JPS636384A - Heat treatment equipment - Google Patents
Heat treatment equipmentInfo
- Publication number
- JPS636384A JPS636384A JP15047286A JP15047286A JPS636384A JP S636384 A JPS636384 A JP S636384A JP 15047286 A JP15047286 A JP 15047286A JP 15047286 A JP15047286 A JP 15047286A JP S636384 A JPS636384 A JP S636384A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- processing chamber
- heat
- exhaust
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims description 32
- 230000001590 oxidative effect Effects 0.000 claims description 53
- 239000000126 substance Substances 0.000 claims description 30
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 13
- 238000009835 boiling Methods 0.000 claims description 8
- 239000007789 gas Substances 0.000 description 104
- 239000000463 material Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 238000000197 pyrolysis Methods 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000004880 explosion Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- -1 sinter Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 125000002256 xylenyl group Chemical class C1(C(C=CC=C1)C)(C)* 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Furnace Details (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、熱処理時に有害な可燃性物質を発生する被処
理物を非酸化性雰囲気にて熱処理する装置に関する。ざ
らに詳しくは、焼結物、セラミック、炭素、黒鉛、フェ
ルト等の基材もしくはその結合剤に可燃性熱分解物質が
多量に含有する被処理物を非酸化性雰囲気にて焼結、焼
成、乾燥等何らかの熱処理を施す装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for heat treating a workpiece that generates harmful combustible substances during heat treatment in a non-oxidizing atmosphere. In more detail, a workpiece containing a large amount of combustible pyrolyzable substances in a base material such as sinter, ceramic, carbon, graphite, or felt or its binder is sintered, fired, or fired in a non-oxidizing atmosphere. This relates to a device that performs some kind of heat treatment such as drying.
(従来の技術)
例えば、燃料電池の電極板は、基材としての炭素繊維を
フェノール樹脂等の結合剤樹脂で固めて板状物とした上
、この被処理物を高純度の非酸化性雰囲気にて温度10
00〜3000℃で焼成することによって製造される。(Prior art) For example, electrode plates for fuel cells are made by hardening carbon fiber as a base material with a binder resin such as phenol resin to form a plate-like object, and then placing the object to be processed in a high-purity non-oxidizing atmosphere. Temperature 10 at
Manufactured by firing at 00 to 3000°C.
この時、結合剤樹脂から発生する熱分解物質を処理室外
に取出してやる必要がある。この熱分解物質は、フェノ
ール樹脂の場合、クレゾール、キシレノール、炭化水素
、−酸化炭素等の可燃性物質から成り、常温でガス状か
ら液状に至る種々の態様を示している。At this time, it is necessary to take out the thermal decomposition substances generated from the binder resin outside the processing chamber. In the case of phenolic resin, this thermally decomposed substance is composed of combustible substances such as cresol, xylenol, hydrocarbons, and carbon oxides, and exhibits various forms ranging from gaseous to liquid at room temperature.
このような被処理物を熱処理する際問題となることは、
第1に被処理物を含めて処理室内が予め高純度の非酸化
性雰囲気になっていること、第2にこの熱分解物質が自
然界に対して有害でおること、第3にこの熱分解物質が
処理室内に滞留すれば製品の品質、物性を損うこと、第
4に可燃性物質を含むため酸化性のガスと混合されると
爆発の危険性を有すること、第5に雰囲気ガスとともに
系外に取出すと、配管中の冷部に高沸点分解性物質が付
着蓄積したり凝縮したりして、たちまち管やバルブを閉
塞して円滑なる操業の妨げとなることである。The problems that arise when heat treating such objects are:
First, the inside of the processing chamber, including the objects to be treated, must already have a high-purity non-oxidizing atmosphere.Second, this thermally decomposed substance is harmful to the natural world.Thirdly, this thermally decomposed substance must be harmful to the natural world. If it remains in the processing chamber, it will impair the quality and physical properties of the product.Fourthly, it contains flammable substances and there is a risk of explosion if it is mixed with oxidizing gases.Fifthly, the system together with the atmospheric gas If taken outside, high-boiling decomposable substances will accumulate or condense in the cold parts of the piping, quickly clogging the pipes and valves and interfering with smooth operations.
上記第1の問題については、被処理物を処理室内へ装入
後、該処理室内を非酸化性雰囲気に置換する必要があり
、特に処理室内容積が大きい、あるいは被処理物が空気
等の酸化成分を含有している場合、ガスの流気による置
換では十分な雰囲気純度を確保し得ないし、所定の純度
を得るのに長大な時間を要する。そのため、処理系を真
空排気した後、所定のガスに置換する方法が、例えば特
公昭61−19911号公報等で知られているように効
率が良い。Regarding the first problem above, it is necessary to replace the inside of the processing chamber with a non-oxidizing atmosphere after the material to be processed is charged into the processing chamber. In the case of containing components, sufficient atmospheric purity cannot be ensured by replacement with gas flow, and it takes a long time to obtain a predetermined purity. Therefore, a method of evacuating the processing system and then replacing it with a predetermined gas is efficient, as is known, for example, from Japanese Patent Publication No. 19911/1983.
第2以降の問題は、熱分解物質の処理の仕方に伴う問題
でおって、−般的には酸素の存在下で加熱分解処理する
か、コールドトラップもしくは水中バブリングしてター
ルとして回収する。The second and subsequent problems relate to how the pyrolyzed material is treated, typically by thermal decomposition treatment in the presence of oxygen, or by cold trapping or water bubbling to recover it as tar.
先ず、加熱分解する従来の方法においては、例えば特公
昭50−40172号公報によって公知の如く、発生し
た熱分解物質を200’C以下に冷却することなく熱処
理装置外へ導き、その後酸素存在下で加熱分解すること
が、肝要でおる。そのため、例えば特開昭54−264
3号公報、あるいは特開昭57−31139号公報に示
される如く、熱分解物質を熱処理装置外へ導出後直ちに
空気もしくは酸素を含むガスを添加して焼却せしめるの
が一般的である。これらの従来例は、もともと酸化性雰
囲気下の熱処理であっても可燃性熱分解物質の発生が少
量で爆発限界以下であるか、非酸化性の雰囲気でおって
も同様な理由から熱分解時の酸素添加によって爆発する
可能性がない場合に限定されるはずである。First, in the conventional method of thermal decomposition, as is known, for example, from Japanese Patent Publication No. 50-40172, the generated thermal decomposition material is led out of the heat treatment apparatus without being cooled to below 200'C, and then it is decomposed in the presence of oxygen. It is important to thermally decompose it. Therefore, for example, JP-A-54-264
As shown in Publication No. 3 or Japanese Unexamined Patent Publication No. 57-31139, it is common to incinerate the thermally decomposed material by adding air or a gas containing oxygen immediately after it is taken out of the heat treatment apparatus. In these conventional methods, even if the heat treatment is performed in an oxidizing atmosphere, the generation of flammable thermal decomposition substances is small and is below the explosion limit, or even if the heat treatment is performed in a non-oxidizing atmosphere, the generation of flammable thermal decomposition substances during thermal decomposition is insufficient for the same reason. This should be limited to cases where there is no possibility of explosion due to the addition of oxygen.
(発明が解決しようとする問題点)
すなわち、本発明の如き多量の可燃性熱分解物質を発生
する被処理物を非酸化性雰囲気下で熱処理する装置にお
いては、上述の如き従来例では以下に述べるような不都
合を生ずる。(Problems to be Solved by the Invention) In other words, in the apparatus of the present invention for heat-treating a workpiece that generates a large amount of combustible thermal decomposition substances in a non-oxidizing atmosphere, the conventional example described above has the following problems. This will cause the inconvenience described below.
イ)発生した可燃性ガスを含む非酸化性雰囲気系(以下
、可燃性ガス雰囲気系と記す)と排ガス処理部の酸化性
雰囲気系を分離する手段がないので、運転条件や、操作
ミス、誤動作、故障等のトラブルにより、雨雲囲気系の
圧力関係が逆転して酸化性ガスが可燃性雰囲気系へ逆流
し、爆発限界を越える混合気を作ったり、酸化性ガスが
製品に損傷を与えたりする可能性があること。b) Since there is no means to separate the non-oxidizing atmosphere system containing the generated flammable gas (hereinafter referred to as the combustible gas atmosphere system) and the oxidizing atmosphere system of the exhaust gas treatment section, operating conditions, operational errors, and malfunctions may be affected. Due to problems such as malfunctions, the pressure relationship in the rain cloud enclosure system may reverse, causing oxidizing gas to flow back into the flammable atmosphere system, creating a mixture that exceeds the explosive limit, or causing damage to the product. That there is a possibility.
口)処理温度の変化に伴う発生分解ガス量、および供給
ガスの熱膨張の急激な変化に対して対処できるように構
成されていないので、処理圧を一定の範囲に維持するに
は限界があること、処理条件によっては処理室の耐圧以
上にガス圧が上昇する危険性があること。(1) It is not configured to handle rapid changes in the amount of decomposed gas generated due to changes in processing temperature and in the thermal expansion of the supplied gas, so there is a limit to maintaining the processing pressure within a certain range. Also, depending on the processing conditions, there is a risk that the gas pressure may rise beyond the withstand pressure of the processing chamber.
ハ〉処理温度を昇降温したり、停機する際に発生分解ガ
ス濃度が環境上安全とされる基準値以下の低濃度になっ
た場合でも、常に排気ガスが排ガス焼却装置を通過する
ため、排ガス焼却装置を運転する必要があること。運転
しないと低濃度の熱分解物質が排気系内通路の冷部にお
いて付着蓄積したり、凝縮したりすることになる。C) Even if the concentration of generated decomposed gas drops below the environmentally safe standard value when the processing temperature is raised or lowered or the plant is shut down, the exhaust gas always passes through the exhaust gas incinerator, so the exhaust gas It is necessary to operate the incinerator. If the engine is not operated, low concentrations of pyrolyzed substances will accumulate or condense in the cold parts of the exhaust system passages.
本発明の目的は、上記したような点に鑑み、従来の可燃
性熱分解物質を含有する被処理物を非酸化性雰囲気にし
て熱処理する装置の欠点を改善し、特に、前記の可燃性
分解物質の発生が多量であっても、安全に操業性良く処
理し得る熱処理装置を提供せんとするものである。In view of the above-mentioned points, an object of the present invention is to improve the shortcomings of conventional apparatuses for heat-treating objects to be treated containing flammable pyrolyzed substances in a non-oxidizing atmosphere. It is an object of the present invention to provide a heat treatment apparatus that can safely and efficiently process substances even if a large amount of substances are generated.
(問題点を解決するための手段)
上記目的を達成する本発明の熱処理装置は、次の構成か
らなる。(Means for Solving the Problems) A heat treatment apparatus of the present invention that achieves the above object has the following configuration.
すなわち、熱処理時に可燃性熱分解物質を発生する被処
理物を非酸化性雰囲気にて熱処理する装置において、処
理室に、開閉手段を介して非酸化性ガスの供給孔を設け
るとともに、前記処理室と接続された排気管に、処理室
側から順に、耐熱開閉手段、空気の導入孔を有する排ガ
ス焼却装置を配置せしめ、かつ前記処理室と耐熱開閉手
段との間に排気装置を開閉弁を介して接続して、前記耐
熱開閉手段で可燃性ガス雰囲気系と酸化雰囲気系とを分
離せしめたことを特徴とする熱処理装置である。That is, in an apparatus for heat-treating a workpiece that generates combustible thermal decomposition substances during heat treatment in a non-oxidizing atmosphere, the processing chamber is provided with a supply hole for non-oxidizing gas via an opening/closing means, and A heat-resistant opening/closing means and an exhaust gas incineration device having an air introduction hole are arranged in order from the processing chamber side in the exhaust pipe connected to the processing chamber, and an opening/closing valve of the exhaust device is interposed between the processing chamber and the heat-resistant opening/closing means. The heat treatment apparatus is characterized in that the combustible gas atmosphere system and the oxidizing atmosphere system are separated by the heat-resistant opening/closing means.
本発明の更に好ましい態様例は、以下の説明に従って順
次明らかになる。Further preferable embodiments of the present invention will become apparent in accordance with the following description.
以下、本発明に係る熱処理装置を図面に基づいてさらに
詳しく説明する。Hereinafter, the heat treatment apparatus according to the present invention will be explained in more detail based on the drawings.
第1図は、本発明に係る熱処理装置の好ましい一実施態
様例を示す概略模式図である。FIG. 1 is a schematic diagram showing a preferred embodiment of a heat treatment apparatus according to the present invention.
第1図において、可燃性物質を含有する被処理物4を加
熱処理する加熱炉1は、基本的には処理室5とヒータ6
.6′で構成され、開閉手段9゜10、絞り弁13,1
4を介して非酸化性ガス、例えば、N2、A、、H8,
あるいはこれらの混合気等の供給孔7が設けられている
。また、図示してはいないが、異なる非酸化性ガスの吸
引孔を各々開閉手段を介して設け、非処理物4の性質、
処理温度等の条件により、前記開閉手段を適宜開閉する
ことにより所望の雰囲気を得ることもできる。In FIG. 1, a heating furnace 1 that heats a workpiece 4 containing a flammable substance basically includes a processing chamber 5 and a heater 6.
.. 6', opening/closing means 9°10, throttle valves 13,1
4 via a non-oxidizing gas, e.g. N2, A, , H8,
Alternatively, a supply hole 7 for supplying these mixtures or the like is provided. Although not shown, suction holes for different non-oxidizing gases are provided through opening/closing means, so that the properties of the unprocessed material 4 can be adjusted.
A desired atmosphere can also be obtained by appropriately opening and closing the opening/closing means depending on conditions such as processing temperature.
前記処理室5と接続された排気管20には、該処理室5
側から順に、耐熱開閉手段50、空気の導入孔63を有
する排ガス焼却装置3、更に場合によっては吸引ファン
74を配置せしめ、かつ前記処理室5と耐熱開閉手段5
0の間の排気管に排気装置40を開閉手段42を介して
接続して、前記耐熱開閉手段50で可燃性ガス雰囲気系
(第1図において耐熱開閉手段50より左側の系)と、
酸化性雰囲気系(第1図において耐熱開閉手段50より
右側の系)とを分離する構造となっている。The exhaust pipe 20 connected to the processing chamber 5 has a
In order from the side, a heat-resistant opening/closing means 50, an exhaust gas incineration device 3 having an air introduction hole 63, and, depending on the case, a suction fan 74 are arranged, and the processing chamber 5 and the heat-resistant opening/closing means 5
An exhaust device 40 is connected to the exhaust pipe between 0 and 0 via an opening/closing means 42, and the heat resistant opening/closing means 50 connects a flammable gas atmosphere system (the system on the left side of the heat resistant opening/closing means 50 in FIG. 1);
The structure is such that it is separated from the oxidizing atmosphere system (the system on the right side of the heat-resistant switching means 50 in FIG. 1).
ここで、前記構成において安全に操業する上で肝要なこ
とは、少なくとも可燃性ガスが発生している運転条件下
においては、可燃性ガス雰囲気圧が酸化性雰囲気圧より
高く維持されることである。Here, what is important for safe operation in the above configuration is that the flammable gas atmospheric pressure is maintained higher than the oxidizing atmospheric pressure, at least under operating conditions where flammable gas is generated. .
そのため、第1図に示す如く排ガス焼却装置3後方に吸
引ファン74を配置せしめて、酸化性ガス雰囲気圧を下
げてやるか、加熱炉1へ供給する非酸化性ガスの供給圧
を高くするか、何れかの処置を講する。Therefore, as shown in FIG. 1, a suction fan 74 is placed behind the exhaust gas incinerator 3 to lower the oxidizing gas atmosphere pressure, or the supply pressure of the non-oxidizing gas supplied to the heating furnace 1 is increased. , take any action.
また、前述したように、前記可燃性ガス雰囲気系は事前
に非酸化性ガスに置換する必要がおるので、排気装置4
0や前記開閉手段9,10.42゜50は、必要とする
雰囲気ガス純度に応じて選択する。−般的には、排気装
置40として真空ポンプを用い、前記開閉手段9.10
,42.50及び処理室5は、必要な耐真空性を有する
ものが好ましい。Furthermore, as described above, since it is necessary to replace the flammable gas atmosphere system with a non-oxidizing gas in advance, the exhaust system 4
0 and the opening/closing means 9 and 10.42° 50 are selected depending on the required atmospheric gas purity. - Generally, a vacuum pump is used as the exhaust device 40, and the opening/closing means 9.10
, 42, 50 and the processing chamber 5 preferably have the necessary vacuum resistance.
次に、排ガス焼却装置3は、直燃式あるいは触媒式の何
れでも可能であるが、第1図においては触媒式の例で示
しである。燃焼に必要な空気は、空気導入孔63からダ
ンパ62で風量調整され、エアヒータ61で予熱された
後、焼却チャンバー64へ導入される。該チャンバー6
4内で排気管20から導入された熱分解物質を含む排気
ガスと混合され、触媒60にて焼却処理される。エアヒ
ータ61は触媒60の活性化温度を得るためのものであ
る。Next, although the exhaust gas incineration device 3 can be either a direct combustion type or a catalytic type, a catalytic type is shown as an example in FIG. Air necessary for combustion is introduced into the incineration chamber 64 through the air introduction hole 63 after its volume is adjusted by the damper 62 and preheated by the air heater 61 . The chamber 6
4, the mixture is mixed with exhaust gas containing thermally decomposed substances introduced from the exhaust pipe 20, and is incinerated at the catalyst 60. The air heater 61 is for obtaining the activation temperature of the catalyst 60.
焼却処理された排気ガスは排気管20を通ってダンパ7
3で流量調節され、場合によっては吸引ファン74によ
り大気に放出される。その際、排気温度が高くて吸引フ
ァン74が耐熱上問題となる場合は、水冷したり、第1
図に示す如く空気導入孔72からダンパ71を介して大
気を吸引したりして排気温度を下げてやるのが有効であ
る。The incinerated exhaust gas passes through the exhaust pipe 20 to the damper 7.
3, the flow rate is adjusted, and depending on the case, it is discharged to the atmosphere by a suction fan 74. At that time, if the exhaust temperature is high and the suction fan 74 has a heat resistance problem, it may be water-cooled or the
As shown in the figure, it is effective to lower the exhaust temperature by sucking atmospheric air through an air introduction hole 72 via a damper 71.
上記熱処理装置の実際の作動を以下に説明する。The actual operation of the above heat treatment apparatus will be explained below.
先ず、被処理物4を処理室5内へ収納した後、開閉手段
9,10、耐熱開閉手段50を閉じ、排気弁42を開け
て排気装置40で処理室5内が所定の真空度になるまで
排気する。First, after storing the object to be processed 4 into the processing chamber 5, the opening/closing means 9, 10 and the heat-resistant opening/closing means 50 are closed, the exhaust valve 42 is opened, and the inside of the processing chamber 5 is brought to a predetermined degree of vacuum by the exhaust device 40. exhaust to.
次に、排気弁42も閉じた上で非酸化性ガス供給孔7か
ら開閉手段9を開いて非酸化性ガスを処理室5内がほぼ
常圧になるまで供給する。その時、処理室5内の酸素濃
度が、被処理物4を加熱処理する際、酸化反応して損傷
を与えないレベルとするため、必要なら上記真空置換の
操作を酸素濃度が所定の濃度以下となるまで繰返す。そ
の後、非酸化性ガス供給孔7から定常的に非酸化性ガス
を供給しつつ、所定の昇温パターンに従ってヒータ6で
被処理物4を加熱処理する。供給ガス量は絞り弁13で
調節できる。Next, the exhaust valve 42 is also closed, and the opening/closing means 9 is opened from the non-oxidizing gas supply hole 7 to supply non-oxidizing gas until the inside of the processing chamber 5 reaches approximately normal pressure. At that time, in order to keep the oxygen concentration in the processing chamber 5 at a level that will not cause damage due to oxidation reaction when the object to be processed 4 is heat-treated, if necessary, the above-mentioned vacuum displacement operation is performed to keep the oxygen concentration below a predetermined concentration. Repeat until. Thereafter, while non-oxidizing gas is constantly supplied from the non-oxidizing gas supply hole 7, the object 4 to be processed is heated by the heater 6 according to a predetermined temperature increase pattern. The amount of gas supplied can be adjusted with a throttle valve 13.
被処理物4から熱分解して発生した可燃性ガスは、非酸
化性ガスとともに排気管20から耐熱開閉手段50を経
て、排ガス焼却装置3へ至り、ここで可燃成分を焼却し
た後、吸引ファン74から大気に放出される。The combustible gas generated by thermal decomposition from the object to be treated 4 passes through the exhaust pipe 20 and the heat-resistant opening/closing means 50 together with the non-oxidizing gas, and reaches the exhaust gas incinerator 3, where the combustible components are incinerated, and then the suction fan 74 to the atmosphere.
ここで、熱分解ガスが前記排気管20から導出される際
、配管中の冷部に高沸点分解性物質が固体として付着蓄
積したり凝縮したりする場合は、保温手段あるいはヒー
タ等の加熱手段21で排気管20の処理室5から排ガス
焼却装置3までの間、及び耐熱開閉手段50、絞り弁5
1を覆って、これを防止することができる。Here, when the pyrolysis gas is led out from the exhaust pipe 20, if high boiling point decomposable substances adhere and accumulate as solids or condense in the cold part of the pipe, heat retention means or heating means such as a heater may be used. 21 between the processing chamber 5 and the exhaust gas incinerator 3 of the exhaust pipe 20, the heat-resistant opening/closing means 50, and the throttle valve 5.
1 can be covered to prevent this.
保温もしくは加熱する温度は、前記熱分解物質の沸点以
上とすることが肝要であって、通常200℃以上とする
のが好ましい。It is important that the temperature at which the heat is kept or heated is higher than the boiling point of the thermally decomposed substance, and is usually preferably 200° C. or higher.
あるいはまた、前記高沸点分解物質が冷却されると凝縮
してドレン化する場合は、第2図に示す態様例の様に構
成することもできる。Alternatively, if the high-boiling decomposition material is to be condensed and drained when cooled, it may be configured as in the embodiment shown in FIG. 2.
第2図は、本発明に係る熱処理装置の他の好ましい一実
施態様例を示す概略模式図でおる。処理室5と排気装置
への接続管41が接続する間の排気管20の途中に、冷
却チャンバー30とドレン回収容器32から成る排ガス
冷却装置2を具備せしめたものであって、熱分解物質の
一部の凝縮したドレンは底部の当該容器32へ溜めて、
バルブ34を開いて回収できる。本図で示す構成では、
耐熱開閉手段50へ至る排ガス温度を、当該冷却装置2
により冷却できるので、該耐熱開閉手段50として耐熱
真空弁を使用できる利点がある。そのため、第2図で示
した構成においては、同時に、処理室5、開閉手段9.
10,42.50を耐真空性を有する構造のもので構成
せしめるのが処理ガスの純度の点から好ましい。この場
合、排ガス冷却装置2は、排ガス温度を耐真空性を有す
る耐熱開閉手段50の耐熱温度以下にまで冷却すること
が目的であって、熱分解物質をドレン化することが目的
ではない。その他の構成は第1図を用いて説明した構成
と同一で良い。FIG. 2 is a schematic diagram showing another preferred embodiment of the heat treatment apparatus according to the present invention. An exhaust gas cooling device 2 consisting of a cooling chamber 30 and a drain recovery container 32 is provided in the middle of the exhaust pipe 20 between the processing chamber 5 and the connection pipe 41 to the exhaust device, and the exhaust gas cooling device 2 is provided with a cooling chamber 30 and a drain recovery container 32. A part of the condensed drain is collected in the container 32 at the bottom,
It can be recovered by opening the valve 34. In the configuration shown in this figure,
The exhaust gas temperature reaching the heat-resistant opening/closing means 50 is controlled by the cooling device 2.
Since the heat-resistant opening/closing means 50 can be cooled by cooling, there is an advantage that a heat-resistant vacuum valve can be used as the heat-resistant opening/closing means 50. Therefore, in the configuration shown in FIG. 2, the processing chamber 5, the opening/closing means 9.
From the viewpoint of the purity of the processing gas, it is preferable to configure the parts 10, 42, and 50 with a vacuum-resistant structure. In this case, the purpose of the exhaust gas cooling device 2 is to cool the exhaust gas temperature to a temperature lower than the heat-resistant temperature of the heat-resistant opening/closing means 50 having vacuum resistance, and is not to convert the thermal decomposition substances into drains. The other configuration may be the same as the configuration explained using FIG. 1.
次に、制御系について例として第2図を用いて以下に説
明する。Next, the control system will be explained below using FIG. 2 as an example.
加熱炉1の温度制御は、処理室5内の温度センサ、例え
ば熱電対あるいは放射温度計からの信号で、プログラム
温調計によって、ヒータ6を所定のヒートパターンで昇
降温できるように構成する。The temperature of the heating furnace 1 is controlled by a signal from a temperature sensor in the processing chamber 5, such as a thermocouple or a radiation thermometer, and a programmed temperature controller is configured to raise and lower the temperature of the heater 6 in a predetermined heat pattern.
処理室5を含む非酸化性ガス雰囲気系の圧力制御は、処
理圧の下限および上限を検知するスイッチ45.46と
、非酸化性ガス供給孔7の大流量供給用開閉弁9及び小
流量供給用開閉弁10をそれぞれ有する分岐配管とによ
って、前記上限スイッチ46の設定圧以下で、該上限ス
イッチ46の検知信号により、該大流量供給用開閉弁9
が開いて非酸化性ガスを供給する構成とする。Pressure control of the non-oxidizing gas atmosphere system including the processing chamber 5 is carried out by switches 45 and 46 that detect the lower and upper limits of the processing pressure, the on-off valve 9 for large flow rate supply of the non-oxidizing gas supply hole 7, and the small flow rate supply. When the pressure is lower than the set pressure of the upper limit switch 46, the detection signal of the upper limit switch 46 causes the large flow rate supply on-off valve 9 to be opened.
is opened to supply non-oxidizing gas.
絞り弁13.14と、流量計15.16を、例えば第2
図に示す如く構成した上で、定常運転時の処理圧を、上
限スイッチ46と下限スイッチ45の設定圧で検知し、
絞り弁13,14.51を調節することによって、非酸
化性ガスを定常時には殆んど小流薯供給用開閉弁10か
らの流量で供給し、処理圧が下限に低下した時のみ大流
量供給用開閉弁9で供給するのが好ましい。The throttle valve 13.14 and the flow meter 15.16 are connected, for example to the second
With the configuration as shown in the figure, the processing pressure during steady operation is detected by the set pressure of the upper limit switch 46 and the lower limit switch 45,
By adjusting the throttle valves 13, 14.51, non-oxidizing gas is supplied at a flow rate from the small flow valve 10 during steady state, and a large flow flow is supplied only when the processing pressure drops to the lower limit. It is preferable to supply the water through the on-off valve 9.
該処理圧が何らかのトラブル、例えば供給ガスの停止等
によって下限スイッチ45の設定圧より低下した時は、
ガス圧の前記下限スイッチ45の設定圧より更に低くか
つ酸化性雰囲気圧より高い設定圧を有する処理圧下限警
告スイッチ47の検知信号により、処理室ヒータ6の運
転をホールドもしくは停止するとともに、耐熱真空開閉
手段50を閉じて、排ガス焼却装置3から可燃性ガス雰
囲気系へ空気が逆流するのを防止するよう構成する。同
時に、供給孔7とは別のガス源を有する非常用供給孔1
1から定常時には閉状態の開閉弁12が前記スイッチ4
7の信号により開いて非酸化性ガスを導入せしめて、可
燃性ガス雰囲気系の圧力を回復させ、大気の処理室5へ
の流入を防止する。When the processing pressure drops below the set pressure of the lower limit switch 45 due to some trouble, such as a stoppage of the supply gas,
In response to a detection signal from the processing pressure lower limit warning switch 47, which has a set pressure lower than the set pressure of the gas pressure lower limit switch 45 and higher than the oxidizing atmospheric pressure, the operation of the processing chamber heater 6 is held or stopped, and the heat-resistant vacuum The opening/closing means 50 is closed to prevent air from flowing back from the exhaust gas incineration device 3 to the combustible gas atmosphere system. At the same time, the emergency supply hole 1 has a gas source separate from the supply hole 7.
1, the on-off valve 12, which is in a closed state during normal operation, is connected to the switch 4.
It opens in response to the signal No. 7 to introduce non-oxidizing gas, restores the pressure of the combustible gas atmosphere system, and prevents atmospheric air from flowing into the processing chamber 5.
処理圧が下限警告スイッチ47の設定圧にまで回復すれ
ば元の定常運転状態に復帰する。逆に何らかの異常で処
理圧が前記上限スイッチの設定圧より更に上昇した時の
ため、リリーフ弁44で可燃性ガス雰囲気系の耐圧力以
下に維持される。When the processing pressure recovers to the set pressure of the lower limit warning switch 47, the original steady operating state is restored. On the other hand, in case the processing pressure rises further than the set pressure of the upper limit switch due to some abnormality, the relief valve 44 maintains the processing pressure below the withstand pressure of the flammable gas atmosphere system.
上記開閉弁9,10,12,42.50は、電磁式もし
くは圧空式などで構成するのが好ましい。It is preferable that the on-off valves 9, 10, 12, 42, 50 are of an electromagnetic type or a pneumatic type.
排ガス焼却装置3は、熱分解ガスがある温度以上で発生
を開始し、ある温度以上では発生しなくなるというよう
なことが予め判っている場合には、熱処理室ヒータ6.
6′用の温調計の信号により、おる設定値以上の温度に
なってから運転を開始し、発生終了後停止するよう構成
するのが良い。もちろん運転中は触媒層60出口でのガ
ス温度を検知しつつ、予熱ヒータ61の温度制御を行な
い、所定の触媒活性化温度に維持できるように構成する
のが望ましい。If it is known in advance that the exhaust gas incineration device 3 will start generating pyrolysis gas at a certain temperature or higher and will stop generating at a certain temperature or higher, the exhaust gas incineration device 3 will turn on the heat treatment chamber heater 6.
It is preferable to start operation when the temperature reaches a set value or higher based on a signal from the temperature controller for 6', and to stop the operation after the temperature has been generated. Of course, during operation, it is desirable to control the temperature of the preheater 61 while detecting the gas temperature at the outlet of the catalyst layer 60, so as to be able to maintain it at a predetermined catalyst activation temperature.
以上説明した制御系の構成は第1図を用いて説明したー
実施態様例においても有効である。The configuration of the control system described above is also effective in the embodiment example described using FIG.
第3図および第4図は、本発明に係る熱処理装置の更に
好ましい一実施態様例を示す概略模式図でおる。3 and 4 are schematic diagrams showing a more preferred embodiment of the heat treatment apparatus according to the present invention.
第1図および第2図に示した構成においては、排気側の
流量は、絞り弁51で一義的に決ってしまい、非酸化性
ガスを少流量供給弁10で供給している場合でも急激な
昇温による熱膨張とか分解ガス発生速度が大き過ぎて、
排気速度が追従できない恐れがある。In the configuration shown in FIGS. 1 and 2, the flow rate on the exhaust side is uniquely determined by the throttle valve 51, and even when non-oxidizing gas is supplied by the small flow rate supply valve 10, the flow rate on the exhaust side is determined by the throttle valve 51. Thermal expansion due to temperature rise or decomposition gas generation rate is too high,
There is a possibility that the exhaust speed will not be able to follow.
また、排ガス焼却装置3で可燃性ガス成分を焼却する際
発生した熱を、そのまま排気ガスとともに大気放出して
いる。Further, the heat generated when incinerating combustible gas components in the exhaust gas incinerator 3 is released into the atmosphere together with the exhaust gas.
そのため、第1図に対応する構成として第3図、第2図
に対応する構成として第4図に示す如く、耐熱開閉手段
50直後の主排気管を分岐せしめて、定常排気弁56と
絞り弁57を有する配管と、小母排気絞り弁58を有す
る配管と、バイパス排気弁55を有する配管とで構成す
る。更に、排ガス焼却装置3の直前の排気管に耐熱弁5
4を設け、耐熱開閉手段50との間の排気管20に直接
排気孔53を耐熱開閉弁52を介して構成する。Therefore, as shown in FIG. 3 as a configuration corresponding to FIG. 1, and as shown in FIG. 4 as a configuration corresponding to FIG. 57, a piping having a small exhaust throttle valve 58, and a piping having a bypass exhaust valve 55. Furthermore, a heat-resistant valve 5 is installed in the exhaust pipe just before the exhaust gas incineration device 3.
4 is provided, and a direct exhaust hole 53 is formed in the exhaust pipe 20 between the heat resistant switching means 50 and the heat resistant switching valve 52.
上記の様な構成を成すことによって、排気速度の追従範
囲が広がり、処理圧が非酸化性ガス雰囲−気系の耐圧力
以上に上昇することがない。また逆に、熱分解ガスの発
生量が環境上問題にならない程微量である場合とか降温
中には、処理圧を大気圧より余り高くすることなく、排
気側は少流量排気絞り弁58のみを開いて直接排気弁5
2を開いて直接排気するのが省ガス・省エネ上好ましい
。By configuring as described above, the follow-up range of the exhaust speed is widened, and the processing pressure does not rise above the withstand pressure of the non-oxidizing gas atmosphere system. Conversely, when the amount of pyrolysis gas generated is so small that it does not pose an environmental problem, or when the temperature is falling, the process pressure should not be made much higher than atmospheric pressure, and only the small-flow exhaust throttle valve 58 should be used on the exhaust side. Open direct exhaust valve 5
It is preferable to open 2 and exhaust the air directly from the viewpoint of gas and energy saving.
上記構成における好ましい処理圧制御方法の一例を第5
図に示す。An example of a preferable processing pressure control method in the above configuration is described in the fifth section.
As shown in the figure.
すなわち、排気側の弁の内、小量排気絞り弁弓8は常時
開状態にあり、第5図に示した処理圧制御範囲P1、P
2の間では、前記絞り弁58と定常排気弁56とで排気
するよう予め絞り弁57゜58の絞り具合を調節してお
く。熱分解ガス発生量の変化等により炉圧がP3を越え
た時は、非酸化性ガスの小流量供給弁10が閉じると共
に、排気側もバイパス排気弁55が開く制御系を構成す
る。逆に炉圧がP2より低下した時は、供給側の大流量
弁9を開いて圧力回復せしる。少流量供給弁10はP2
以下で開いたままでもよいし、閉じてもよい。それでも
炉圧が低下する時は、ガスの供給が停止した時とか、ガ
スもれが発生した時とか、何らかの異常を生じた時と考
えられるので、Plまで低下すると非酸化性ガスの定常
時供給孔7とは別のガス源からの供給孔11の配管に配
置された非常用供給弁12が開いてガス供給を行なうと
同時に、酸化雰囲気系からの酸素を含むガスの逆流を遮
断するため、耐熱開閉手段50、定常排気弁56を閉じ
る制御系を構成するものである。That is, among the valves on the exhaust side, the small exhaust throttle valve arch 8 is always open, and the processing pressure control ranges P1 and P shown in FIG.
2, the degree of throttling of the throttle valves 57 and 58 is adjusted in advance so that the exhaust is exhausted by the throttle valve 58 and the steady exhaust valve 56. When the furnace pressure exceeds P3 due to a change in the amount of pyrolysis gas generated, etc., a control system is constructed in which the small flow rate supply valve 10 for non-oxidizing gas is closed and the bypass exhaust valve 55 on the exhaust side is opened. Conversely, when the furnace pressure drops below P2, the large flow valve 9 on the supply side is opened to restore the pressure. The small flow supply valve 10 is P2
You can leave it open or close it below. If the furnace pressure still decreases, it is likely that the gas supply has stopped, a gas leak has occurred, or some other abnormality has occurred, so if it decreases to Pl, the steady supply of non-oxidizing gas In order to simultaneously open the emergency supply valve 12 disposed in the piping of the supply hole 11 from a gas source different from the hole 7 to supply gas, and to block the backflow of gas containing oxygen from the oxidizing atmosphere system. It constitutes a control system that closes the heat-resistant opening/closing means 50 and the steady exhaust valve 56.
定常排気弁56はP2で閉じるように構成しても良い。The steady state exhaust valve 56 may be configured to close at P2.
(図中に破線で示す)
排ガス焼却装置3を作動させている時は焼却導入弁54
を、直接排気している時は直接排気弁52を、図のよう
に制御させる。(Indicated by a broken line in the figure) When the exhaust gas incinerator 3 is operating, the incineration introduction valve 54
When directly exhausting the air, the direct exhaust valve 52 is controlled as shown in the figure.
また、第3図および第4図に示したように、排ガス焼却
装置3で発生した燃焼熱をそのまま大気放出せずに、焼
却に必要な空気を導入孔63から焼却チャンバ64内へ
直接導入し、触媒層60での燃焼熱で予熱できる構成と
したり、熱交換器を入れて導入エアを予熱すれば、排熱
エネルギを有効に利用できる。更にまた、空気導入孔6
3にオリフィス65を設け、差圧発信器66でオリフィ
ス65前後の差圧を検知し、該差圧が設定値以下になっ
た時は、吸引ファン74の停止とか触媒層60の目詰ま
り等のトラブルが予想されるので、差圧発信器66の信
号で焼却装置のヒータ61を停止するとともに、焼却導
入弁54を閉じて直接排気弁52を開いて直接排気に切
り替えるのが、排ガス焼却装置の保護上好ましい。Furthermore, as shown in FIGS. 3 and 4, the air necessary for incineration is directly introduced into the incineration chamber 64 from the introduction hole 63, without releasing the combustion heat generated in the exhaust gas incinerator 3 into the atmosphere. If the structure is such that it can be preheated using the combustion heat in the catalyst layer 60, or if a heat exchanger is installed to preheat the introduced air, exhaust heat energy can be used effectively. Furthermore, the air introduction hole 6
3 is provided with an orifice 65, and a differential pressure transmitter 66 detects the differential pressure before and after the orifice 65. When the differential pressure falls below a set value, the suction fan 74 is stopped, the catalyst layer 60 is clogged, etc. Since trouble is expected, it is best to stop the heater 61 of the incinerator using the signal from the differential pressure transmitter 66, close the incineration introduction valve 54, and open the direct exhaust valve 52 to switch to direct exhaust. Preferable for protection.
(効 果)
以上説明したように、本発明に係る熱処理装置は、特に
可燃性熱分解物質を多量に含有する被処理物を非酸化性
雰囲気にて熱処理する上で有効な熱処理装置であって、
以下に述べる効果を奏する。(Effects) As explained above, the heat treatment apparatus according to the present invention is a heat treatment apparatus that is particularly effective in heat treating a workpiece containing a large amount of combustible thermal decomposition substances in a non-oxidizing atmosphere. ,
This produces the effects described below.
すなわち、処理室を含む可燃性ガス雰囲気系と排ガス焼
却装置を含む酸化性雰囲気系とを耐熱量、閉手段で分離
して構成したので、運転条件や操作ミス、誤動作、故障
等のトラブルにより、可燃性分解ガスと酸化性雰囲気が
接触して爆発限界を越える混合気を作ったり、製品に損
傷を与えたりすることを、前記耐熱開閉手段を閉じるこ
とによって未然に防止できる。In other words, the combustible gas atmosphere system including the processing chamber and the oxidizing atmosphere system including the exhaust gas incinerator are separated by heat resistance and closure means, so that problems such as operating conditions, operational errors, malfunctions, breakdowns, etc. By closing the heat-resistant opening/closing means, it is possible to prevent the combustible decomposed gas and the oxidizing atmosphere from coming into contact with each other, creating a mixture that exceeds the explosion limit, or damaging the product.
また、前記処理室から排ガス焼却装置に至るまでの排気
管に、熱分解物質の沸点以上の温度に維持し得る保温手
段もしくは加熱手段を具備せしめたので、該排気管途中
の冷却で高沸点分解性物質が付着蓄積したり凝縮したり
して管やバルブを閉塞させることがない。In addition, since the exhaust pipe from the processing chamber to the exhaust gas incineration device is equipped with heat retention means or heating means capable of maintaining the temperature above the boiling point of the pyrolyzed substance, high boiling point decomposition can be achieved by cooling the exhaust pipe midway. No harmful substances will accumulate or condense and block pipes and valves.
また、前記高沸点分解性物質が冷却されると凝縮してド
レン化する場合は、逆に排気管の排ガス焼却装置に至る
までの経路途中にドレン回収容器を有する排ガス冷却装
置を具備せしめるので、−部の熱分解物質をドレンとし
て回収でき、同様に管やバルブを閉塞させることがない
。更にまた、この場合は前記耐熱開閉手段へ至る排ガス
が冷却されているので、該開閉手段として耐熱真空開閉
弁が使用可能となり、前記処理室を含む可燃性ガス雰囲
気系全体を耐真空構造で構成するとともに、排気装置と
して真空排気装置を用いることによって、ガス置換後に
より高純度の非酸化性雰囲気を得ることができる。In addition, if the high boiling point decomposable substance condenses and becomes drain when cooled, an exhaust gas cooling device having a drain collection container is provided in the middle of the route to the exhaust gas incineration device in the exhaust pipe. - The pyrolyzed substances can be recovered as drain, and similarly there is no clogging of pipes or valves. Furthermore, in this case, since the exhaust gas leading to the heat-resistant opening/closing means is cooled, a heat-resistant vacuum opening/closing valve can be used as the opening/closing means, and the entire flammable gas atmosphere system including the processing chamber is configured with a vacuum-resistant structure. At the same time, by using a vacuum evacuation device as the evacuation device, a highly purified non-oxidizing atmosphere can be obtained after gas replacement.
また、その場合、本来なら排ガス焼却装置も含む系の殆
んど全体を耐真空構造にせざるを1qないところ、前記
耐熱真空開閉手段を排気管の前述した個所へ挿入するこ
とによって、耐熱真空開閉手段の上流側のみを耐真空構
造に構成することで済む。In addition, in that case, almost the entire system including the exhaust gas incineration device would have to be vacuum-resistant, but by inserting the heat-resistant vacuum opening/closing means into the above-mentioned location of the exhaust pipe, heat-resistant vacuum opening/closing is possible. It suffices to configure only the upstream side of the means to have a vacuum-resistant structure.
更にまた、非酸化性ガス供給孔を大流量弁と小流量弁と
に分岐し、各々非酸化性ガス圧力の下限および上限スイ
ッチで検知してその信号で開閉するように構成したので
、処理温度の変化に伴う発生分解ガス量および供給ガス
の熱膨張の急激な変化に対して、高級な制御手段を用い
ることなく、安全に処理圧の制御ができる上、省ガス・
省エネ上も有効である。Furthermore, the non-oxidizing gas supply hole is branched into a large flow valve and a small flow valve, each of which is configured to be detected by a lower limit and upper limit switch of the non-oxidizing gas pressure and opened/closed by the signal, so that the processing temperature can be controlled. In response to rapid changes in the amount of decomposed gas generated and the thermal expansion of the supplied gas due to changes in
It is also effective in terms of energy saving.
更にまた、焼却装置の直前に耐熱弁を設け、直接排気孔
を設けて、不要な場合、熱分解ガスが焼却炉を通過する
ことなく排出できるように構成したので、熱分解物質の
凝縮物で焼却装置内を汚すことがないし、エネルギの節
約にもなる。Furthermore, a heat-resistant valve was installed just before the incinerator, and a direct exhaust hole was installed so that the pyrolysis gas could be discharged without passing through the incinerator when it was not needed. It does not pollute the inside of the incinerator and also saves energy.
以上、本装置を用いることによって、有害な可燃性熱分
解物質を多量に含有する被処理物を、非酸化性雰囲気に
て安全に効率良く熱処理可能となった。As described above, by using the present apparatus, it has become possible to safely and efficiently heat treat objects containing a large amount of harmful combustible thermal decomposition substances in a non-oxidizing atmosphere.
第1図は、′本発明に係る一実施態様例を示す概略模式
図、第2図は、本発明に係る他の一実施態様例を示す概
略模式図である。第3図および第4図は、それぞれ第1
図、第2図に対応する本発明に係る他の好ましい一実施
態様例を示す概略模式図である。第5図は、第3図およ
び第4図に示される装置の処理圧制御方法の一例を示す
各要素の作動図である。
図面の簡単な説明
1:加熱炉
2:排ガス冷却装置
3:排ガス焼却装置
4:被処理物
5:処理室
6:ヒータ
7:非酸化性ガス供給孔
11:非常用ガス供給孔
13.14,57,58:絞り弁
15.16:流量計
20:排気管
30:冷却チャンバー
31:冷却パイプ
32:ドレン回収容器
33:ドレン復き
34:バルブ
40:排気装置
41:配管
42:開閉弁
43:排気孔
60:触媒層
61:エアヒータ
62.71.73:ダンバー
63.72:空気導入孔
64:チャンバー
65ニオリフイス
66:差圧発信器
74:吸引ファンFIG. 1 is a schematic diagram showing one embodiment of the present invention, and FIG. 2 is a schematic diagram showing another embodiment of the present invention. Figures 3 and 4 are the first
FIG. 3 is a schematic diagram showing another preferred embodiment of the present invention corresponding to FIGS. FIG. 5 is an operational diagram of each element showing an example of a processing pressure control method for the apparatus shown in FIGS. 3 and 4. FIG. Brief description of the drawings 1: Heating furnace 2: Exhaust gas cooling device 3: Exhaust gas incinerator 4: Processing object 5: Processing chamber 6: Heater 7: Non-oxidizing gas supply hole 11: Emergency gas supply hole 13.14, 57, 58: Throttle valve 15.16: Flow meter 20: Exhaust pipe 30: Cooling chamber 31: Cooling pipe 32: Drain collection container 33: Drain return 34: Valve 40: Exhaust device 41: Piping 42: Opening/closing valve 43: Exhaust hole 60: Catalyst layer 61: Air heater 62.71.73: Damper 63.72: Air introduction hole 64: Chamber 65 Niorifice 66: Differential pressure transmitter 74: Suction fan
Claims (5)
を非酸化性雰囲気にて熱処理する装置において、処理室
に、開閉手段を介して非酸化性ガスの供給孔を設けると
ともに、前記処理室と接続された排気管に、処理室側か
ら順に、耐熱開閉手段、空気の導入孔を有する排ガス焼
却装置を配置せしめ、かつ前記処理室と耐熱開閉手段と
の間の排気管に排気装置を開閉弁を介して接続して、前
記耐熱開閉手段で前記処理室側の可燃性ガス雰囲気系と
前記排ガス焼却装置側の酸化雰囲気系とを分離せしめた
ことを特徴とする熱処理装置。(1) In an apparatus for heat-treating a workpiece that generates flammable thermal decomposition substances during heat treatment in a non-oxidizing atmosphere, the processing chamber is provided with a supply hole for a non-oxidizing gas via an opening/closing means, and A heat-resistant opening/closing means and an exhaust gas incineration device having an air introduction hole are arranged in the exhaust pipe connected to the processing chamber in order from the processing chamber side, and an exhaust device is arranged in the exhaust pipe between the processing chamber and the heat-resistant opening/closing means. A heat treatment apparatus, characterized in that the combustible gas atmosphere system on the processing chamber side and the oxidizing atmosphere system on the exhaust gas incinerator side are separated by the heat-resistant opening/closing means, which are connected through an on-off valve.
管に、前記熱分解物質の沸点以上の温度に維持し得る保
温手段もしくは加熱手段を具備して成ることを特徴とす
る特許請求の範囲第1項記載の熱処理装置。(2) Claims characterized in that the exhaust pipe from the processing chamber to the exhaust gas incineration device is equipped with heat retention means or heating means capable of maintaining the temperature at a temperature equal to or higher than the boiling point of the pyrolyzed substance. The heat treatment apparatus according to item 1.
の開閉手段が耐真空構造であつて、前記排気装置が真空
排気装置であるとともに、前記処理室と該真空排気装置
の接続部との間の排気管途中にドレン回収容器を有する
排ガス冷却装置を具備して成ることを特徴とする特許請
求の範囲第1項記載の熱処理装置。(3) All opening/closing means constituting the processing chamber and the combustible gas atmosphere system have a vacuum-resistant structure, and the evacuation device is a vacuum evacuation device, and the connecting portion between the processing chamber and the evacuation device is 2. The heat treatment apparatus according to claim 1, further comprising an exhaust gas cooling device having a drain collection container in the middle of the exhaust pipe between the exhaust pipes.
圧の下限および上限を検知するスイッチを有するととも
に、前記非酸化性ガス供給孔が大流量供給用開閉弁を有
する配管と小流量供給用開閉弁を有する配管とに分岐さ
れて成り、前記下限スイッチの設定圧以下で、前記大流
量弁が開き、上限スイッチの設定圧以下で小流量弁が開
いて非酸化性ガスを供給する制御系を構成して成ること
を特徴とする特許請求の範囲第1項記載の熱処理装置。(4) A switch for detecting the lower and upper limits of the processing pressure is provided in the flammable gas atmosphere system including the processing chamber, and the non-oxidizing gas supply hole is equipped with a piping having an on-off valve for supplying a large flow rate and a small flow rate. The large flow valve opens when the pressure is below the set pressure of the lower limit switch, and the small flow valve opens when the pressure is below the set pressure of the upper limit switch to supply non-oxidizing gas. The heat treatment apparatus according to claim 1, characterized in that it comprises a control system.
処理圧下限スイッチの設定圧より更に低く、かつ前記酸
化性雰囲気圧より高い設定圧を有するガス圧下限警報ス
イッチを設けるとともに、前記可燃性ガス雰囲気系に開
閉弁を介して非常用非酸化性ガス供給孔を付設し、当該
下限警報スイッチの設定圧以下で、当該処理室ヒータの
運転をホールドもしくは停止せしめるとともに、前記耐
熱開閉手段が閉じ、前記非常用供給弁が開く制御系を構
成して成ることを特徴とする特許請求の範囲第4項記載
の熱処理装置。(5) A gas pressure lower limit alarm switch having a set pressure lower than the set pressure of the processing pressure lower limit switch and higher than the oxidizing atmosphere pressure is provided in the flammable gas atmosphere system including the processing chamber; An emergency non-oxidizing gas supply hole is attached to the flammable gas atmosphere system via an on-off valve, and the operation of the processing chamber heater is held or stopped below the set pressure of the lower limit alarm switch, and the heat-resistant opening/closing means 5. The heat treatment apparatus according to claim 4, further comprising a control system in which the emergency supply valve is closed and the emergency supply valve is opened.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15047286A JPH0718649B2 (en) | 1986-06-26 | 1986-06-26 | Heat treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15047286A JPH0718649B2 (en) | 1986-06-26 | 1986-06-26 | Heat treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS636384A true JPS636384A (en) | 1988-01-12 |
JPH0718649B2 JPH0718649B2 (en) | 1995-03-06 |
Family
ID=15497649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15047286A Expired - Lifetime JPH0718649B2 (en) | 1986-06-26 | 1986-06-26 | Heat treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0718649B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5330255A (en) * | 1992-11-12 | 1994-07-19 | Davidson Textron Inc. | Seat integrated inflatable neck support |
US6883828B2 (en) | 2002-02-06 | 2005-04-26 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle body structure with head protecting airbag |
JP2008231644A (en) * | 2007-03-23 | 2008-10-02 | Mitsubishi Rayon Co Ltd | Carbon fiber production apparatus and carbon fiber production method |
-
1986
- 1986-06-26 JP JP15047286A patent/JPH0718649B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5330255A (en) * | 1992-11-12 | 1994-07-19 | Davidson Textron Inc. | Seat integrated inflatable neck support |
US6883828B2 (en) | 2002-02-06 | 2005-04-26 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle body structure with head protecting airbag |
JP2008231644A (en) * | 2007-03-23 | 2008-10-02 | Mitsubishi Rayon Co Ltd | Carbon fiber production apparatus and carbon fiber production method |
Also Published As
Publication number | Publication date |
---|---|
JPH0718649B2 (en) | 1995-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4815398A (en) | Method and apparatus for detoxifying soils | |
CA1082047A (en) | Method and apparatus for treating exhaust gases from a furnace | |
JPH0549916B2 (en) | ||
CN209279172U (en) | A kind of safety-type thermal accumulating incinerator GRTO | |
CN101319789B (en) | Heat recovering device | |
CN118454401A (en) | Fixed bed zeolite adsorption and desorption and TO incineration combined type waste gas treatment system and process | |
JPS636384A (en) | Heat treatment equipment | |
CN113577975A (en) | Organic pollutant waste gas treatment method in ectopic indirect thermal desorption process | |
JP2009066494A (en) | System for making contaminated soil harmless | |
JP3310245B2 (en) | Processing device and processing method | |
JP3840208B2 (en) | Soil treatment apparatus and treatment method | |
CN214094522U (en) | RTO device for more efficiently treating halogen-containing organic waste gas | |
TW202039107A (en) | Volume reduction apparatus and method for recycling and treating volume reduction derived gas thereof capable of obtaining optimum thermal decomposition reaction efficiency to achieve better volume efficacy | |
JP4458972B2 (en) | Waste pyrolysis treatment system | |
KR200280592Y1 (en) | Regenerative thermal oxidizer with temperature control system | |
CN210305033U (en) | Soil thermal desorption clean system | |
JPS5852385A (en) | Dry distillation of oil shale and equipment therefor | |
JPS58147700A (en) | Burning machine for low level radioactive small animal | |
JP3015266B2 (en) | Waste melting equipment | |
JPH06174223A (en) | Apparatus for decomposition of ash by heating | |
JPS62282638A (en) | Automatic pressure governor for controlling furnace pressure | |
US5386080A (en) | Apparatus and methods for controlling high temperature gases | |
JP3750027B2 (en) | Ash volume reduction processing method and apparatus | |
JP2022170616A (en) | Methods and apparatuses for decomposing plastics or plastic composite materials whose safety is secured | |
JP2009066495A (en) | System for making contaminated soil harmless |