JPS636351A - Trouble detector for electric expansion valve of air conditioner - Google Patents

Trouble detector for electric expansion valve of air conditioner

Info

Publication number
JPS636351A
JPS636351A JP61150180A JP15018086A JPS636351A JP S636351 A JPS636351 A JP S636351A JP 61150180 A JP61150180 A JP 61150180A JP 15018086 A JP15018086 A JP 15018086A JP S636351 A JPS636351 A JP S636351A
Authority
JP
Japan
Prior art keywords
expansion valve
electric expansion
compressor
capacity
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61150180A
Other languages
Japanese (ja)
Other versions
JPH0378551B2 (en
Inventor
池田 寿一
黒田 耕三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP61150180A priority Critical patent/JPS636351A/en
Publication of JPS636351A publication Critical patent/JPS636351A/en
Publication of JPH0378551B2 publication Critical patent/JPH0378551B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は、周波数を可変にするインバータにより駆動さ
れる圧縮機を内蔵した空気調和装置におけるi動膨張弁
の故障検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a failure detection device for an i-dynamic expansion valve in an air conditioner incorporating a compressor driven by an inverter that makes frequency variable.

(従来の技術) 従来より、圧縮機(1)と該圧縮R(1)の運転周波数
を可変にしてその容量を調整するインバータ(1a)と
上記圧縮機(1)の容量に応じて開度変化する電動膨張
弁(5)とを備えて、能力を制御するようにした空気調
和装置は知られている(特開昭58−205057号公
報参照)。
(Prior Art) Conventionally, a compressor (1) and an inverter (1a) that adjusts the capacity by varying the operating frequency of the compressor R (1) and an opening degree according to the capacity of the compressor (1) have been used. An air conditioner is known that is equipped with a variable electric expansion valve (5) and whose capacity is controlled (see Japanese Patent Laid-Open No. 58-205057).

(発明が解決しようとする問題点) ところで、このような空気調和装置において、電動膨張
弁の駆動電子回路の故障あるいは電気回線の断線による
故障が生じて該電動膨張弁の制御に異常が生じた場合に
はその異常を検知できるが、電動膨張弁本体の不良ある
いは異物混入などによる電動膨張弁本体の動作不良につ
いては確実に検出する適当な方法が見出されていない。
(Problems to be Solved by the Invention) By the way, in such an air conditioner, if a failure occurs in the drive electronic circuit of the electric expansion valve or a failure due to disconnection of the electric line, an abnormality occurs in the control of the electric expansion valve. However, no suitable method has been found to reliably detect malfunctions of the electric expansion valve body due to defects in the electric expansion valve body or foreign matter contamination.

例えば機械工作時の切屑混入、組立時の異物混入、ある
いは潤滑剤への異物混入等によって、電動膨張弁が開度
小の状態で動かなくなった時には空調能力の不足あるい
は特に冷房時には室内コイルに着霜が生ずるので比較的
感知されやすいが、開度大の状態で動かなくなった場合
には、異常が感知されるまでに冷媒液が圧縮機にまわり
、液圧縮によって圧縮機が破損するという危険が生ずる
For example, if the electric expansion valve stops working at a small opening due to chips mixed in during machining, foreign objects mixed in during assembly, or foreign objects mixed in the lubricant, there may be a lack of air conditioning capacity, or the indoor coil gets stuck especially during cooling. It is relatively easy to detect because frost forms, but if the compressor stops working at a large opening, there is a risk that the refrigerant liquid will flow into the compressor by the time the abnormality is detected, causing damage to the compressor due to liquid compression. arise.

本発明は、斯かる点に鑑みてなされたものであり、その
目的は、圧縮機の高容量運転時に、電動膨張弁が絞られ
た時にはその変化の前後で冷媒の状fの伍が変化するこ
とに着目し、上記状態量の変化の値から電動膨張弁の故
障を確実に検出し、圧縮機の破損を未然に防止すること
にある。
The present invention has been made in view of the above points, and its purpose is to change the state of the refrigerant f before and after the electric expansion valve is throttled during high-capacity operation of the compressor. Focusing on this, the objective is to reliably detect failure of the electric expansion valve from the value of the change in the state quantity and prevent damage to the compressor.

(問題点を解決するための手段) 上記目的を達成するため、本発明の解決手段は、第1図
に示すように、圧縮機(1)と該圧縮機(1)の運転周
波数を可変にしてその容量を調整するインバータ(1a
)と電動膨張弁(5)とを備えた空気調和装置を対象と
する。そして、このような空気調和装置の電動膨張弁の
故障検出装置として、上記圧縮1ff(1)の容量が設
定値以上の運転時を検出する高容量検出手段(11)と
、該高容量検出手段(11)で検出された圧縮機(1)
の高容量運転時に、上記インバータ(1a)による圧縮
機(1)の容置調整を固定するとともに上記電動膨張弁
(5)の開度を大きく絞るように制御する制御手段(1
2)と、該制御手段(12)の出力を受けて電動膨張弁
(5)の開度変化の前後における冷媒の状態量を検出す
る状態量検出手段(TH2)と、該状態量検出手段(T
 H2)で検出した状態量の変化が設定値以下のとき故
障信号を出力する判別手段(13)とを備えたことにあ
る。
(Means for solving the problem) In order to achieve the above object, the solving means of the present invention, as shown in FIG. 1, makes the compressor (1) and its operating frequency variable. Inverter (1a) that adjusts its capacity
) and an electric expansion valve (5). A failure detection device for the electric expansion valve of such an air conditioner includes a high capacity detection means (11) for detecting when the capacity of the compression 1ff (1) is higher than a set value, and the high capacity detection means. Compressor (1) detected in (11)
control means (1) for controlling the capacity adjustment of the compressor (1) by the inverter (1a) to be fixed and to greatly reduce the opening degree of the electric expansion valve (5) during high capacity operation of the compressor (1);
2), a state quantity detection means (TH2) which receives the output of the control means (12) and detects the state quantity of the refrigerant before and after the change in the opening degree of the electric expansion valve (5), and the state quantity detection means (TH2); T
The present invention also includes a determining means (13) that outputs a failure signal when the change in the state quantity detected in step H2) is less than a set value.

(作用) 以上の構成により、本発明では、圧縮機(1)の容量が
設定値以上に高くなる運転時期が高容量検出手段(11
)によって検出されると、該高容量検出手段(11)の
信号を受けた制御手段によつで上記圧wi機(1)の言
分がその状態に固定されるとともに、電動膨張弁(5)
の開度が大きく絞られる。この時、電動膨張弁(5)の
動作が正常に絞られると、上記電動膨張弁(5)の変化
の前後において、冷媒の状態量に設定値以上の変化が生
じ、これを判別手段(13)により正常と判定される。
(Function) With the above configuration, in the present invention, the operation period when the capacity of the compressor (1) becomes higher than the set value is determined by the high capacity detection means (11).
), the control means that receives the signal from the high capacity detection means (11) fixes the operation of the pressure control device (1) in that state, and also controls the electric expansion valve (5). )
The opening degree is greatly reduced. At this time, when the operation of the electric expansion valve (5) is normally throttled, the state quantity of the refrigerant changes by more than the set value before and after the change in the electric expansion valve (5), and this is detected by the determining means (13). ) is determined to be normal.

−方、電動膨張弁(5)の故障により開度が絞られずに
設定値以上の状態量の変化が生じないときには上記判定
手段(13)によって故障と判定されるので、電動膨張
弁(5)の故障が検出され、特に開度の大きい状態で動
作不良を生じて圧縮機(1)の破損が生ずるのが有効に
防止される。
- On the other hand, if the opening degree is not throttled due to a failure of the electric expansion valve (5) and the state quantity does not change by more than the set value, the determination means (13) determines that the electric expansion valve (5) is malfunctioning. A failure of the compressor (1) is detected, and damage to the compressor (1) due to malfunction, especially in a state where the opening degree is large, is effectively prevented.

(実施例) 以下、本発明の実施例を第2図以下の図面に基づいて詳
細に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings from FIG. 2 onwards.

第2図は本発明を適用した空気調和装置の冷媒配管系統
を示し、(A)は室外ユニット、(B)は室内ユニット
であって、該室外ユニット(A)には、周波数を可変に
するインバータ(1a)により容量が調整される圧縮機
(1)と、暖房運転時には第2図実線に示すごとく切換
わり冷房運転時には破線に示すごとく切換わる四路切換
弁(2)と、アキュムレータ(3)と、室外熱交換器(
4)と、冷媒流量を調整する電動膨張弁(5)とが主要
機器として、また上記室内ユニット(B)には室内熱交
換器(6)が主要機器として各々配設されており、上記
各主要I!l器は冷媒配管(8)によってそれぞれ接続
されている。
FIG. 2 shows a refrigerant piping system of an air conditioner to which the present invention is applied, (A) is an outdoor unit, (B) is an indoor unit, and the outdoor unit (A) has a variable frequency. A compressor (1) whose capacity is adjusted by an inverter (1a), a four-way selector valve (2) which switches as shown by the solid line in Figure 2 during heating operation and a broken line during cooling operation, and an accumulator (3). ) and outdoor heat exchanger (
4) and an electric expansion valve (5) that adjusts the refrigerant flow rate as the main equipment, and the indoor unit (B) is equipped with an indoor heat exchanger (6) as the main equipment. Major I! The refrigerant pipes are connected to each other by refrigerant pipes (8).

また、(T[→1)は上記室内ユニット(B)の本体ケ
ーシングに配設される室温サーモスタット、(10)は
空気調和装置のコントロールユニットである。
Further, (T[→1) is a room temperature thermostat disposed in the main body casing of the indoor unit (B), and (10) is a control unit of the air conditioner.

暖房運転時、冷媒の流れは実線矢印に示すようになり、
圧縮機(1)から吐出された冷媒は室内熱交換器(6)
にて熱交換を受けた後、電動膨張弁(5)によって絞り
作用を受けて室外熱交換器(4)で気化され、アキュム
レータ(3)を経て再び圧縮!ff(1)に還流される
。以上の冷媒の流れにおいて、上記コントロールユニッ
ト(10)は、上記室温サーモスタット(THI)より
入力される室内温度と設定温度との偏差信号に応じて、
上記インバータ(1a)の周波数を調整する周波数信号
を出力するとともに、該周波数信号の値fに応じて上記
電ljJ膨張弁(5)の開度を調整するパルス信号を出
力する。
During heating operation, the flow of refrigerant is as shown by the solid arrow,
The refrigerant discharged from the compressor (1) is transferred to the indoor heat exchanger (6)
After undergoing heat exchange, it is throttled by the electric expansion valve (5), vaporized in the outdoor heat exchanger (4), and compressed again through the accumulator (3)! It is refluxed to ff(1). In the above refrigerant flow, the control unit (10), in accordance with the deviation signal between the indoor temperature and the set temperature input from the room temperature thermostat (THI),
It outputs a frequency signal that adjusts the frequency of the inverter (1a), and also outputs a pulse signal that adjusts the opening degree of the electric ljJ expansion valve (5) according to the value f of the frequency signal.

下記第1表は上記周波数信号値fと該パルス信号値Nと
の関係を示すものであり、上段はインバータ(1a)の
周波数信号値f1中段は暖房運転時の周波数信号値fに
対応して出力されるパルス信号値N、下段は冷房運転時
に出力されるパルス信号値Nであって、いずれも周波数
信号値「の増大に応じて増大するようになされている。
Table 1 below shows the relationship between the frequency signal value f and the pulse signal value N. The upper row shows the frequency signal value f of the inverter (1a), and the middle row shows the frequency signal value f during heating operation. The output pulse signal value N, the lower row is the pulse signal value N output during cooling operation, both of which are configured to increase as the frequency signal value increases.

第1表 次に、上記周波数信号に応じて出力周波数を可変にする
上記インバータ(1a)によって上記圧縮機(1)の容
Mが制御される一方、上記パルス信号を受けて上記電動
膨張弁(5)は第3図のグラフに示すようにその開度を
変化させる。第3図のグラフにおいて、横軸は電動膨張
弁(5)に入力されるパルス信号値N1縦軸は電動膨張
弁(5)の開度であって、パルス信号値Nの増大に応じ
て、開度がほぼリニアに増大するようになされており、
電動膨張弁(5)の開度により上記室外熱交換器(4)
での冷媒蒸発温度が適度の範囲に調整される。以上の手
順によって室温サーモスタット(THl)により検知さ
れる室内ユニット(B)の負荷の増減に応じて、圧縮1
m(1)の容量が適切に制御されるようになされている
Table 1 Next, the capacity M of the compressor (1) is controlled by the inverter (1a) which varies the output frequency according to the frequency signal, while the electric expansion valve ( 5) changes the opening degree as shown in the graph of FIG. In the graph of FIG. 3, the horizontal axis is the pulse signal value N input to the electric expansion valve (5), the vertical axis is the opening degree of the electric expansion valve (5), and as the pulse signal value N increases, The opening degree increases almost linearly,
The outdoor heat exchanger (4) depends on the opening degree of the electric expansion valve (5).
The refrigerant evaporation temperature at is adjusted to an appropriate range. According to the above procedure, the compression 1
The capacity of m(1) is appropriately controlled.

以上、暖房運転時について説明したが、冷房運転におい
ては、冷媒の流れが第2図破線矢印に示すごとくなり、
上記と同様に、室内ユニット(B)の負荷に応じて圧縮
機(1)の容」を適切に制御するようになされている。
Above, we have explained the heating operation, but in the cooling operation, the flow of refrigerant is as shown by the broken line arrow in Figure 2.
Similarly to the above, the capacity of the compressor (1) is appropriately controlled according to the load on the indoor unit (B).

さらに、第2図において、(TH2>は上記圧縮機(1
)の吸入管側に配置される冷媒の状態量検出手段である
温度センサーであって、該温度センサーは冷媒の温度T
eを検出して冷媒湿度値信号を出力するものである。第
4図(イ)および(ロ)のグラフは暖房運転時において
、インバータ(1a)の周波数を固定し、上記パルス信
号値を変化させてwv′J膨張弁(5)の開度を変化さ
せたときに、上記温度センサー(TH2)によって検出
される冷媒の温度Teの値を示したものであって、第4
図(イ)は周波数が90H2のとき、第4図(ロ)は周
波数が30H2のときのものである。第4図(イ)およ
び(ロ)に示されるように、周波数fが大きいすなわち
圧縮機(1)の運転容量が大きいときには、電動膨張弁
(5)の開度を絞ったときに生ずる冷媒温度の上昇が大
きく(冷媒の過熱度が大きくなる)、周波数fが小さい
すなわち圧縮機(1)の運転容量が小さいときには、電
動膨張弁(5・)の開度を絞っても冷媒温度はほとんど
変化しない。したがって、周波数fがある程度大きいと
きには、電動膨張弁(5)の開度を絞るパルス信号を出
力して、その時の冷媒温度の変化値を検知すれば、正常
に電動膨張弁(5)が作動したか否かを判定できる。以
上暖房運転時について説明したが冷房運転時にも同様で
ある。
Furthermore, in FIG. 2, (TH2> is the compressor (1
) is a temperature sensor which is a refrigerant state quantity detection means disposed on the suction pipe side of the refrigerant, and the temperature sensor is configured to detect the refrigerant temperature T.
e is detected and outputs a refrigerant humidity value signal. The graphs in Fig. 4 (a) and (b) show that during heating operation, the frequency of the inverter (1a) is fixed, and the opening degree of the wv'J expansion valve (5) is changed by changing the above-mentioned pulse signal value. TH2 indicates the value of the temperature Te of the refrigerant detected by the temperature sensor (TH2) when
Fig. 4 (a) shows the case when the frequency is 90H2, and Fig. 4 (b) shows the case when the frequency is 30H2. As shown in FIGS. 4(a) and 4(b), when the frequency f is large, that is, the operating capacity of the compressor (1) is large, the refrigerant temperature that occurs when the opening degree of the electric expansion valve (5) is reduced When the increase in F is large (the degree of superheating of the refrigerant becomes large) and the frequency f is small, that is, the operating capacity of the compressor (1) is small, the refrigerant temperature will hardly change even if the opening of the electric expansion valve (5) is reduced. do not. Therefore, when the frequency f is large to a certain extent, by outputting a pulse signal that reduces the opening degree of the electric expansion valve (5) and detecting the change in refrigerant temperature at that time, the electric expansion valve (5) can be operated normally. It can be determined whether or not. Although the explanation has been given above regarding the heating operation, the same applies to the cooling operation.

第5図は通常運転時、上記室温サーモスタット(THI
)からの室内ユニット(B)の負荷信号に応じて制御さ
れる上記インバータ(1a〉の周波数fの変化の例を示
す。第5図に示される破線f=Aは上記チエツク運転を
行うべき周波数fの下限を示し、本実施例はf=70H
zと設定され、連続して2分間f〉70となった時には
室内負荷が十分大きいと判定してチエツク運転に入るよ
うに設定されている。また、時間t−Bの破線は圧縮機
(1)が連続運転して安定するまでの初期設定時間を示
し、本実施例では30分に設定されている。
Figure 5 shows the room temperature thermostat (THI) during normal operation.
) shows an example of a change in the frequency f of the inverter (1a) that is controlled according to the load signal of the indoor unit (B) from Indicates the lower limit of f, and in this example f=70H
z, and when f>70 for 2 consecutive minutes, it is determined that the indoor load is sufficiently large and a check operation is started. Moreover, the broken line of time tB indicates the initial setting time until the compressor (1) is continuously operated and stabilized, and is set to 30 minutes in this embodiment.

上記考察に基づき、電動膨張弁(5)の故障検出のため
のチエツク運転の手順を、第6図のフローチャートに基
づいて説明する。
Based on the above considerations, a check operation procedure for detecting failure of the electric expansion valve (5) will be explained with reference to the flowchart of FIG.

第6図のフローチャートにおいて、まずステップS1で
圧縮機(1)が初回起動かどうかを判定 。
In the flowchart of FIG. 6, first in step S1 it is determined whether the compressor (1) is started for the first time.

し、Noであればすでにチエツク運転済であるのでステ
ップS2の通常運転に進み、YESであればステップS
3に移行する。ステップS3では第5図に示す上記初期
設定時間t =30 (分)を経過したか否かを判定し
、30分を経過したYESとなってからステップS4に
移行する。次にステップS4で第5図のグラフに示され
るように周波数fが設定値f −70(Hz )より2
分間連続して大きいか否かを判定し、室内負荷が十分大
きいと判定できるYESとなってからステップS5に移
行し、異常判定手順に入る。
However, if No, the check operation has already been completed, and the process proceeds to step S2, normal operation; if YES, the process proceeds to step S2.
Move to 3. In step S3, it is determined whether or not the initial setting time t = 30 (minutes) shown in FIG. 5 has elapsed, and when 30 minutes have elapsed (YES), the process moves to step S4. Next, in step S4, as shown in the graph of FIG.
It is determined whether the indoor load is continuously large for several minutes, and when YES is determined that the indoor load is sufficiently large, the process moves to step S5 and an abnormality determination procedure is entered.

この・異常判定手順において、まずステップS5で時刻
toから第7図(イ)のグラフに示すように、室温サー
モスタット(T!−11)から入力される室内ユニット
(B)の負荷信号を無視して周波数fをその時の値に保
持し、次にステップS6でこのときの上記温度センサー
(TH2)から検出される冷媒の温度TeをTe+にセ
ットする。さらに、すぐにステップS7において第7図
(0)に示されるようにパルス信号値Nを強制的にrO
Jにして電#J膨張弁(5)の開度を「0」に絞るよう
に指令する。次に、ステップS8で再び冷媒温度Teを
測定した後、ステップS9においてTO+からTeへの
変化値(Te −7e I )が電動膨張弁(5)の異
常の判定値Δ℃より小さいか否かを判定する。ここで、
判定値△tは第7図(ハ)に示されるように、パルス信
号値Nが「0」に変化させられた時刻t1のときの上記
冷媒温度Te+に対して、電動膨張弁(5)が正常に作
動し開度rOJに絞られているならば当然生ずる冷媒温
度Teの変化値の下限であり、空気調和装置の容量、設
置状態等によって決定されるものである。ステップS9
において、上記変化値(Te −Te + )が判定値
Δを以上となるNoであれば、電動膨張弁(5)が正常
であると判断されてステップS2に移行して以後通常運
転に入る。−方、変化値(Te−丁e1)が判定値へt
より小さいYESであればステップS 10に移行する
In this abnormality determination procedure, first in step S5, the load signal of the indoor unit (B) input from the room temperature thermostat (T!-11) is ignored as shown in the graph of FIG. Then, in step S6, the refrigerant temperature Te detected by the temperature sensor (TH2) at this time is set to Te+. Furthermore, immediately in step S7, the pulse signal value N is forced to rO as shown in FIG. 7(0).
command to reduce the opening of the electric #J expansion valve (5) to "0". Next, in step S8, the refrigerant temperature Te is measured again, and in step S9, it is determined whether the change value from TO+ to Te (Te −7e I) is smaller than the abnormality determination value Δ°C of the electric expansion valve (5). Determine. here,
As shown in FIG. 7(C), the judgment value Δt is the electric expansion valve (5) with respect to the refrigerant temperature Te+ at time t1 when the pulse signal value N is changed to "0". This is the lower limit of the change value of the refrigerant temperature Te that would naturally occur if the opening is restricted to rOJ in normal operation, and is determined by the capacity of the air conditioner, the installation condition, etc. Step S9
If the change value (Te − Te + ) is greater than or equal to the determination value Δ (No), it is determined that the electric expansion valve (5) is normal, and the process proceeds to step S2, whereupon normal operation begins. - On the other hand, the change value (Te-Te1) changes to the judgment value t
If the answer is YES, the process moves to step S10.

ステップS IQにおいては、第7図〈イ)に示される
ように周波数fの一定値に保持する時間は空温や空気調
和装置に対する悪影響を及ぼさない3分間と設定されて
おり、上記周波数fを一定値に保持した時刻toから上
記ステップS8およびSsの手順を3分間繰返した後、
3分経過後もステップS9での判定がYESであるなら
ばステップS11に移行する。
In step S IQ, as shown in Figure 7 (a), the time to maintain the frequency f at a constant value is set to 3 minutes, which does not have a negative effect on the air temperature or air conditioner, and the frequency f is maintained at a constant value for 3 minutes. After repeating the above steps S8 and Ss for 3 minutes from time to, which is maintained at a constant value,
If the determination in step S9 is still YES after three minutes have elapsed, the process moves to step S11.

ステップS nにおいて、−F記ステップ84〜S樽の
手順で、電動膨張弁(5)の異常判定手順をyn統して
3回行ったか否かを判定し、NOであればステップ31
2に移行して−H周波数fの固定および電動膨張弁(5
)の開度の絞りを指令するパルス信号値N−0の固定を
解除し、室温サーモスタット(THl)の負荷信号に応
じて圧縮機(1)の容量を制御する解除運転に戻った後
、ステップS4に移行して再度上記と同様の手順でステ
ップS4〜S1oにおける電動膨張弁(5)の異常判定
手順を実行する。そして、上記ステップ84〜S10の
異常判定手順を3回実行してもなお、冷媒温度Teの変
化値(Te −Te l )が判定値△tより小さくス
テップS 10における判定がYESであるときには、
電動膨張弁(5)の異常と判定する故障信号を出力して
、空気調和装置が停止される。
In step Sn, it is determined whether or not the abnormality determination procedure of the electric expansion valve (5) has been performed three times in accordance with the procedure from step 84 to S barrel of -F, and if NO, step 31 is performed.
2 and -H frequency f fixed and electric expansion valve (5
) is released from the fixation of the pulse signal value N-0 that commands the throttle opening of Proceeding to S4, the abnormality determination procedure for the electric expansion valve (5) in steps S4 to S1o is executed again in the same manner as above. Then, even if the abnormality determination procedure of steps 84 to S10 is executed three times, if the change value (Te − Te l ) of the refrigerant temperature Te is smaller than the determination value Δt and the determination in step S10 is YES,
A failure signal indicating that the electric expansion valve (5) is abnormal is output, and the air conditioner is stopped.

以上により、本実施例では、ステップS4によって圧縮
機(1)の高容囲運転時を検出する高容量検出手段(1
1)が構成され、ステップS5およびSsによって圧縮
機(1)の高容量状態を固定するとともに電動膨張弁(
5)の開度を絞るように制御する制御手段(12)が構
成されている。
As described above, in this embodiment, the high capacity detection means (1) detects the high capacity operation of the compressor (1) in step S4.
1) is configured, and the high capacity state of the compressor (1) is fixed by steps S5 and Ss, and the electric expansion valve (
A control means (12) is configured to control the opening degree of 5) to be narrowed down.

またステップS9.SIO,および8uにより、上記状
態量検出手段(TH2)によって検出された電動膨張弁
(5)の開度が絞られる前後における蒸発温度の変化値
(Te  Te l )の大きさから電動膨張弁(5)
の故障の有無を判定する判別手段(13)が構成されて
いる。
Also, step S9. SIO and 8u determine the electric expansion valve (5) from the magnitude of the change in evaporation temperature (Te Te l ) before and after the opening of the electric expansion valve (5) is throttled, which is detected by the state quantity detection means (TH2). 5)
Discrimination means (13) for determining the presence or absence of a failure is configured.

したがって、上記実施例においては、圧縮機(1)の運
転が安定した後、室内ユニット(B)の負荷が増大して
圧縮機(1)が高容量運転を持続し始めた時に、通常は
圧縮機(1)の容量増加にともない電動膨張弁(5)の
開度も大きくなるようにパルス信号値Nが増加するのを
強制的にN−0に設定するので、電動膨張弁(5)が正
常に作動するならば観測される第4図(イ)に示される
ようなパルス信号値Nの変化に伴う冷媒温r!ITeの
上昇の有無によって電動膨張弁(5)の故障判定ができ
る。すなわち、冷媒温度Teの変化値がΔtよりも小さ
いときには、電動膨張弁(5)が開度大のまま閉じ−な
くなっているか、あるい稈その前に開度小の状態で開か
なくなっているかの2通りであるので、いずれにしても
電動膨張弁く5)が異物等で作動しなくなっている故障
状態を検出しており、特に開度大のときにそのまま運転
を続行すると圧縮機(1)が破損するのを有効に防止し
ている。また、ステップS oにおいて、異常判定手順
を3回繰返すので、電動膨張弁(5)に故障以外の偶発
的に生ずる他の原因によって冷媒温度Teの上昇が観測
されないときに、電動膨張弁(5)の故障と誤判定され
るのが有効に防止されている。
Therefore, in the above embodiment, after the operation of the compressor (1) becomes stable, when the load on the indoor unit (B) increases and the compressor (1) starts to maintain high capacity operation, the compression The increase in pulse signal value N is forcibly set to N-0 so that the opening degree of the electric expansion valve (5) increases as the capacity of the motor (1) increases. If the operation is normal, the refrigerant temperature r! will be observed as the pulse signal value N changes as shown in Fig. 4 (a). Failure of the electric expansion valve (5) can be determined based on the presence or absence of an increase in ITe. That is, when the change value of the refrigerant temperature Te is smaller than Δt, either the electric expansion valve (5) remains open at a large opening and does not close, or the culm opens at a small opening and does not close. There are two ways to do this, so in either case, a failure condition has been detected in which the electric expansion valve (5) has stopped operating due to a foreign object, etc., and if the operation continues, especially when the opening is large, the compressor (1) effectively prevents damage. In addition, in step So, the abnormality determination procedure is repeated three times, so when no rise in refrigerant temperature Te is observed due to some other incidental cause other than a failure in the electric expansion valve (5), the electric expansion valve (5) ) is effectively prevented from being mistakenly determined as a failure.

経験的に異物等による電動膨張弁(5)の動作不良はほ
とんど運転開始直後に生ずることが知られているので、
以上の異常判定手順による′FFi動膨張弁(5)の故
障チエツク運転は、上記実施例のように起動後圧縮機(
1)の運転が安定した時点で毎日1回行うのが効果的で
あるが、その回数および時期については空気調和装置の
容重、据付状態等に応じて任意に定めることができる。
It is known from experience that malfunctions of the electric expansion valve (5) due to foreign objects, etc. almost always occur immediately after the start of operation.
The failure check operation of the 'FFi dynamic expansion valve (5) according to the above abnormality determination procedure is carried out after starting the compressor (
It is effective to carry out step 1) once a day when the operation is stable, but the number and timing of the step can be arbitrarily determined depending on the weight of the air conditioner, the installation condition, etc.

また上記実施例では室外ユニット(A)に単数の室内ユ
ニット(B)が接続されている例について述べたが、複
数の室内ユニットが接続されるマルチ型式の空気調和装
置についても同様に適用される。
Furthermore, although the above embodiment describes an example in which a single indoor unit (B) is connected to an outdoor unit (A), the same applies to a multi-type air conditioner in which a plurality of indoor units are connected. .

また、本実施例では、冷媒の状態量検出手段としての温
度センサーを圧縮機の吸入管に取り付けて吸入ガスの温
度変化を検出するようにしているが、温度センサーの代
わりに、圧力センサーで、圧力の変化(圧力の変化を温
度変化に変換した場合には温度変化)を検出してもよい
Furthermore, in this embodiment, a temperature sensor as a means for detecting the state quantity of the refrigerant is attached to the suction pipe of the compressor to detect changes in the temperature of the suction gas, but instead of the temperature sensor, a pressure sensor is used. A change in pressure (a change in temperature when a change in pressure is converted into a change in temperature) may be detected.

また、温度センサーの取付位置は、吸入管に拘わらず、
室内熱交換器、室外熱交換器に取り付けてもよく、この
場合には、冷媒の蒸発温度(飽和温度)の変化を検出し
てもよいものである。
In addition, the temperature sensor can be installed at any location, regardless of the suction pipe.
It may be attached to an indoor heat exchanger or an outdoor heat exchanger, and in this case, changes in the evaporation temperature (saturation temperature) of the refrigerant may be detected.

また、電動膨張弁(5)は、本実施例のごとく、周波数
ごとに開度を設定するものの他、蒸発器となる熱交換器
の出口の過熱度を検出して、この過熱度を一定にするよ
うに開度制御される電vJ1B!張弁でもよい。
In addition to setting the opening degree for each frequency as in this embodiment, the electric expansion valve (5) also detects the degree of superheat at the outlet of the heat exchanger that serves as the evaporator, and keeps this degree of superheat constant. Electric vJ1B whose opening is controlled so that It can also be Zhang Ben.

(発明の効果) 以上説明したように、本発明によれば、圧縮機の高容量
運転時に、その高官ω運転状態を維持しつつ電動膨張弁
の開度を絞って、該その開度変化の前後における冷媒温
度Teの変化値の大きさによって電動膨張弁の異常判定
を行うようにしたので、電動膨張弁の故障を検出するこ
とができ、特に開度が大きい状態での異物等による動作
不良を確実に検出でき、1Fi肋膨張弁の動作不良によ
る圧縮機の破損を有効に防止することができる。
(Effects of the Invention) As explained above, according to the present invention, when the compressor is operating at a high capacity, the opening degree of the electric expansion valve is reduced while maintaining the high-level ω operation state, and the change in the opening degree is suppressed. Since the abnormality of the electric expansion valve is determined based on the magnitude of the change in the refrigerant temperature Te before and after, it is possible to detect failures of the electric expansion valve, and to detect malfunctions caused by foreign objects, etc., especially when the opening degree is large. can be reliably detected, and damage to the compressor due to malfunction of the 1Fi cost expansion valve can be effectively prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図である。 第2図〜第7図は本発明の実施例を示し、第2図はその
冷媒配管系統図、第3図は電動膨張弁(5)の開度とパ
ルス信号ia Nとの関係を示すグラフ、第4図(イ)
および(ロ)はそれぞれ周波数fを90H2および30
H7に固定したときの暖房時のパルス信号値Nに対する
冷媒温度Teの変化を示すグラフ、第5図は運転時の時
間(の推移に対する周波数fの変化を示すグラフ、第6
図は電動膨張弁(5)の故障検出のためのチエツク運転
の手順を示すフローチャート、第7図(イ)、(ロ)お
よび(ハ)はそれぞれ異常チエツク運転時の時IJtの
推移に対する周波数f、パルス信号ffflNおよび冷
媒温度Teの変化を示すグラフである。 (1)・・・圧縮機、(1a)・・・インバータ、(5
)・・・電動膨張弁、(11)・・・高容量検出手段、
(12)・・・制皿手段、(13)・・・判別手段、(
TH2)・・・温度センサー(状態量検出手段)。 刊=麺=ニー− 特 許 出 願 人 ダイキン工業株式会社r+1’3
i:、′F”j゛。 ・−3“ ′−゛、。 代     理     人    前  1)   
 弘    ニー、4.、、  □′・−し+1−〜− 第3図 第5図 (ロ) 第4図 バノンス侶号イ通 N 第7図 時間t f闇  t
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 7 show examples of the present invention, FIG. 2 is a refrigerant piping system diagram, and FIG. 3 is a graph showing the relationship between the opening degree of the electric expansion valve (5) and the pulse signal ia N. , Figure 4 (a)
and (b), the frequency f is 90H2 and 30H2, respectively.
Figure 5 is a graph showing changes in refrigerant temperature Te with respect to pulse signal value N during heating when fixed at H7; Figure 5 is a graph showing changes in frequency f with respect to time during operation;
The figure is a flowchart showing the check operation procedure for detecting failure of the electric expansion valve (5), and Figures 7 (a), (b), and (c) show the frequency f with respect to the change in IJt during abnormal check operation, respectively. , is a graph showing changes in pulse signal ffflN and refrigerant temperature Te. (1)...Compressor, (1a)...Inverter, (5
)...Electric expansion valve, (11)...High capacity detection means,
(12)...Plate control means, (13)...Discrimination means, (
TH2)...Temperature sensor (state quantity detection means). Published = Noodles = Knee - Patent applicant: Daikin Industries, Ltd. r+1'3
i:,'F"j゛. ・-3" ′-゛,. Before the agent 1)
Hiro Ni, 4. ,, □'・-shi+1-~- Figure 3 Figure 5 (b) Figure 4 Bannon's number A through N Figure 7 Time t f Darkness t

Claims (1)

【特許請求の範囲】[Claims] (1)圧縮機(1)と該圧縮機(1)の運転周波数を可
変にしてその容量を調整するインバータ(1a)と電動
膨張弁(5)とを備えた空気調和装置において、上記圧
縮機(1)の容量が設定値以上の運転時を検出する高容
量検出手段(11)と、該高容量検出手段(11)で検
出された圧縮機(1)の高容量運転時に、上記インバー
タ(1a)による圧縮機(1)の容量調整を固定すると
ともに上記電動膨張弁(5)の開度を大きく絞るように
制御する制御手段(12)と、該制御手段(12)によ
る電動膨張弁(5)の開度変化の前後における冷媒の状
態量を検出する状態量検出手段(TH2)と、該状態量
検出手段(TH2)で検出した状態量の変化が設定値以
下のとき故障信号を出力する判別手段(13)とを備え
たことを特徴とする空気調和装置の電動膨張弁の故障検
出装置。
(1) In an air conditioner comprising a compressor (1), an inverter (1a) that adjusts the capacity of the compressor (1) by varying its operating frequency, and an electric expansion valve (5), the compressor A high capacity detection means (11) detects when the capacity of the compressor (1) is operating at a set value or higher; a control means (12) for controlling the capacity adjustment of the compressor (1) by the control means (1a) so as to fix the capacity adjustment of the compressor (1) and to greatly reduce the opening degree of the electric expansion valve (5); 5) A state quantity detection means (TH2) that detects the state quantity of the refrigerant before and after the opening change, and outputs a failure signal when the change in the state quantity detected by the state quantity detection means (TH2) is less than a set value. What is claimed is: 1. A failure detection device for an electric expansion valve of an air conditioner, characterized in that the device comprises: a determining means (13) for detecting a failure.
JP61150180A 1986-06-26 1986-06-26 Trouble detector for electric expansion valve of air conditioner Granted JPS636351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61150180A JPS636351A (en) 1986-06-26 1986-06-26 Trouble detector for electric expansion valve of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61150180A JPS636351A (en) 1986-06-26 1986-06-26 Trouble detector for electric expansion valve of air conditioner

Publications (2)

Publication Number Publication Date
JPS636351A true JPS636351A (en) 1988-01-12
JPH0378551B2 JPH0378551B2 (en) 1991-12-16

Family

ID=15491251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61150180A Granted JPS636351A (en) 1986-06-26 1986-06-26 Trouble detector for electric expansion valve of air conditioner

Country Status (1)

Country Link
JP (1) JPS636351A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196444A (en) * 1988-01-29 1989-08-08 Sanyo Electric Co Ltd Controller for air conditioner
JPH01307158A (en) * 1988-06-02 1989-12-12 Matsushita Electric Ind Co Ltd Organic electrolyte lithium secondary battery
JPH0270168U (en) * 1988-11-18 1990-05-28
JP2007010220A (en) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd Refrigerating unit and refrigerator comprising the same
WO2009119130A1 (en) 2008-03-28 2009-10-01 三菱重工業株式会社 Multi-air-conditioner, method for checking operation of indoor electronic expansion valve of indoor unit, computer program, and failure diagnosis device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196444A (en) * 1988-01-29 1989-08-08 Sanyo Electric Co Ltd Controller for air conditioner
JPH01307158A (en) * 1988-06-02 1989-12-12 Matsushita Electric Ind Co Ltd Organic electrolyte lithium secondary battery
JPH0270168U (en) * 1988-11-18 1990-05-28
JP2007010220A (en) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd Refrigerating unit and refrigerator comprising the same
WO2009119130A1 (en) 2008-03-28 2009-10-01 三菱重工業株式会社 Multi-air-conditioner, method for checking operation of indoor electronic expansion valve of indoor unit, computer program, and failure diagnosis device
JP2009243720A (en) * 2008-03-28 2009-10-22 Mitsubishi Heavy Ind Ltd Multi-type air conditioner, method for checking operation of indoor electronic expansion valve of indoor unit, computer program, and failure diagnosis device
EP2256423A4 (en) * 2008-03-28 2017-09-06 Mitsubishi Heavy Industries, Ltd. Multi-type air conditioner, method for checking operation of indoor electronic expansion valves of indoor units, computer program, and fault diagnosis system

Also Published As

Publication number Publication date
JPH0378551B2 (en) 1991-12-16

Similar Documents

Publication Publication Date Title
JPH055564A (en) Air conditioner
JP2664740B2 (en) Air conditioner
US5050397A (en) Air conditioner apparatus with starting control for parallel operated compressors based on high pressure detection
JP2909187B2 (en) Air conditioner
JP3322684B2 (en) Air conditioner
JP3086813B2 (en) Control method of electronic expansion valve in air conditioner
JPH02282673A (en) Trouble diagnosing device for electronic expansion valve
JPS636351A (en) Trouble detector for electric expansion valve of air conditioner
JPH04222349A (en) Operation controller for freezer
JPH01260249A (en) Remote control device for air conditioner
JPH1030852A (en) Air conditioner
JPH0799287B2 (en) Air conditioner
JP2020153600A (en) Refrigeration cycle device
JPH01139965A (en) Operation controller for refrigerator
JP2755040B2 (en) Heat pump system
JPH03213957A (en) Air conditioner
JPH01225852A (en) High pressure controller for air conditioner
JPS62129661A (en) Air conditioner
JPH0527019B2 (en)
JP2793287B2 (en) Cooling bypass air conditioner
JPS62213669A (en) Method of controlling operation of air conditioner
JPH0718599B2 (en) Air conditioner
JP2719456B2 (en) Air conditioner
JPS58127058A (en) Controller for refrigeration cycle
JPS61202056A (en) Refrigerator with electric type expansion valve