JPS6363072B2 - - Google Patents

Info

Publication number
JPS6363072B2
JPS6363072B2 JP18114782A JP18114782A JPS6363072B2 JP S6363072 B2 JPS6363072 B2 JP S6363072B2 JP 18114782 A JP18114782 A JP 18114782A JP 18114782 A JP18114782 A JP 18114782A JP S6363072 B2 JPS6363072 B2 JP S6363072B2
Authority
JP
Japan
Prior art keywords
signal
station
frequency
phase
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18114782A
Other languages
Japanese (ja)
Other versions
JPS5970979A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18114782A priority Critical patent/JPS5970979A/en
Publication of JPS5970979A publication Critical patent/JPS5970979A/en
Publication of JPS6363072B2 publication Critical patent/JPS6363072B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は双曲線航法用受信機に係り、特にデツ
カ航法方式のデツカチエーンで用いられる受信機
に係り各局よりの8f、8.2f信号を受信して測位す
ることとしかつ安価となる双曲線航法用受信機に
関する。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to a receiver for hyperbolic navigation, and in particular to a receiver used in the Detsuka chain of the Detsuka navigation system, which receives 8f and 8.2f signals from each station. This invention relates to a receiver for hyperbolic navigation that is capable of positioning and is inexpensive.

(b) 技術の背景 デツカシステムは通常1つの主局と3つの従局
(赤局 緑局 紫局)とで構成され(デツカチエ
ーン)、該主局といづれかの従局との1対をなす
局が発射する電波を夫々れ受信して、その位相差
を測定し位相差を距離に換算して2局を焦点とし
た1本の双曲線を求め、さらに該主局と他の従局
との1対の2局を用いて上記と同様に他の1本の
双曲線を求めその2本の双曲線の交点から船舶等
の位置を決定するものである。
(b) Technical background The Detsuka system usually consists of one main station and three slave stations (red station, green station, purple station) (Detsuka chain), and the stations that form a pair of the master station and one of the slave stations emit signals. Receive each radio wave, measure the phase difference, convert the phase difference to distance, find one hyperbola with the two stations as focal points, and then Another hyperbola is obtained using the station in the same manner as above, and the position of the ship, etc. is determined from the intersection of the two hyperbolas.

該主局及び3つの主局の電波送信スケジユール
は20秒を1周期として第1図の如くなつている。
送信スケジユールを第1図で説明すると船舶等が
位置測定に用いる主局の6、赤従局の8、緑従局
の9、紫従局の5(は基本周波数で約14KHz)
の信号はほぼ連続的に発射し、前半の10秒間に各
局は順番にレーン識別をさせる電波として6、
8、9、5の4信号を同時に発射している。従来
の受信機ではこの4信号を受信して受信機内で合
成すれば基本周波数1が再生される。この再生し
た1と受信機内の主局の信号に同期した発振器に
より作成した1とを位相比較すればこれがゾーン
内における位相差であり従つてレーン識別をする
ことが出来る。又各局は8.2の信号も送信してい
るがこれは主従間の同期用及び航空機用受信機で
8.2及び8から0.2を得てゾーン識別に使用する
ためのものであり主局よりは2.5秒間従局よりは、
1.75秒間送出している。尚上記の位相差を測定す
る比較同波数の位相差0の隣接する位置線間の区
域をゾーンと呼んでいる。
The radio wave transmission schedule of the main station and the three main stations is as shown in FIG. 1, with one cycle being 20 seconds.
The transmission schedule is explained in Figure 1: 6 is the main station used for position measurement by ships, etc., 8 is the red slave station, 9 is the green slave station, and 5 is the purple slave station (fundamental frequency is approximately 14KHz)
The signal is emitted almost continuously, and during the first 10 seconds each station takes turns to identify the lane6.
Four signals 8, 9, and 5 are emitted at the same time. A conventional receiver receives these four signals and combines them within the receiver to reproduce fundamental frequency 1. If this reproduced 1 is compared in phase with the 1 generated by an oscillator synchronized with the main station signal in the receiver, this is the phase difference within the zone, and therefore lane identification can be performed. Each station also transmits an 8.2 signal, but this is for synchronization between master and slave and for aircraft receivers.
This is to obtain 0.2 from 8.2 and 8 and use it for zone identification.
It is sent for 1.75 seconds. Note that the area between adjacent position lines where the phase difference of the same wave number is 0 is called a zone.

(c) 従来技術と問題点 第2図は従来例の簡単な構成のデツカ受信機の
構成を示すブロツク図である。
(c) Prior Art and Problems FIG. 2 is a block diagram showing the configuration of a simple conventional deck receiver.

図中1はアンテナ、2は校正用発振器、3−1
〜3−4は高周波増巾器で各々周波数が5、6、
9、8の信号受信用である。4−1〜4−4はミ
キサ、5−1〜5−4は第1の中間周波増巾器で
各々周波数が5F′、6F′、9F′、8F′の信号の増巾器
である。6−1〜6−3は可変位相器、7−1〜
7−4は発振器で各々発振周波数は5△、6△、
9△、8△でそれぞれ1△に位相同期している。
8−1〜8−4は信号対雑音化(S/N)を良く
するため帯域巾がほぼ20Hzの狭帯域波器で通過
帯域の中心周波数は各々5F′、6F′、9F′、8F′であ
る。9−1〜9−4は第2の中間周波増巾器で
各々周波数5F′、6F′、9F′、8F′の信号の増巾器で
ある。ここで周波数F′は△−である。10−1
〜10−4は逓倍器で10−1は5F′×6倍用、
10−2は6F′×5、6F′×3、6F′×4倍用10
−3は9F′×2倍用、10−4は8F′×3倍用であ
る。11は合成器、12は分周比が1/6の分周器、
13はピークレベル検出器、14−1〜14−
4,16は位相差検出器、15−1〜15−4は
表示器、SWはスイツチ、17は電圧制御発振郵
(以下VCOと称す)、18は低域波器を示す。
In the figure, 1 is the antenna, 2 is the calibration oscillator, 3-1
~3-4 are high frequency amplifiers with frequencies of 5, 6, and 6, respectively.
It is for receiving signals of 9 and 8. 4-1 to 4-4 are mixers, and 5-1 to 5-4 are first intermediate frequency amplifiers, which are amplifiers for signals having frequencies of 5F', 6F', 9F', and 8F', respectively. 6-1 to 6-3 are variable phase shifters, 7-1 to 6-3 are variable phase shifters;
7-4 is an oscillator whose oscillation frequencies are 5△, 6△,
The phases of 9△ and 8△ are each synchronized with 1△.
8-1 to 8-4 are narrowband transducers with a bandwidth of approximately 20Hz to improve signal-to-noise ratio (S/N), and the center frequencies of the passbands are 5F', 6F', 9F', and 8F', respectively. It is. Reference numerals 9-1 to 9-4 are second intermediate frequency amplifiers for signals of frequencies 5F', 6F', 9F' and 8F', respectively. Here, the frequency F' is Δ-. 10-1
~10-4 is a multiplier, 10-1 is for 5F' x 6 times,
10-2 is 10 for 6F' x 5, 6F' x 3, 6F' x 4
-3 is for 9F' x 2x, and 10-4 is for 8F' x 3x. 11 is a synthesizer, 12 is a frequency divider with a frequency division ratio of 1/6,
13 is a peak level detector, 14-1 to 14-
4 and 16 are phase difference detectors, 15-1 to 15-4 are indicators, SW is a switch, 17 is a voltage controlled oscillator (hereinafter referred to as VCO), and 18 is a low frequency generator.

発振器7−1〜7−4の発振周波数5△、6
△、9△、8△は受信する5、6、9、8(は
約14KHz)の周波数をミキサ4−1〜4−4を介
することにより5F′、6F′、9F′、8F′の周波数
(F′=△−)を得るもので例えばF′は1KHzとな
るような周波数である。17のデツカチエーンで
は第1図に示す如く主局は6、赤局は8、緑局は
9、紫局は5の電波を発射する。デツカ受信機内
で主局及び各従局よりの電波の位相差を比較する
時周波数が異なるのでそのままでは位相を比較し
て位相差を求めることは不可能である。又測位精
度を向上する為S/Nを向上させる必要がある。
この為デツカ受信機は第2図に示す如く、各局よ
り発射された5、6、9、8の電波をアンテナ1
を介し受信し、各々高周波増巾器3−1〜3−4
で増巾し、ミキサ4−1〜4−4にて周波数変換
し周波数が5F′、6F′、9F′、8F′の信号とし、これ
等の信号を第1の中間周波増巾器5−1〜5−4
にて夫々れ増巾し、狭帯域波器8−1〜8−4
にてS/Nを向上し、第2の中間周波増巾部器9
−1〜9−4にて増巾し、主局の6を周波数変換
した6F′の信号と各従局の5、9、8を周波数変
換し5F′、9F′、8F′の信号の最小公倍数である
30F′18F′、24F′を得るよう逓倍器10−1〜10
−4で逓倍する。但し主局の6の信号を周波数変
換した6F′の信号に、位相差検出器16と低域
波器18、VCO17よりなる自動位相制御回路
によりVCO17の6F′の周波数の位相を同期させ
てこの出力を逓倍器10−2及び分周器12に供
給している。又逓倍器10−2は主局の6F′を逓
倍するもので、各従局の5F′、9F′、8F′と位相比
較する為に最小公倍数の30F′、18F′、24F′の信号
を得るようになつている。即ち主局−紫局の位相
比較のためには主局の6F′を5倍、紫従局の5F′を
6倍して30F′で位相差検出器14−1を介して位
相差を求め表示器15−1に表示さす。同様に主
局−緑局の位相比較には主局の6F′の3倍と緑従
局の2倍の18F′、主局−赤局の位相比較には主局
の6F′の4倍赤従局の8Fを3倍の24F′で位相検出
器14−2,14−3を介して位相差を求め表示
器15−2,15−3に表示さす。これ等の表示
器15−1〜15−3の表示にて位置を測定す
る。これ等の表示器15−1〜15−3の表示は
主局と各従局を結ぶ基線上において300m〜600m
ごとに同じ位相差を表示する。これは1つのレー
ン内の位置を指示するものであり、したがつて、
どのレーン内にあるかを知るためにレーン識別が
必要である。この為第1図に示す如く主従各局は
同期的に5、6、8、9の4波を同時に短時間発
射する。この各局から同時に発射される4波を受
信し周波数変換し5F′、6F′、8F′、9F′の周波数の
信号としこれ等を合成器11に加えピークレベル
検出器13にてピークレベルを検出すると公知の
如く1F′の周波数の信号が得られる。この周波数
1F′の信号と、分周期12の出力の主局の6の信
号に位相同期した1F′の信号との位相差を位相差
検出器14−4で求め表示器15−4に表示す
る。この表示器15−4の表示によりレーン識別
が出来る。この時主局より発射する4波による
1F′の信号と分周器12の出力との位相差を表示
器15−4では零を表示するようにしてある。し
かし主従局からの電波を受信して逓倍器にて逓倍
する迄の各チヤンネルの回路は温度により位相が
変化する。この為各チヤネル間の位相を校正する
必要がある。この校正をする場合はスイツチSW
を点線側とし基本周波数に等しい同波数のパル
スを発する校正用発振器2の出力の高調波を各高
周波増巾器3−1〜3−4に入力させ主局の6の
信号を受信するチヤンネルを基準としこれに位相
が合致するよう即ち表示器15−1〜15−3の
値が零になるよう可変位相器6−1〜6−3を調
整する。尚狭帯域波器9−1〜9−4は可変移
送器6−1〜6−3にて調整が出来る程度に温度
特性をシビアに一致させておく必要がある。従つ
て第2図の受信機は4周波数を受信する受信回路
が必要であり。又校正用として校正用発振器2及
び可変移送器6−1〜6−3が必要でかつ狭帯域
波器9−1〜9−4の温度特性をシビアーに一
致させることが必要でかつレーン識別回路も必要
で高価となる欠点がある。
Oscillation frequencies 5△, 6 of oscillators 7-1 to 7-4
△, 9△, and 8△ are the frequencies of 5F', 6F', 9F', and 8F' by passing the received frequencies of 5, 6, 9, and 8 (approximately 14KHz) through mixers 4-1 to 4-4. (F'=△-), and for example, F' is a frequency of 1KHz. In the 17 detsuka chain, as shown in Figure 1, the main station is 6, the red station is 8, and the green station is
9, the purple station emits radio waves of 5. When comparing the phase difference between the radio waves from the main station and each slave station in the Detsuka receiver, the frequencies are different, so it is impossible to compare the phases and determine the phase difference. Furthermore, in order to improve positioning accuracy, it is necessary to improve the S/N ratio.
For this reason, the Detsuka receiver transmits radio waves 5, 6, 9, and 8 emitted from each station to the antenna as shown in Figure 2.
and high frequency amplifiers 3-1 to 3-4, respectively.
and frequency-converted by mixers 4-1 to 4-4 to produce signals with frequencies of 5F', 6F', 9F', and 8F', and these signals are passed to the first intermediate frequency amplifier 5- 1-5-4
and narrowband waveforms 8-1 to 8-4.
The S/N is improved by the second intermediate frequency amplification unit 9.
The least common multiple of the 6F' signal which is amplified by -1 to 9-4 and frequency converted from 6 of the main station, and the 5F', 9F' and 8F' signals which are frequency converted from 5, 9 and 8 of each slave station. is
Multipliers 10-1 to 10 to obtain 30F′18F′, 24F′
Multiply by -4. However, the phase of the 6F' frequency of the VCO 17 is synchronized with the 6F' signal obtained by converting the frequency of the main station's signal 6 by an automatic phase control circuit consisting of a phase difference detector 16, a low frequency generator 18, and a VCO 17. The output is supplied to a multiplier 10-2 and a frequency divider 12. The multiplier 10-2 multiplies 6F' of the main station, and obtains signals of least common multiples of 30F', 18F', and 24F' for phase comparison with 5F', 9F', and 8F' of each slave station. It's becoming like that. That is, for phase comparison between the main station and the purple station, 6F' of the main station is multiplied by 5, 5F' of the purple slave station is multiplied by 6, and the phase difference is determined and displayed at 30F' via the phase difference detector 14-1. Display on the display 15-1. Similarly, for the phase comparison between the main station and the green station, 18F' is three times the 6F' of the main station and twice the green slave station, and for the phase comparison between the main station and the red station, the red slave station is four times the 6F' of the main station. The phase difference is determined by multiplying 8F by 24F' through the phase detectors 14-2 and 14-3, and displays it on the displays 15-2 and 15-3. The position is measured by the display on these indicators 15-1 to 15-3. These displays 15-1 to 15-3 indicate distances of 300m to 600m on the baseline connecting the main station and each slave station.
Display the same phase difference for each. This indicates a position within one lane and therefore:
Lane identification is required to know which lane it is in. For this reason, as shown in FIG. 1, each master and slave station synchronously emits four waves 5, 6, 8, and 9 simultaneously for a short period of time. These four waves emitted simultaneously from each station are received and frequency-converted to become signals with frequencies of 5F', 6F', 8F', and 9F'.These are added to the synthesizer 11, and the peak level is detected by the peak level detector 13. Then, as is well known, a signal with a frequency of 1F' is obtained. this frequency
The phase difference between the 1F' signal and the 1F' signal phase-synchronized with the main station signal 6 of the output of the division period 12 is determined by the phase difference detector 14-4 and displayed on the display 15-4. Lanes can be identified by the display on the display 15-4. At this time, due to the 4 waves emitted from the main station
The phase difference between the signal of 1F' and the output of the frequency divider 12 is displayed as zero on the display 15-4. However, the phase of each channel circuit from receiving the radio waves from the master and slave stations to multiplying them by the multiplier changes depending on the temperature. For this reason, it is necessary to calibrate the phase between each channel. When performing this calibration, use the switch SW.
is on the dotted line side, and the harmonics of the output of the calibration oscillator 2, which emits pulses with the same wave number equal to the fundamental frequency, are input to each high frequency amplifier 3-1 to 3-4 to create a channel for receiving the signal of 6 from the main station. The variable phase shifters 6-1 to 6-3 are adjusted so that the phase matches the standard, that is, the values on the indicators 15-1 to 15-3 become zero. It is necessary to closely match the temperature characteristics of the narrowband waveforms 9-1 to 9-4 to the extent that they can be adjusted by the variable transfer devices 6-1 to 6-3. Therefore, the receiver shown in FIG. 2 requires a receiving circuit that receives four frequencies. In addition, a calibration oscillator 2 and variable transfer devices 6-1 to 6-3 are required for calibration, and it is necessary to strictly match the temperature characteristics of the narrowband wave generators 9-1 to 9-4, and a lane identification circuit is required. It also has the disadvantage that it is necessary and expensive.

(d) 発明の目的 本発明の目的は上記の欠点をなくすために各局
よりの周波数8、8.2の2波の信号を受信して測
位することとし、受信増巾部が1個でかつレーン
識別が不要で校正動作も必要なく又狭帯域波器
の温度特性も緩和出来安価に構成出来るデツカ受
信機の提供にある。
(d) Purpose of the invention In order to eliminate the above-mentioned drawbacks, the purpose of the present invention is to perform positioning by receiving signals of two waves of frequency 8 and 8.2 from each station, and to use only one reception amplification unit and lane identification. To provide a dekka receiver that does not require a calibration operation, does not require a calibration operation, can relax the temperature characteristics of a narrowband wave transmitter, and can be constructed at low cost.

(e) 発明の構成 本発明は上記の目的を達成するために、基準周
波数の8倍の周波数又は8.2倍の周波数の信号
を受信機が受信する時、それに対応して周波数が
切りかわる第1、第2の局部発振器の周波数によ
り2段階に周波数を抵下させ1個の狭帯域波器
を通過するよう周波数を接近させた8F、8.2F(F
はより周波数が低い基準周波数)の信号を出力
さす1チヤンネルのダブルスーパヘテロダイン受
信増巾部及び従局よりの8.2信号受信時該受信増
巾部にて周波数変換された8.2F信号に位相追尾す
るVCOを持つ自動位相制御回路及び主局の8.2F
信号に位相追尾したVCOの出力を分周して第1
の0.2F信号を発する回路及び各局別の8.2F信号に
位相追尾したVCOの出力と、各局がレーン識別
用の電波を発射した時、該受信増巾部の出力の
8F信号とで各局別の0.2F信号を作るミキサ及び
該各局別の0.2F信号と該第1の0.2F信号との位相
差を順次求め測位計算する信号処理回路を具備し
てなることを特徴とする。
(e) Structure of the Invention In order to achieve the above-mentioned object, the present invention provides a first system in which, when a receiver receives a signal with a frequency 8 times or 8.2 times the reference frequency, the frequency is switched correspondingly. , 8F and 8.2F (F
A single-channel double superheterodyne reception amplification unit that outputs a signal with a lower reference frequency) and a VCO that tracks the phase of the 8.2F signal frequency-converted by the reception amplification unit when receiving an 8.2 signal from a slave station. Automatic phase control circuit with 8.2F of main station
The output of the VCO that tracks the phase of the signal is divided into the first
The circuit that emits the 0.2F signal of
It is characterized by being equipped with a mixer that creates a 0.2F signal for each station with the 8F signal, and a signal processing circuit that sequentially obtains the phase difference between the 0.2F signal for each station and the first 0.2F signal and calculates positioning. shall be.

(f) 発明の実施例 以下本発明の1実施例につき図に従つて説明す
る。第3図は本発明の実施例のデツカ受信機の構
成を示すブロツク図である。
(f) Embodiment of the invention An embodiment of the invention will be described below with reference to the drawings. FIG. 3 is a block diagram showing the configuration of a decker receiver according to an embodiment of the present invention.

図中1はアンテナ、19は高周波増巾器、2
0,22,37はミキサ、21は第1の中間周波
増巾器、23は第2の中間周波数増巾器、24は
位相差検出器、25はローカル発振器、26はシ
ンセサイザ、27は分周及び逓倍器、28は検波
器、29はタイマ、30,31は可変分周器、3
2はVCO、33〜36は低域波器(以下LPF
と称す)、38は分周比1/41の分周器、39は計
数器、40は信号処理器、41は表示器、42は
計測用発振器、S1〜S5はスイツチを示す。
In the figure, 1 is an antenna, 19 is a high frequency amplifier, and 2
0, 22, and 37 are mixers, 21 is a first intermediate frequency amplifier, 23 is a second intermediate frequency amplifier, 24 is a phase difference detector, 25 is a local oscillator, 26 is a synthesizer, and 27 is a frequency divider. and a multiplier, 28 a detector, 29 a timer, 30 and 31 a variable frequency divider, 3
2 is VCO, 33 to 36 are low frequency filters (hereinafter referred to as LPF)
), 38 is a frequency divider with a frequency division ratio of 1/41, 39 is a counter, 40 is a signal processor, 41 is a display, 42 is a measurement oscillator, and S1 to S5 are switches.

第4図は主局及び従局の8、8.2の信号送出時
間及び第3図の各部の動作のタイムチヤートで
A、B、C、Dは主局M、赤局R、緑局G、紫局
Pの8、8.2の電波送信スケジユールで主局の
8.2の時間同期用信号発射時を基準としている。
Eはシンセサイザの出力周波数を可変する時間を
示しており各局がレーン識別用信号を送出する時
間は8△′の周波数を他の時間は8.2△′の周波数
を出力する。このとき8△′、8.2△′はそれぞれ
0.2△′で一定位相関係にある。Fは可変分周器3
1の設定時間を示しており、Hはミキサ37より
の各局別の0.2F信号の出力時間、は各局別の計
測時間を示している。各局よりの8、8.2の電波
はアンテナ1を介して1チヤンネルのダブルスー
パヘテロダインの高周波増巾器19に入力し、増
巾されてミキサ20に入力し周波数を低く変換さ
れ第1の中間周波増巾器21で増巾されミキサ2
2に入力し又周波数を低く変換され第2の中間周
波増巾器23で増巾され周波数が8F又は8.2Fと
なつた信号が出力される。ミササ20,22には
夫々れローカル発振器25の出力をシンセサイザ
26にて周波数合成された周波数8△′又は8.2
△′の信号、これらを分周逓倍器27にて分周逓
倍された周波数8△″又は8.2△″の信号が、タイ
マ29にて制御され第4図Eに示す如く、各局が
レーン識別用信号を送出している時は8△′、8
△″の信号を他の時間は8.2△′、8.2△″の信号が
入力されている。例えば(△′−)=1KHzとな
る如く周波数△′は選ばれており、△″は1100Hzに
選ばれている。従つて第1の中間周波増巾器21
の出力信号の周波数は8KHz又は8.2KHzとなり第
2の中間周波増巾器23の出力信号の周波数8F
又は8.2Fは800Hz又は820Hzとなる。よつて第1中
間周波増巾器21の持つ波器は帯域巾200Hzの
もので第2の中間周波増巾器23の持つ波器の
帯域巾は20Hzの狭帯域波器でありS/Nは従来
のものとかわらない。第2の中間周波増巾器23
の出力は位相差検出器24に加えられると共に検
波器28にも加えられ検波され入力レベルに応じ
た直流出力を得て高周波増巾器19、第1第2の
中間周波増巾器21,23に加えられ第2の中間
周波増巾器23の出力レベルが一定となるよう
AGC制御を行う。又検波器28の出力はタイマ
29に加えられ主局よりの2.5秒間送信される同
期用の8.2信号にてタイマ29の基準時間を設定
する。位相差検出器24、可変分周器31、
VCO32、LPF3は主局の8.2F信号の位相追尾
用自動位相調整回路(以下APCと称す)を構成
しており、第4図Fに示す如く主局より主従局間
の同期用の8.2信号送出時タイマ29の制御にて
スイツチS5を点線側に、スイツチS4を接とし
てVCO32が主局の8.2を周波数変換した8.2Fに
位相が合致するよう可変分周器31の値を設定
し、この設定値を信号処理器40に記憶させてお
き可変分周器31の値を一定に保ち、可変分周器
31の出力を分周比1/41の分周した周波数0.2Fの
信号を各局との位相比較用として計数器39に入
力する。
Figure 4 is a time chart of the signal sending times of 8 and 8.2 of the main station and slave stations and the operation of each part in Figure 3. A, B, C, and D are the main station M, the red station R, the green station G, and the purple station. The main station's radio wave transmission schedule is 8 and 8.2 in P.
8.2 is based on the time when the time synchronization signal is emitted.
E indicates the time during which the output frequency of the synthesizer is varied, and each station outputs a frequency of 8.DELTA.' during the time when it sends out a lane identification signal, and a frequency of 8.2.DELTA.' at other times. In this case, 8△′ and 8.2△′ are respectively
There is a constant phase relationship of 0.2△′. F is variable frequency divider 3
1, H indicates the output time of the 0.2F signal for each station from the mixer 37, and H indicates the measurement time for each station. The radio waves of 8 and 8.2 from each station are input to the one-channel double superheterodyne high frequency amplifier 19 via the antenna 1, amplified and input to the mixer 20, where the frequency is converted to a lower frequency and the first intermediate frequency amplifier is input. The width is increased by the width device 21 and the mixer 2
2, the frequency is converted to a lower value, amplified by the second intermediate frequency amplifier 23, and a signal having a frequency of 8F or 8.2F is output. The missers 20 and 22 receive a frequency of 8△' or 8.2, which is frequency-synthesized by a synthesizer 26 from the output of the local oscillator 25, respectively.
The signal △′ and the signal with a frequency of 8△″ or 8.2△″, which are frequency-divided and multiplied by the frequency divider/multiplier 27, are controlled by the timer 29 and are used by each station for lane identification as shown in FIG. 4E. 8△', 8 when sending a signal
At other times, signals of 8.2△' and 8.2△'' are input. For example, the frequency △′ is selected such that (△′−)=1KHz, and △″ is selected to be 1100Hz. Therefore, the first intermediate frequency amplifier 21
The frequency of the output signal of the second intermediate frequency amplifier 23 is 8KHz or 8.2KHz, and the frequency of the output signal of the second intermediate frequency amplifier 23 is 8F.
Or 8.2F becomes 800Hz or 820Hz. Therefore, the transducer of the first intermediate frequency amplifier 21 has a bandwidth of 200 Hz, and the transducer of the second intermediate frequency amplifier 23 has a narrow band width of 20 Hz, and the S/N is as follows. It is no different from the conventional one. Second intermediate frequency amplifier 23
The output is applied to the phase difference detector 24 and also to the wave detector 28, where it is detected and a DC output corresponding to the input level is obtained, which is then sent to the high frequency amplifier 19 and the first and second intermediate frequency amplifiers 21 and 23. so that the output level of the second intermediate frequency amplifier 23 remains constant.
Performs AGC control. The output of the detector 28 is added to the timer 29, and the reference time of the timer 29 is set by the synchronizing 8.2 signal transmitted for 2.5 seconds from the main station. phase difference detector 24, variable frequency divider 31,
VCO32 and LPF3 constitute an automatic phase adjustment circuit (hereinafter referred to as APC) for phase tracking of the 8.2F signal of the main station, and as shown in Figure 4F, the main station sends out the 8.2 signal for synchronization between the master and slave stations. Under the control of the hour timer 29, switch S5 is set to the dotted line side, switch S4 is connected, and the value of the variable frequency divider 31 is set so that the phase matches 8.2F, which is obtained by converting the frequency of 8.2 of the main station by the VCO 32. The value is stored in the signal processor 40, the value of the variable frequency divider 31 is kept constant, and a signal with a frequency of 0.2F obtained by dividing the output of the variable frequency divider 31 with a frequency division ratio of 1/41 is transmitted to each station. The signal is input to a counter 39 for phase comparison.

位相差検出器24、可変分周器30、VCO3
2、LPF33〜34は主局及び各従局の8.2を周
波数変換した8.2F信号の位相追尾用APCを構成
しており、主局のレーン識別信号送出時、赤縁紫
従局の8.2信号送出時はタイマ29の制御により
スイツチS5を実線側に切替えておくと共にスイ
ツチS4〜S1を順次接としLPF33〜36を
切替え、VCO32の位相が主局及び赤緑紫従局
の8.2を周波数変換した8.2F信号に、各局が8.2
信号送出時に位相が合致するよう第4図Gに示す
如く可変分周器30の値を設定し、この値を信号
処理器40に記憶させておき、次の周期の可変分
周器30の値の設定を短時間に出来るようにする
と共に可変分周器30の出力をミキサ37に入力
している。ミキサ37には主局及び各従局のレー
ン識別用信号送出時は第2の中間周波増巾器23
の出力の8Fの信号が入力し、其の時各局の8信
号に位相同期した0.2Fの信号が第4図Hに示す如
くミキサ37より出力し計数器39に入力する。
この0.2Fの信号は計数器39にて分周器38より
の位相比較用の0.2F信号と位相比較されその位相
差に応じた計測用発振器42よりのクロツクを計
数し信号処理器40に入力する。この計測用発振
器42のクロツク周波数は15000×(は基本周
波数)程度であるので従来30として位相比較し
1/100の分解能を持つていたものと同等の分解能
が得られる。信号処理器42では第4図に示す
如く各局よりのレーン識別信号送出時タイマ29
の制御により計数器39にて計数したを測位に必
要なデータにデータ処理を行う。即ち主局のレー
ン識別信号時のの値を零になるように校正する。
この校正された値を各局の計測時に切替え表示器
41のに各局よりの位相差を表示させ運用者はこ
れを見て自局の位置を求める。第3図の受信機で
は測位するのに周波数が8、8.2の信号を用い1
チヤンネルのダブルスーパヘテロダインの受信増
巾部を使用しているので受信増巾部は1個でよく
又温度変化等による校正は必要がなくなり第1図
の校正用発振器2及び可変移送器6−1〜6−3
は不要となり又8、8.2の信号は1個の狭帯域
波器を通過するので狭帯域波器の温度変化に対
する特性変化も緩和される。尚、又8と8.2は周
波数が接近しているため従来方式に比して特に夜
間空間波の影響による位相変化の影響が少くなり
測位精度が上る。又位相比較するのに周波数が
0.2信号(周波数変換された0.2F)を用いている
ので従来の1信号を用いたレーン識別に比しても
1レーンの巾が広くなるのでレーン識別回路は不
要となる。
Phase difference detector 24, variable frequency divider 30, VCO3
2. LPF 33 to 34 constitute an APC for phase tracking of the 8.2F signal obtained by converting the frequency of 8.2 of the main station and each slave station. Under the control of the timer 29, the switch S5 is switched to the solid line side, and the switches S4 to S1 are sequentially connected to switch the LPFs 33 to 36, so that the phase of the VCO 32 becomes an 8.2F signal obtained by converting the frequency of 8.2 of the main station and the red, green, and purple slave stations. , each station is 8.2
The value of the variable frequency divider 30 is set as shown in FIG. 4G so that the phases match when sending signals, this value is stored in the signal processor 40, and the value of the variable frequency divider 30 for the next cycle is set. can be set in a short time, and the output of the variable frequency divider 30 is input to the mixer 37. The mixer 37 includes a second intermediate frequency amplifier 23 when sending lane identification signals for the main station and each slave station.
The 8F signal from the output of each station is input, and at that time, a 0.2F signal phase-synchronized with the 8 signals from each station is output from the mixer 37 and input to the counter 39 as shown in FIG. 4H.
This 0.2F signal is phase-compared with the 0.2F signal for phase comparison from the frequency divider 38 in the counter 39, and the clock from the measurement oscillator 42 is counted according to the phase difference and input to the signal processor 40. do. Since the clock frequency of this measurement oscillator 42 is approximately 15,000×(fundamental frequency), it is possible to obtain a resolution equivalent to that of the conventional phase comparison using 30, which has a resolution of 1/100. The signal processor 42 uses a timer 29 when each station sends a lane identification signal as shown in FIG.
Under the control of the counter 39, the data counted by the counter 39 is processed into data necessary for positioning. That is, the value of the lane identification signal of the main station is calibrated to zero.
This calibrated value is used to display the phase difference from each station on the switching display 41 when measuring each station, and the operator looks at this and determines the position of his own station. The receiver in Figure 3 uses signals with frequencies 8 and 8.2 for positioning.
Since the channel double superheterodyne receiving amplifying section is used, only one receiving amplifying section is required, and there is no need for calibration due to temperature changes, etc., and the calibration oscillator 2 and variable transfer device 6-1 shown in Fig. 1 ~6-3
is no longer necessary, and since the signals of 8 and 8.2 pass through one narrow band waver, changes in the characteristics of the narrow band waver due to temperature changes are also alleviated. Furthermore, since the frequencies of 8 and 8.2 are close to each other, compared to the conventional method, the influence of phase changes due to the influence of nighttime spatial waves is reduced and the positioning accuracy is improved. Also, the frequency is required for phase comparison.
Since a 0.2 signal (frequency-converted 0.2F) is used, the width of one lane is wider than the conventional lane identification using one signal, so a lane identification circuit is not required.

(g) 発明の効果 以上詳細に説明する如く本発明によれば受信増
巾部は1個でよく温度変化等による校正回路及び
レーン識別回路は不要で又狭帯域波器の温度変
化による特性変化の規格も緩和され安価な受信機
が得られかつ空間波の影響も少くなり測位精度が
向上する効果がある。
(g) Effects of the Invention As explained in detail above, according to the present invention, only one reception amplification unit is required, and there is no need for a calibration circuit or lane identification circuit due to temperature changes, and characteristic changes due to temperature changes of the narrowband waveform generator are eliminated. This has the effect of relaxing the standards, making it possible to obtain inexpensive receivers, reducing the influence of spatial waves, and improving positioning accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はデツカチエーンの電波送出スケジユー
ル図、第2図は従来例の簡単な構成のデツカ受信
機の構成を示すブロツク図、第3図は本発明の実
施例のデツカ受信機の構成を示すブロツク図、第
4図は各局の8、8.2の信号の送出時間及び第3
図の各部の動作のタイムチヤートを示す。 図中1はアンテナ、2は校正用発振器、3−1
〜3−4,19は高周波増巾器、4−1〜4−
4,20,22,37はミキサ、5−1〜5−
4,9−1〜9−4,21,23は中間周波増巾
器、6−1〜6−3は可変移送器、7−1〜7−
4,25,42は発振器、8−1〜8−4は狭帯
域波器、10−1〜10−4は逓倍器、11は
合成器、12,38は分周器、13はピークレベ
ル検出器、14−1〜14−4,16,24は位
相差検出器、17,32は電圧制御発振器、1
8,33〜36は低域波器、15−1〜15−
4,41は表示器、26はシンセサイザ、27は
分周逓信器、28は検波器、29はタイマ、3
0,31は可変分周器、39は計数器、40は信
号処理器、S1〜S5,SWはスイツチを示す。
Figure 1 is a radio wave transmission schedule diagram of a deck chain, Figure 2 is a block diagram showing the configuration of a conventional simple deck receiver, and Figure 3 is a block diagram showing the configuration of a deck receiver according to an embodiment of the present invention. Figure 4 shows the transmission time of signals 8 and 8.2 of each station and the third
A time chart of the operation of each part in the figure is shown. In the figure, 1 is the antenna, 2 is the calibration oscillator, 3-1
~3-4, 19 is a high frequency amplifier, 4-1~4-
4, 20, 22, 37 are mixers, 5-1 to 5-
4, 9-1 to 9-4, 21, 23 are intermediate frequency amplifiers, 6-1 to 6-3 are variable transfer devices, 7-1 to 7-
4, 25, 42 are oscillators, 8-1 to 8-4 are narrowband wave generators, 10-1 to 10-4 are multipliers, 11 is a combiner, 12 and 38 are frequency dividers, 13 is a peak level detector 14-1 to 14-4, 16, 24 are phase difference detectors, 17, 32 are voltage controlled oscillators, 1
8, 33 to 36 are low frequency devices, 15-1 to 15-
4, 41 is a display, 26 is a synthesizer, 27 is a frequency divider, 28 is a detector, 29 is a timer, 3
0 and 31 are variable frequency dividers, 39 is a counter, 40 is a signal processor, and S1 to S5 and SW are switches.

Claims (1)

【特許請求の範囲】[Claims] 1 双曲線航法方式受信機において、基準周波数
の8倍の周波数又は8.2倍の周波数の信号を受
信する時それに対応して周波数が切りかわる第
1、第2の局部発振器の周波数により2段階に周
波数を低下させ1個の狭帯域波器を通過するよ
うに周波数を接近させた出力周波数が、より低
い基準周波数Fの8倍及び8.2倍の信号を出力さ
す1チヤンネルのダブルスーパへテロダイン受信
増巾部、及び主局及び従局よりの8.2信号受信時
該受信増巾部にて周波数変換された8.2F信号で位
相追尾する電圧制御発振器を持つ自動位相制御回
路、及び主局の8.2F信号に位相追尾した電圧制御
発振器の出力を分周して第1の0.2F信号を発する
回路、及び各局別の8.2F信号に位相追尾した電圧
制御発振器の出力と、各局がレーン識別用の電波
を発射した時、該受信増巾部の出力の8F信号と
で各局別の0.2F信号を作るミクサ、及び該各局別
の0.2F信号と該第1の0.2F信号との位相差を順次
求め測位計算する信号処理回路を具備してなるこ
とを特徴とする双曲線航法用受信機。
1 In a hyperbolic navigation receiver, when receiving a signal with a frequency 8 times or 8.2 times the reference frequency, the frequency is changed in two stages according to the frequency of the first and second local oscillators, which change the frequency accordingly. A 1-channel double superheterodyne receiver amplification unit that outputs signals whose output frequencies are 8 times and 8.2 times the lower reference frequency F, whose frequencies are lowered and brought closer to each other so as to pass through one narrow band waver. , and an automatic phase control circuit with a voltage controlled oscillator that tracks the phase with the 8.2F signal frequency-converted in the reception amplification section when receiving the 8.2 signal from the main station and slave station, and tracks the phase of the 8.2F signal from the main station. A circuit that divides the output of the voltage controlled oscillator and generates the first 0.2F signal, and the output of the voltage controlled oscillator that tracks the phase of the 8.2F signal for each station, and when each station emits radio waves for lane identification. , a mixer that creates a 0.2F signal for each station with the 8F signal output from the reception amplification section, and a signal that sequentially determines the phase difference between the 0.2F signal for each station and the first 0.2F signal and calculates positioning. A hyperbolic navigation receiver characterized by comprising a processing circuit.
JP18114782A 1982-10-15 1982-10-15 Receiver for hyperbolic navigation Granted JPS5970979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18114782A JPS5970979A (en) 1982-10-15 1982-10-15 Receiver for hyperbolic navigation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18114782A JPS5970979A (en) 1982-10-15 1982-10-15 Receiver for hyperbolic navigation

Publications (2)

Publication Number Publication Date
JPS5970979A JPS5970979A (en) 1984-04-21
JPS6363072B2 true JPS6363072B2 (en) 1988-12-06

Family

ID=16095704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18114782A Granted JPS5970979A (en) 1982-10-15 1982-10-15 Receiver for hyperbolic navigation

Country Status (1)

Country Link
JP (1) JPS5970979A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016012101A1 (en) 2016-10-08 2018-04-12 Forschungszentrum Jülich GmbH Method and device for position determination

Also Published As

Publication number Publication date
JPS5970979A (en) 1984-04-21

Similar Documents

Publication Publication Date Title
JPH02504673A (en) Navigation and tracking system
JPWO2019234946A1 (en) Radar device, failure detection method of radar device, and operation method of radar device
US3818331A (en) Testing and measuring system for determining the characteristics of a network over a variable frequency range
US4106022A (en) Radio position-determining system
US3883873A (en) Method of unambiguous detecting the position of moving object, also ground station and receiver display of radio navigation system for effecting same
US3818332A (en) Testing system for measuring the characteristics of a network over a variable frequency range
JPS6363072B2 (en)
US3242492A (en) Radiolocation systems
US2578980A (en) Radio-frequency navigation system
US2483557A (en) Radio beacon system
JPS6363070B2 (en)
US3025518A (en) Loran receiver
US2407649A (en) Direction finding system
US2690559A (en) Radio frequency navigation system with lane identification
JPS6244228B2 (en)
KR100291559B1 (en) Phase difference measurement apparatus for tuned oneself
JP2648957B2 (en) Level calibration method for propagation delay time measuring device
SU1741096A1 (en) Device for comparing time standards
US2652562A (en) Radio location system
SU985753A1 (en) Device for measuring directional pattern
JPS5956179A (en) Reception system of decca receiver
JPS58113867A (en) Sweeping-receiving device
JPS60214637A (en) Frequency synthesizer type radio receiver
RU92U1 (en) Device for measuring blood flow velocity
RU2161863C2 (en) Device for monitoring of operation of radio stations with pseudorandom retuning of operating frequency