus formation
Sinsheimer et al. ULTRA VIOLET ABSORPTION SPECTRA AT REDUCED TEMPERATURES
Skoff et al. Doppler-free laser spectroscopy of buffer-gas-cooled molecular radicals
Causey et al. Detection and determination of polynuclear aromatic hydrocarbons by luminescence spectrometry utilising the Shpol'skii effect at 77 K. Part II. An evaluation of excitation sources, sample cells and detection systems
Ciocan et al. Optical emission spectroscopy studies of the influence of laser ablated mass on dry inductively coupled plasma conditions
JP3275022B2 (en) Photoluminescence measurement device in crystal
JPH04165320A (en) Optical device
Kim et al. A new methodology for production of hyperquenched glassy films and their study by nonphotochemical hole burning
JP2827703B2 (en) Method and apparatus for measuring interstitial oxygen concentration in silicon single crystal
Pojur et al. Thermal expansion at elevated temperatures. I. Apparatus for use in the temperature range 300-800 K: the thermal expansion of copper
Beale et al. An apparatus for quantitative low temperature ultra-violet absorption spectroscopy
Roshanzadeh Development and demonstration of a pico-Watt calorimeter for optical absorption spectroscopy
Appel et al. Ultrabroadband collection and illumination optics for Raman and photoluminescence spectroscopy in the 200–700 nm wave band
Van Den Bold et al. Optical investigation of an atomic hydrogen flame
JPS6371634A (en) Cryostat for measuring optical characteristic
JPS62115346A (en) Method and instrument for measuring impurity concentration in semiconductor crystal