JPS6363581A - Groove shape for electron beam welding - Google Patents

Groove shape for electron beam welding

Info

Publication number
JPS6363581A
JPS6363581A JP20645986A JP20645986A JPS6363581A JP S6363581 A JPS6363581 A JP S6363581A JP 20645986 A JP20645986 A JP 20645986A JP 20645986 A JP20645986 A JP 20645986A JP S6363581 A JPS6363581 A JP S6363581A
Authority
JP
Japan
Prior art keywords
groove
electron beam
beam welding
clearance
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20645986A
Other languages
Japanese (ja)
Inventor
Shoji Suyama
須山 昇司
Yoshimichi Yoshida
吉田 好道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20645986A priority Critical patent/JPS6363581A/en
Publication of JPS6363581A publication Critical patent/JPS6363581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

PURPOSE:To detect the incomplete fusion by the nondestructive inspection by finishing the surface roughness of both sides or one side of the mating surfaces of a groove for the electron beam welding in a specific range. CONSTITUTION:The surface roughness of both sides 11a and 12a of the groove surfaces is finished roughly in the range of 25-250mum and a clearance 31 is allowed to exist in a state with the groove surfaces mated each other. Furthermore, only the groove surface 11b is finished roughly mentioned above and a clearance 32 is allowed to exist to perform the electron beam welding. At this time, a molten zone 4 contracts at the time of solidifying and the incomplete fusion zone 5 is made in a state with the surfaces press-contacted each other and projection parts of the groove surfaces finished roughly are crushed and recessed parts of the surfaces are not closely contacted and a clearance 33 is left. Accordingly, when the clearance is allowed to exist in the incomplete fusion zone, the detection by the nondestructive inspection such as the radiographic test, the ultrasonic examination, etc., is facilitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は9重・中工業製品の生産手段として広く適用さ
れる金属材料の電子ビーム溶接用開先形状に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a groove shape for electron beam welding of metal materials, which is widely applied as a means of producing heavy and medium industrial products.

〔従来の技術〕[Conventional technology]

電子ビーム溶接は、X空中で高速熱電子を溶接対象部に
衝突させて溶解する。したがって。
In electron beam welding, high-speed thermoelectrons collide with the part to be welded in X air to melt the part. therefore.

溶融金属にはガス汚染がなく、水素に依存する溶接低温
割れ等の発生がない。また、他の溶接方法に比べて、溶
融量が極めて少ないので溶接変形が少なく、溶接後の寸
法精度が優れている。
There is no gas contamination in the molten metal, and there is no occurrence of hydrogen-dependent cold weld cracking. Furthermore, compared to other welding methods, the amount of melting is extremely small, so there is little welding deformation, and the dimensional accuracy after welding is excellent.

該溶接方法は、このような特徴を有するため。This is because the welding method has such characteristics.

薄板、中厚板材に限らず、厚板材にも使用されるように
なってきた。第8図は、極く一般的な平板1.2の突合
せ溶接部の開先形状を示すものであり、従来の開先形状
は、突合せる二つの面が密着するように平滑に仕上げら
れている以外に特に形状的な配慮はなされていない。
It has come to be used not only for thin and medium-thick plates, but also for thick plates. Figure 8 shows the groove shape of a very common butt weld of a flat plate 1.2, and the conventional groove shape is finished smooth so that the two butted surfaces are in close contact. No particular consideration was given to the shape other than that.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

電子ビーム溶接では、溶融量が少ないことから、開先面
に対して電子ビームの軸心がわずかにずれても、第9図
に示すような融合不良部51が生じる危険性が大きい。
In electron beam welding, since the amount of melting is small, even if the axis of the electron beam is slightly misaligned with respect to the groove surface, there is a high risk that a fused portion 51 as shown in FIG. 9 will occur.

また9強磁性体では。Also, in 9 ferromagnetic materials.

残留磁気によって溶接線が局部的に曲シ、第10図に示
すような融合不良部52が生じる場合もある。第9図及
び第10図において、 41.42は溶融部を、 18
.14は元の開先面の位置を示す。
Residual magnetism may cause local bending of the weld line, resulting in a fusion defect 52 as shown in FIG. 10. In Figures 9 and 10, 41.42 indicates the melting part, 18
.. 14 indicates the position of the original groove surface.

このように開先面の一部がそのま!残る融合不良は、形
状的に面状欠陥であシ、溶接部の強度に大きく影響する
。したがって、電子ビーム溶接では、上記のような融合
不良が発生しないような溶接施工面での対策と注意が必
要である。
In this way, part of the groove surface remains as it is! The remaining fusion failure is a planar defect in shape and greatly affects the strength of the weld. Therefore, in electron beam welding, it is necessary to take precautions and precautions in the welding process to prevent the above-mentioned fusion defects from occurring.

又、溶接終了後には、非破壊検査を行って、この種面状
欠陥のないことを確認し、その品質を保証しなければな
らない。ところが、溶融部は。
Furthermore, after welding is completed, a non-destructive inspection must be performed to confirm that there are no surface defects of this kind and to guarantee the quality. However, the melted part.

凝固する際に収縮を伴う。したがって、その一部に融合
不良が残在する場合には、開先面同志が非常に圧接され
た状態となる。したがって。
Accompanied by contraction during solidification. Therefore, if a fusion defect remains in a part of the groove, the groove surfaces are brought into close contact with each other. therefore.

通常の滑らかに仕上げられた開先形状では、非常に密着
された面状欠陥が生じることになる。
A typical smooth finished bevel profile will result in very closely spaced surface defects.

非破壊検査方法には種々の方法があり、第9図に示した
ような表面に開口した表面欠陥には。
There are various non-destructive inspection methods, including those for surface defects with openings on the surface as shown in FIG.

目視検査、浸透探傷試験などが用いられる。また、第1
0図に示したように内部に潜む内部欠陥には、放射線透
過試験、超音波探傷試験等が適用されるが、何れの非破
壊検査方法を用いても。
Visual inspection, penetrant testing, etc. are used. Also, the first
As shown in Figure 0, radiographic testing, ultrasonic testing, etc. are applied to internal defects hidden inside, but any non-destructive testing method may be used.

密着した面状欠陥一対しては検出が困難もしくは検出が
不利になる。
It is difficult or disadvantageous to detect a pair of planar defects that are in close contact with each other.

第11図は、放射線透過試験における割れの検出限界に
関する実験例であり、放射線の照射方向Eから板厚り内
にできた欠陥の採取要領を示し、第12図では実験結果
より割れFの隙間gが狭くなるほど検出可能な割れFは
深いdものとなシ、浅いd割れFは検出できないことを
示している。又、超音波探傷試験における面の圧着力と
エコー高さの関係を示す実施例を後述するが、圧着応力
の増加に伴ってエコー高さが低下することを示している
。言いかえると、欠陥面が密着すると検出が困難になる
ことを現している。実験例は示さないが、密着した表面
欠陥は目視検査では勿論のこと、液体浸透探傷試験にお
いても浸透性が悪くなシ、検出し難くなる問題点がある
Figure 11 is an experimental example regarding the detection limit of cracks in radiographic tests, and shows the procedure for sampling defects formed within the plate thickness from the radiation irradiation direction E. Figure 12 shows the gap between cracks F based on the experimental results. This indicates that the narrower g is, the deeper the crack F that can be detected becomes, while the shallower the crack F cannot be detected. Further, an example showing the relationship between surface pressure and echo height in an ultrasonic flaw detection test will be described later, and it is shown that the echo height decreases as the pressure increases. In other words, it becomes difficult to detect defects when the surfaces are in close contact with each other. Although an experimental example is not shown, there is a problem in that closely adhered surface defects have poor permeability and are difficult to detect not only by visual inspection but also by liquid penetrant testing.

C問題点を解決するための手段〕 本発明は上記問題点を解決するために、電子ビーム溶接
では融合不良(目はずれによる)が生じる危険性が高く
、この融合不良部を非破壊検査にて容易、かつ確実に発
見できるように密着した状態の面状欠陥を防止する溶接
開先形状をなすものである。すなわち、電子ビーム用溶
接開先合せ面の両側、あるいは片側の表面粗さを25〜
250μmの範囲に仕上げた開先形状として電子ビーム
溶接を行うことを特徴とする電子ビーム溶接用開先形状
を提供するものである。
Means for Solving Problem C] In order to solve the above-mentioned problems, the present invention aims to eliminate the high risk of defective fusion (due to misalignment) in electron beam welding, and to detect the defective fusion through non-destructive testing. The weld groove has a shape that prevents surface defects in close contact so that they can be easily and reliably discovered. In other words, the surface roughness of both sides or one side of the electron beam welding groove mating surface should be 25~25.
The present invention provides a groove shape for electron beam welding, which is characterized in that electron beam welding is performed with a groove shape finished in a range of 250 μm.

〔作用〕[Effect]

本発明の電子ビーム溶接用開先形状は上記のような開先
形状となるので、開先合せ面の状態を粗くすることによ
って融合不良が生じても面が密着せず、数10μm程度
の隙間が確保され、非破壊検査方法の一つ、あるいはそ
れらを組合せて適用することによシ融合不良部が容易に
、かつ確実に検出できる開先形状となしたものである。
Since the groove shape for electron beam welding of the present invention has the groove shape as described above, even if poor fusion occurs due to the roughening of the groove mating surfaces, the surfaces will not come into close contact and a gap of about several tens of micrometers will be created. The groove shape is such that a fused portion can be easily and reliably detected by applying one of the non-destructive inspection methods or a combination thereof.

〔実施例〕〔Example〕

以下2本発明を図面に示す実施例に基づいて具体的に説
明する。第1図は本発明の一実施例に係る電子ビーム溶
接用開先形状を示す断面図。
Hereinafter, two embodiments of the present invention will be specifically described based on embodiments shown in the drawings. FIG. 1 is a sectional view showing a groove shape for electron beam welding according to an embodiment of the present invention.

第2図は本実施例に係る第1図の開先合せ面の部分拡大
断面図。第3図は本実施例に係る開先合せ面の一方のみ
粗クシ、他方は平滑面とした例の断面図。第4図は本実
施例に係る電子ビームの軸心が開先合せ面に傾いて溶接
された溶接部の断面図。第5図は本実施例に係る第3図
に示す開先形状の溶接で融合不良部拡大断面図。
FIG. 2 is a partially enlarged sectional view of the groove mating surface of FIG. 1 according to this embodiment. FIG. 3 is a cross-sectional view of an example in which only one of the groove mating surfaces according to this embodiment has a rough comb and the other is a smooth surface. FIG. 4 is a sectional view of a welded part in which the axis of the electron beam is inclined to the groove mating surface according to this embodiment. FIG. 5 is an enlarged cross-sectional view of a fusion failure caused by welding in the groove shape shown in FIG. 3 according to this embodiment.

第6図は本実施例に係る超音波探傷試験の実験例を示す
模式図。第7図は本実施例に係る第6図の実験結果を表
すグラフである。以下その説明をする。
FIG. 6 is a schematic diagram showing an experimental example of an ultrasonic flaw detection test according to this embodiment. FIG. 7 is a graph showing the experimental results of FIG. 6 according to this example. The explanation will be given below.

第1図において11及び12が溶接すべき部材である。In FIG. 1, 11 and 12 are members to be welded.

lla及び12aはそれぞれの開先面である。lla and 12a are respective groove surfaces.

第2図は本発明の特徴を表すもので、この実施例では開
先面の両側11a、12aを粗く仕上げたものであり、
開先面を合せた状態で隙間81が存在する。第3図にお
いては開先面11bのみを粗くして第2図と同様に隙間
32が存在する。なお。
FIG. 2 shows the characteristics of the present invention. In this embodiment, both sides 11a and 12a of the groove surface are roughly finished.
A gap 81 exists when the groove surfaces are aligned. In FIG. 3, only the groove surface 11b is made rough, and a gap 32 exists as in FIG. 2. In addition.

この例では開先面全体の図は省略した。又、第4図で4
は溶接部であシ、5は融合不良部を示す。第5図は第3
図の開先条件に溶接を行い。
In this example, the illustration of the entire groove surface is omitted. Also, in Figure 4, 4
5 indicates a welded portion, and 5 indicates a poorly fused portion. Figure 5 is the third
Perform welding under the groove conditions shown in the figure.

融合不良部を拡大して示すものであり、第4図に示した
溶融部4は凝固する際に収縮する。したがって、融合不
良部5は9面同志が圧着された状態となシ、第5図に示
すようになる。すなわち、粗く仕上げされた開先面ob
の凸部が押しつぶされた状態になるが、凹部は密着せず
This is an enlarged view of a poorly fused portion, and the melted portion 4 shown in FIG. 4 contracts when solidified. Therefore, the unfused portion 5 is in a state in which nine surfaces are pressed together, as shown in FIG. 5. In other words, the roughly finished groove surface ob
The convex part is pressed, but the concave part does not fit tightly.

隙間33が残される。A gap 33 is left.

融合不良部に隙間があると、放射線透過試験。If there is a gap in the area of poor fusion, radiographic examination is performed.

超音波探傷試験等の非破壊検査による検出が容易になる
。第6図は1本発明の効果を実証する超音波探傷試験の
実験例を示す模式図であり。
Detection by non-destructive testing such as ultrasonic testing becomes easier. FIG. 6 is a schematic diagram showing an experimental example of an ultrasonic flaw detection test to demonstrate the effects of the present invention.

本図において、 15.16は試験体であシ、6は超音
波探触子を示す。実験は、試験体15.16を7の面で
接触させ、圧着力Pを変えながら、7と15とで形成さ
れる角部の反射波の強さAを測定したものである。第7
図で示す実験データのうち、Aは接触面7の表面粗さが
本発明の範囲(約50μm)、Bは従来の一般的な表面
粗さく約10μm)の場合を示す。この結果2表面粗さ
が細かいと面が圧着して隙間がなくなり、核部を超音波
が通過して反射波が弱くなってくるのに対して9本発明
の表面粗さでは圧着し難く、隙間が存在して反射波の強
さが低下し難い。したがって、開先面の表面粗さを本発
明の範囲にしておけば、仮に融合不良が生じても反射波
が有効にとらえられ検出が容易となる。
In this figure, 15 and 16 are test specimens, and 6 is an ultrasonic probe. In the experiment, test specimens 15 and 16 were brought into contact with each other at the surface 7, and the strength A of the reflected wave at the corner formed by 7 and 15 was measured while changing the pressure P. 7th
Among the experimental data shown in the figures, A shows the case where the surface roughness of the contact surface 7 is within the range of the present invention (about 50 μm), and B shows the case where the conventional general surface roughness is about 10 μm). As a result, 2. If the surface roughness is fine, the surfaces will be pressed together and there will be no gap, and the ultrasonic wave will pass through the core, weakening the reflected wave. 9. With the surface roughness of the present invention, it will be difficult to press. The presence of gaps makes it difficult for the strength of reflected waves to decrease. Therefore, if the surface roughness of the groove surface is kept within the range of the present invention, even if fusion failure occurs, the reflected waves will be effectively captured and detection will be facilitated.

なお、効果を発揮する開先面の粗さは、溶接部材の厚さ
、材質、溶接条件等によシ様々であるが、25μm未満
ではあまシ効果がない。一方。
Note that the roughness of the groove surface that exhibits the effect varies depending on the thickness, material, welding conditions, etc. of the welding member, but if it is less than 25 μm, there is no moderate effect. on the other hand.

粗過ぎると、溶接後の変形が大きくなるなど溶接部の品
質に悪影響が生じる可能性が大きくなるので、250μ
mを上限とした開先形状である。
If it is too rough, there is a high possibility that the quality of the weld will be adversely affected, such as large deformation after welding.
The groove shape has an upper limit of m.

〔発明の効果〕〔Effect of the invention〕

以上、具体的に説明したように本発明においては、溶接
開先合せ面の画側あるいは片側の表面粗さを粗くしてお
くことにより、仮に融合不良が生じてもその面が圧着せ
ず隙間を有する状態になる。したがって2表面に生じれ
ば目視検査や液体浸透探傷試験によシ、又、内部に潜む
場合には放射線透過試験や超音波探傷試験により容易に
、かつ確実に発見できるようになる。
As specifically explained above, in the present invention, by roughening the surface roughness of the image side or one side of the welding groove mating surface, even if fusion failure occurs, that surface will not be crimped and there will be a gap. It becomes a state with. Therefore, if it occurs on two surfaces, it can be easily and reliably discovered by visual inspection or liquid penetrant testing, and if it is hidden inside, it can be easily and reliably discovered by radiographic testing or ultrasonic testing.

このため溶接後にこれらの非破壊試験を行うことによシ
、該溶接部の品質が保証できる。
Therefore, by performing these non-destructive tests after welding, the quality of the welded portion can be guaranteed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る電子ビーム溶接用開先
形状を示す断面図、第2図は本実施例に係る第1図の開
先合せ面の部分拡大断面図。 第3図は本実施例に係る開先合せ面の一方のみ粗クシ、
他方は平滑面とした例の断面図、第4図は本実施例に係
る電子ビームの軸心が開先合せ面に傾いて溶接された溶
接部の断面図、第5図は本実施例に係る第3図に示す開
先形状の溶接で融合不良部の拡大断面図、第6図は本実
施例に係る超音波探傷試験の実験例を示す模式図。 第7図は本実施例に係る第6図の実験結果を表すグラフ
、第8図は通常一般的な電子ビーム溶接用平板の開先形
状を示す斜視図、第9図は通常の電子ビーム溶接におけ
る電子ビームの軸心が開先合せ面に傾いて溶接された溶
接部の断面図、第10図は通常の電子ビーム溶接におけ
る残留磁気などが影響して開先合せ面の内部に融合不良
部を生じた断面図、第11図は通常の電子ビーム溶接部
を放射線透過試験による割れに関する実験例の模式図、
第12図は通常の内部割れの間隙と検出可能な割れ深さ
の関係を示すグラフである。 1.2・・・平板、4・・・溶融部、5・・・融合不良
部。 6・・・超音波探触子、7・・・開先面、11・・・部
材、11a・・・開先面、12・・・部材、12a・・
・開先面、 18.14・・・開先面、 15.16・
・・試験体、 81.82.83・・隙間。 41.42・・・溶融部、 51.52・・・融合不良
部。
FIG. 1 is a cross-sectional view showing a groove shape for electron beam welding according to an embodiment of the present invention, and FIG. 2 is a partially enlarged cross-sectional view of the groove mating surface of FIG. 1 according to the present embodiment. FIG. 3 shows a rough comb on one side of the groove mating surface according to this embodiment;
The other is a cross-sectional view of an example with a smooth surface, FIG. 4 is a cross-sectional view of a welded part in which the axis of the electron beam is inclined to the groove mating surface according to this example, and FIG. 5 is a cross-sectional view of a welded part according to this example FIG. 3 is an enlarged cross-sectional view of a poorly fused portion due to groove-shaped welding shown in FIG. 3, and FIG. 6 is a schematic diagram showing an experimental example of an ultrasonic flaw detection test according to this embodiment. FIG. 7 is a graph showing the experimental results shown in FIG. 6 according to this example, FIG. 8 is a perspective view showing the groove shape of a flat plate for ordinary electron beam welding, and FIG. 9 is a graph for ordinary electron beam welding. Fig. 10 is a cross-sectional view of a welded part where the axis of the electron beam is tilted toward the groove mating surface. Fig. 11 is a schematic diagram of an experimental example of cracking in a normal electron beam welded part by radiation transmission testing.
FIG. 12 is a graph showing the relationship between the gap between normal internal cracks and the detectable crack depth. 1.2... Flat plate, 4... Melted part, 5... Poor fusion part. 6... Ultrasonic probe, 7... Groove surface, 11... Member, 11a... Groove surface, 12... Member, 12a...
・Groove surface, 18.14...Groove surface, 15.16・
...Test specimen, 81.82.83...Gap. 41.42... Melted part, 51.52... Poor fusion part.

Claims (1)

【特許請求の範囲】[Claims] 電子ビーム用溶接開先合せ面の両側あるいは片側の表面
粗さを25〜250μmの範囲に仕上げた開先形状とし
て電子ビーム溶接を行うことを特徴とする電子ビーム溶
接用開先形状。
A groove shape for electron beam welding, characterized in that electron beam welding is performed with the groove shape having a surface roughness of 25 to 250 μm on both sides or one side of the mating surfaces of the groove for electron beam welding.
JP20645986A 1986-09-02 1986-09-02 Groove shape for electron beam welding Pending JPS6363581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20645986A JPS6363581A (en) 1986-09-02 1986-09-02 Groove shape for electron beam welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20645986A JPS6363581A (en) 1986-09-02 1986-09-02 Groove shape for electron beam welding

Publications (1)

Publication Number Publication Date
JPS6363581A true JPS6363581A (en) 1988-03-19

Family

ID=16523727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20645986A Pending JPS6363581A (en) 1986-09-02 1986-09-02 Groove shape for electron beam welding

Country Status (1)

Country Link
JP (1) JPS6363581A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2668648C2 (en) * 2016-04-28 2018-10-02 Публичное Акционерное Общество "Воронежское акционерное самолетостроительное общество" Method of electron beam welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2668648C2 (en) * 2016-04-28 2018-10-02 Публичное Акционерное Общество "Воронежское акционерное самолетостроительное общество" Method of electron beam welding

Similar Documents

Publication Publication Date Title
US9839979B2 (en) System for evaluating weld quality using eddy currents
Lévesque et al. Inspection of thick welded joints using laser-ultrasonic SAFT
Bird Ultrasonic phased array inspection technology for the evaluation of friction stir welds
Chertov et al. Acoustic microscopy of internal structure of resistance spot welds
EP1057581B1 (en) Groove shape for single butt welding and inspection method of weld zone thereof
JPS6363581A (en) Groove shape for electron beam welding
Halbauer et al. Electron beam welding and characterization of dissimilar joints with TWIP matrix composites
US20210312604A1 (en) Improved characterization and classification of spot welds by ultrasonic diagostic techniques
JP2001047232A (en) Shape of groove in one-side butt welding and inspection method of weld zone in one-side butt welding
JP4175175B2 (en) Ultrasonic flaw detection method
CN112881533A (en) Ultrasonic detection test block and preparation method thereof
Korzeniowski et al. Analysis of using acoustic microscopy to evaluate defects in spot welding joints
Caravaca et al. Correlation of phased array inspection and fatigue performance of FSW joints
CN114019024A (en) Method and system for measuring penetration depth of lower layer of weld joint in lap welding
JPH06167479A (en) Butt welding joint to be nondestructively inspected
Iwaki et al. Imperfections in friction stir welded zones and their precision non-destructive testing. Studies on characteristics of friction stir welded joints in structural thin aluminium alloys
Piwowarczyk et al. Possibilities of using scanning acoustic microscopy to analyze incompatibilities in braze welded joints
Lamarre et al. Phased array ultrasonic inspection of friction stir weldments
Roccella et al. Non-destructive methods for the defect detection in the ITER high heat flux components
Beurdeley PISC II parametric study on the effect of the cladding
Salzburger et al. In-line quality control of laser welds of tailored blanks by couplant free ultrasonic inspection
Bracun et al. Indentation shape parameters as indicators of spot weld quality
JP3007243B2 (en) Prevention method of bend at the bevel on the diagonal side of the bevel of the Uranami bead in multi-groove groove welding
Romito et al. Total Focusing Method for the Ultrasonic Testing of drawn arc stud welding
RU1821318C (en) Method of making samples with crack-like faults in weld seam