JPS6362728A - Resin-aluminum composite material having excellent cold moldability - Google Patents

Resin-aluminum composite material having excellent cold moldability

Info

Publication number
JPS6362728A
JPS6362728A JP20869086A JP20869086A JPS6362728A JP S6362728 A JPS6362728 A JP S6362728A JP 20869086 A JP20869086 A JP 20869086A JP 20869086 A JP20869086 A JP 20869086A JP S6362728 A JPS6362728 A JP S6362728A
Authority
JP
Japan
Prior art keywords
aluminum foil
nominal strain
resin
strain
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20869086A
Other languages
Japanese (ja)
Inventor
英夫 河合
雅司 坂口
智明 山ノ井
進 高田
広治 南谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP20869086A priority Critical patent/JPS6362728A/en
Publication of JPS6362728A publication Critical patent/JPS6362728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、アルミニウム箔と樹脂フィルムとが積層状
態で貼合され、食品、化粧品、電子部品等の保管用容器
等の素材として使用される樹脂・アルミニウム複合材、
特に冷開成形性に優れた複合材に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a resin film that is used as a material for storage containers for foods, cosmetics, electronic parts, etc., in which an aluminum foil and a resin film are laminated together. aluminum composite,
In particular, it relates to composite materials with excellent cold-opening formability.

従来の技術 アルミニウム箔は水分、ガス、光などの遮断性や保香性
に優れるとともに適度の剛性を存していることから、食
品、化粧品、電子部品等の保管用容器の材料として用い
られている。このようなアルミニウム箔容器としては、
厚さ100μm前後の比較的厚い箔を深絞り成形したも
のが用いられていたが、弾力性に欠ける難点があった。
Conventional technology Aluminum foil is used as a material for storage containers for foods, cosmetics, electronic parts, etc. because it has excellent moisture, gas, and light blocking properties and fragrance retention, and has a moderate amount of rigidity. There is. As such an aluminum foil container,
Deep drawing of a relatively thick foil with a thickness of around 100 μm has been used, but it has the drawback of lacking elasticity.

そこで容器素材として、アルミニウム箔の両面に延伸フ
ィルムを含む熱可塑性樹脂フィルムを貼合した樹脂・ア
ルミニウム複合材を用いることが提案されている(例え
ば実公昭60−28582号、61−14430号、6
1−14431号)。かかる複合材は冷開成形性、特に
張出成形性に優れ、樹脂フィルムの選択によって容器の
剛性を広範囲に設計することが可能であり、生産性に優
れているというような利点を有する。
Therefore, it has been proposed to use a resin/aluminum composite material as a container material, which is made by laminating thermoplastic resin films containing stretched films on both sides of aluminum foil (for example, Utility Model Publications No. 60-28582, No. 61-14430, No. 6
1-14431). Such composite materials have advantages such as excellent cold-opening moldability, especially stretch moldability, allowing the rigidity of the container to be designed over a wide range by selecting the resin film, and excellent productivity.

発明が解決しようとする問題点 ところが上記複合材において、アルミニウム箔に同一厚
さで同種の樹脂フィルムを貼着した場合であっても、複
合材の成形性に大きな違いを生じ、ユーザーの要求を必
ずしも満足し得うるものではないことが発明者らの研究
により判明した。
Problems to be Solved by the Invention However, in the above-mentioned composite material, even when the same type of resin film is attached to the aluminum foil with the same thickness, there is a large difference in the formability of the composite material, which does not meet the user's requirements. The inventors' research has revealed that this is not necessarily satisfactory.

この発明は、このような技術的背景のもとになされたも
のであって、安定して大きな成形性が得られる樹脂・ア
ルミニウム複合材の提供を目的とするものである。
The present invention was made based on such a technical background, and an object of the present invention is to provide a resin/aluminum composite material that can stably achieve high moldability.

問題点を解決するための手段 上記目的において、発明者らは種々実験と研究を重ねた
結果、複合材の大きな成形性を得るためにはアルミニウ
ム箔及び延伸フィルムが一定の特性を具有することが必
要であることを知見するに至り、かかる知見に基いてこ
の発明を完成し得たものである。
Means for Solving the Problems For the above purpose, the inventors have conducted various experiments and research, and have found that in order to obtain high formability of composite materials, aluminum foil and stretched film must have certain characteristics. We have come to the knowledge that this is necessary, and have completed this invention based on this knowledge.

即ちこの発明は、アルミニウム箔の両面に熱可塑性樹脂
からなる延伸フィルムがそれぞれ1層または2層以上積
層貼合されるとともに、前記アルミニウム箔はその厚さ
が20〜70μmに、加工硬化指数(n値)が0.2以
上に、平均結晶粒径が60μm以下にそれぞれ規定され
る一方、前記延伸フィルムはその引張荷重−公称歪特性
において、公称歪が0.8以上に伸びるものについては
fexp (n) −11〜0゜8の公称歪域において
、また公称歪が0. 8に達する以前の(e1)で破断
するものについては(exp (n)−11〜e1の公
称歪域において、各フィルムの引張荷重増加量の合成値
が歪量1に対し1m+中当り0.18〜1゜OKに規定
されてなることを特徴とする冷開成形性に優れた樹脂・
アルミニウム複合材を要旨とするものである。
That is, in this invention, one or more stretched films made of thermoplastic resin are laminated on both sides of an aluminum foil, and the aluminum foil has a thickness of 20 to 70 μm and a work hardening index (n). value) is specified to be 0.2 or more, and the average crystal grain size is specified to be 60 μm or less, while the stretched film has fexp ( n) In the nominal strain range of −11 to 0°8, and when the nominal strain is 0. For those that break at (e1) before reaching 8, in the nominal strain range from (exp (n) -11 to e1), the composite value of the tensile load increase of each film is 1 m + 0. A resin with excellent cold-opening moldability characterized by a 18~1° OK.
The focus is on aluminum composite materials.

アルミニウム箔の両面に延伸フィルムを積層貼合する理
由は次のとおりである。すなわち、アルミニウム箔は引
張変形において、変形の進行とともに表面荒れが大きく
なるとともに、不均質変形による応力集中が起こり、引
張伸びが低く現れる。箔の厚さが薄くなれば、これらの
影響がより支配的となり破断伸びは益々小さくなる。こ
のためアルミニウム箔の両面に延伸フィルムを貼合する
ことにより、アルミニウム箔の表面を拘束して表面荒れ
を抑制するとともに、アルミニウム箔を均質変形せしめ
、応力集中を抑制するためである。延伸フィルム(2)
は第1図に示すように、アルミニウム箔(1)の片面に
各1層ずつ貼合されたものでも良く、あるいは図示は省
略したが両面のいずれも、あるいは片面だけが2層以上
貼合されたものでも良い。
The reason for laminating stretched films on both sides of aluminum foil is as follows. That is, during tensile deformation of aluminum foil, the surface roughness increases as the deformation progresses, stress concentration occurs due to non-uniform deformation, and the tensile elongation appears low. As the thickness of the foil becomes thinner, these effects become more dominant and the elongation at break becomes smaller. For this reason, by laminating stretched films on both sides of the aluminum foil, the surface of the aluminum foil is restrained to suppress surface roughness, and the aluminum foil is uniformly deformed to suppress stress concentration. Stretched film (2)
As shown in Figure 1, one layer may be laminated on each side of the aluminum foil (1), or two or more layers may be laminated on either both sides or only one side (though not shown). It's okay to have something like that.

ただしいずれの場合にもアルミニウム箔と延伸フィルム
との接着は充分でなければならない。
However, in either case, the adhesion between the aluminum foil and the stretched film must be sufficient.

延伸フィルムの材料としては、ポリプロピレン(PP)
、ポリエステル(PET)、ナイロン等を挙げうる。
The material for the stretched film is polypropylene (PP).
, polyester (PET), nylon, and the like.

前記アルミニウム箔(1)の厚さが20〜70μmの範
囲に規定されるのは、20μm未満では成形時に変形の
進行とともにピンホールが発生し、結果的に成形高さを
高くできず、逆に70μmを超えると成形後容器として
弾力性に欠けるとともに充分な伸びを出すためには延伸
フィルムの厚さも大きくなりコスト高となる。
The reason why the thickness of the aluminum foil (1) is specified to be in the range of 20 to 70 μm is that if it is less than 20 μm, pinholes will occur as deformation progresses during molding, and as a result, the molding height cannot be increased; If it exceeds 70 μm, the container after molding will lack elasticity, and the stretched film will need to be thick to achieve sufficient elongation, resulting in high cost.

望ましいアルミニウム箔の厚さは30〜50μmである
。またアルミニウム箔の加工硬化指数(n値)が0. 
2以上に規定されるのは0.2未満では成形性に劣るも
のとなるからである。
A desirable thickness of the aluminum foil is 30 to 50 μm. Further, the work hardening index (n value) of the aluminum foil is 0.
The reason why it is specified to be 2 or more is because if it is less than 0.2, the moldability will be poor.

このn値が高いほど成形性に優れたものとなり、望まし
くは0.23以上とするのが良い。さらにアルミニウム
箔の平均結晶粒径が60μm以下に規定されるのは、6
0μmを超えて粗大化するとやはり成形性に劣るものと
なるからである。望ましくは30μm以下とするのが良
い。
The higher the n value, the better the moldability, and it is preferably 0.23 or more. Furthermore, the average crystal grain size of aluminum foil is specified to be 60 μm or less.
This is because if the thickness exceeds 0 μm, the moldability will be poor. The thickness is desirably 30 μm or less.

延伸フィルムの引張変形における引張荷重−公称歪特性
は、一般に第2図に示すように、引張荷重が全初期の段
階で放物線状に増加し、その後は高歪側で歪にほぼ比例
して漸増するような曲線で表される。本発明においては
この延伸フィルムに関し、横軸に示す公称歪み(e)が
0.8以上に伸びるものについては、{exp(n)−
11〜0.8の公称歪み域において、また公称歪みが0
. 8に達する以前の(e1)で破断するもの(破断点
をX印で示す)については(exp (n)−1}〜e
1の公称歪み域において、各延伸フィルムの引張荷重増
加量の合成値が歪量1に対し1m巾当り0.18〜1゜
0Ny(以下0.18〜1.0Kg/単位歪量、層中と
記す)の範囲に規定されてなることを条件とする。ここ
で合成値とは各延伸フィルムの前記公称歪域における引
張荷重増加量の加算値をいう。合成値が0.18Kg/
単位歪量、層中未満では成形性向上効果に乏しく、逆に
IK’l/単位歪量、1巾を超えるとスプリングバック
が大きくなって形状維持性が悪くなるか、フィルムの肉
厚が厚くなって経済性が悪くなるというような欠点を派
生する。好ましい引張荷重増加量は0.2〜0.5Nf
/単位歪量、間中である。
Generally speaking, the tensile load-nominal strain characteristics during tensile deformation of a stretched film are as shown in Figure 2, where the tensile load increases parabolically in the initial stage, and then gradually increases almost in proportion to the strain on the high strain side. It is represented by a curve that looks like this. In the present invention, regarding this stretched film, if the nominal strain (e) shown on the horizontal axis extends to 0.8 or more, {exp(n)-
In the nominal strain range of 11 to 0.8, and with a nominal strain of 0
.. For those that break at (e1) before reaching 8 (the break point is indicated by an X mark), (exp (n)-1} ~ e
In the nominal strain range of 1, the composite value of the tensile load increase of each stretched film is 0.18 to 1°0 Ny per 1 m width for the strain amount 1 (hereinafter 0.18 to 1.0 Kg/unit strain, in the layer) ). Here, the composite value refers to the sum of the tensile load increases in the above-mentioned nominal strain range of each stretched film. Combined value is 0.18Kg/
If the unit strain is less than the middle of the layer, the effect of improving formability is poor, and on the other hand, if the IK'l/unit strain exceeds 1 width, the springback will increase and the shape retention will be poor or the film will be thick. This results in drawbacks such as poor economic efficiency. The preferable tensile load increase amount is 0.2 to 0.5 Nf
/unit strain amount, in between.

ここで引張荷重増加量を規定する公称歪域の開始点を(
exp (n)−1)としたのは、アルミニウム箔の引
張変形特性において、第2図の荷重−公称歪曲線に示す
ように、アルミニウム箔の引張荷重は公称歪(e)がl
e x p (n)−1)の時に最大となり、(exp
 (n)−11未満の公称歪域はアルミニウム箔が荷重
増加し一様変形する領域であって問題にはならないから
である。一方、公称歪域の終了点を伸びの良い延伸フィ
ルムについて0.8としたのは公称歪が0.8を超える
領域では延伸フィルム自体の破断限界に近づき、実際上
0.8までを考慮すれば充分だからである。この(e 
x p (n)−11〜0. 8あるいは(exp (
n)−11〜e1の公称歪域においては延伸フィルムの
引張荷重は歪にほぼ比例して漸増するから、引張荷重増
加量は上記公称全範囲での平均値で評価しても問題ない
。延伸フィルムの引張荷重増加量に関する上記の条件は
、最終容器が張出加工等で成形されることからフィルム
のすべての方向で満足されるべきものであり、実際上は
フィルムの長さ方向に対し0@、90°、45”(2方
向)の計4方向で確認すれされることが必要である。な
お延伸フィルムの厚さは全体で15〜40μm程度とす
るのが望ましい。上記引張荷重増加量の条件を満たす延
伸フィルムは、アルミニウム箔と貼合された複合材にお
いて、高歪域でアルミニウム箔の応力集中を抑制して一
様変形せしめる作用を果たし、その結果アルミニウム箔
が破断することなく複合材が大変形可能となる。かかる
複合材中において、アルミニウム箔自体の荷重は高歪域
で低下している。
Here, the starting point of the nominal strain region that defines the amount of increase in tensile load is (
exp (n)-1) is used because the tensile deformation characteristics of aluminum foil are such that, as shown in the load-nominal strain curve in Figure 2, the tensile load of aluminum foil is such that the nominal strain (e) is l.
It reaches its maximum when e x p (n)-1), and (exp
This is because the nominal strain range of less than (n)-11 is a range where the aluminum foil uniformly deforms due to increased load and does not pose a problem. On the other hand, the reason why the end point of the nominal strain range is set to 0.8 for a stretched film with good elongation is that in a region where the nominal strain exceeds 0.8, it approaches the breaking limit of the stretched film itself. This is because it is sufficient. This (e
x p (n) −11 to 0. 8 or (exp (
n) In the nominal strain range of -11 to e1, the tensile load of the stretched film gradually increases almost in proportion to the strain, so there is no problem in evaluating the amount of increase in the tensile load based on the average value over the entire nominal range. The above conditions regarding the amount of increase in tensile load on stretched film should be satisfied in all directions of the film because the final container will be formed by stretching, etc., and in practice, it should be satisfied in all directions of the film. It is necessary to check in a total of 4 directions: 0@, 90°, and 45" (2 directions). It is desirable that the total thickness of the stretched film is about 15 to 40 μm. The above tensile load increase Stretched film that satisfies the condition of quantity has the effect of suppressing the stress concentration of aluminum foil in the high strain range and uniformly deforming it in the composite material laminated with aluminum foil, and as a result, the aluminum foil does not break. The composite material becomes capable of large deformation.In such a composite material, the load on the aluminum foil itself decreases in the high strain region.

これはアルミニウム箔内で転位のクロススリップが生じ
ているからである。なお第2図に示したアルミニウム箔
の引張荷重−公称歪曲線において、破線部分はHo1l
on+onの式σ−Fε (σ:真応力、F:定数、ε
:真歪、n:加工硬化指数)を用い引張荷重を計算によ
り求めたものである。また同曲線中X点はアルミニウム
箔単体の引張変形における破断点を示す。
This is because dislocation cross-slip occurs within the aluminum foil. In addition, in the tensile load-nominal strain curve of aluminum foil shown in Fig. 2, the broken line portion is Ho1l.
on+on formula σ−Fε (σ: true stress, F: constant, ε
: true strain, n: work hardening index). In addition, point X in the same curve indicates the breaking point in tensile deformation of the aluminum foil alone.

発明の効果 この発明に係る複合材は上述のように、アルミニウム箔
の両面に貼着された熱可塑性樹脂からなる延伸フィルム
とアルミニウム箔についてその特性を規定したものであ
ることにより、安定して大きな冷開成形性、特に張出成
形性が得られるものとなる。このため、食品や化粧品等
の保管用容器の素材として好適に使用しうるちのとなる
Effects of the Invention As mentioned above, the composite material according to the present invention has a stretched film made of a thermoplastic resin attached to both sides of the aluminum foil, and the aluminum foil have defined characteristics, so that the composite material can be stably and large. Cold-opening moldability, especially stretch moldability, can be obtained. For this reason, it is suitable for use as a material for storage containers for foods, cosmetics, etc.

実施例 次にこの発明の詳細な説明する。Example Next, this invention will be explained in detail.

アルミニウム箔の両面に各1層の延伸フィルムが積層貼
合されてなる樹脂・アルミニウム複合材を製作するに当
り、下記に示すようなアルミニウム箔及び延伸フィルム
を用意した。
In producing a resin/aluminum composite material in which one layer of stretched film was laminated on both sides of aluminum foil, the following aluminum foil and stretched film were prepared.

(アルミニウム箔) 厚さ40pm、neo、25、平均結晶粒径20μmの
アルミニウム箔。
(Aluminum foil) Aluminum foil with a thickness of 40 pm, neo, 25, and an average crystal grain size of 20 μm.

(延伸フィルム) 第1表に示す4種類のものを用意した。ここで所定公称
全域での引張荷重増加量ΔP、を求めるための引張試験
は、巾10姻の短冊試片を用い、標点間距離100順、
引張速度100履/分でコイル長さ方向に対し、0’、
90’、±45°の合計4方向について行った。そして
ΔP、は記録紙から求めた荷重−公称歪曲線におけるt
exp (0,25)−11〜0.8すなわち0.28
〜0.8の公称全域における平均値を単位歪量、lim
巾当りに換算した。
(Stretched Film) Four types of films shown in Table 1 were prepared. Here, the tensile test to determine the amount of increase in tensile load ΔP over a predetermined nominal range uses strip specimens with a width of 10, in order of gauge distance 100,
0', in the coil length direction at a tensile speed of 100 shoes/min.
The measurement was carried out in a total of four directions: 90' and ±45°. And ΔP is t in the load-nominal strain curve obtained from the recording paper.
exp (0,25)-11 to 0.8 or 0.28
The average value over the nominal range of ~0.8 is the unit strain amount, lim
Converted to per width.

[以下余白コ 次に上記アルミニウム箔の両面に、延伸フィルムを下記
第2表のような組合せで積層貼合し、三層構造の樹脂・
アルミニウム複合材を製作した。
[See the margins below.Next, stretch films were laminated on both sides of the aluminum foil in the combinations shown in Table 2 below to form a three-layer resin structure.
Made of aluminum composite material.

そして各複合材の引張試験を行うとともに、張出加工を
行い成形性を調べた。引張試験は延伸フィルムの引張試
験と同一の条件で行い、Oo、90°、±45@の4方
向の平均引張伸びを求めた。また張出加工は外形50m
+のテフロンポンチ、内径57#IIIのダイスを使用
してポンチ速度75M/分で行い、破断までの成形高さ
を求めた。また同一試料につき張出試験を20回実施し
、最も多く破断した方向を調べた。それらの結果を第2
表に併せて示す。
Each composite material was then subjected to a tensile test and stretched to examine its formability. The tensile test was conducted under the same conditions as the tensile test of the stretched film, and the average tensile elongation in the four directions of Oo, 90°, and ±45@ was determined. Also, the overhang processing is 50m in outer diameter.
The molding height was determined by using a Teflon punch (+) and a die having an inner diameter of 57#III at a punch speed of 75 M/min. In addition, the same sample was subjected to a stretching test 20 times, and the direction in which the largest number of fractures occurred was determined. those results as a second
It is also shown in the table.

[以下余白] 上記結果から明らかなように、本発明実施品は伸び、成
形高さが大きく、成形性に優れたものであることを確認
し得た。
[Margins below] As is clear from the above results, it was confirmed that the products of the present invention were elongated, had a large molding height, and had excellent moldability.

【図面の簡単な説明】 第1図はこの発明の一例としての三層構造の複合材を示
す拡大断面図、第2図は複合材、アルミニウム箔、延伸
フィルムの各引張荷重−公称歪特性を示す図である。 (1)・・・アルミニウム箔、(2)・・・延伸フィル
ム。 以上 第1図 公梢1(e) 第2図
[Brief Description of the Drawings] Figure 1 is an enlarged sectional view showing a three-layer composite material as an example of the present invention, and Figure 2 shows the tensile load-nominal strain characteristics of the composite material, aluminum foil, and stretched film. FIG. (1)...Aluminum foil, (2)...Stretched film. Above Figure 1 Publication 1(e) Figure 2

Claims (1)

【特許請求の範囲】[Claims] アルミニウム箔(1)の両面に熱可塑性樹脂からなる延
伸フィルム(2)がそれぞれ1層または2層以上積層貼
合されるとともに、前記アルミニウム箔(1)はその厚
さが20〜70μmに、加工硬化指数(n値)が0.2
以上に、平均結晶粒径が60μm以下にそれぞれ規定さ
れる一方、前記延伸フィルムはその引張荷重−公称歪特
性において、公称歪が0.8以上に伸びるものについて
は{exp(n)−1}〜0.8の公称歪域において、
また公称歪が0.8に達する以前の(e_1)で破断す
るものについては{exp(n)−1}〜e_1の公称
歪域において、各フィルムの引張荷重増加量の合成値が
歪量1に対し1mm巾当り0.18〜1.0Kgに規定
されてなることを特徴とする冷間成形性に優れた樹脂・
アルミニウム複合材。
One or more layers of stretched films (2) made of thermoplastic resin are laminated on both sides of the aluminum foil (1), and the aluminum foil (1) is processed to a thickness of 20 to 70 μm. Hardening index (n value) is 0.2
As described above, while the average crystal grain size is specified to be 60 μm or less, the stretched film has a tensile load-nominal strain characteristic in which the nominal strain extends to 0.8 or more, {exp(n)-1} In the nominal strain range of ~0.8,
In addition, for films that break at (e_1) before the nominal strain reaches 0.8, in the nominal strain range from {exp(n)-1} to e_1, the combined value of the tensile load increase of each film is the strain amount 1 A resin with excellent cold formability characterized by a regulated weight of 0.18 to 1.0 kg per 1 mm width.
Aluminum composite.
JP20869086A 1986-09-03 1986-09-03 Resin-aluminum composite material having excellent cold moldability Pending JPS6362728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20869086A JPS6362728A (en) 1986-09-03 1986-09-03 Resin-aluminum composite material having excellent cold moldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20869086A JPS6362728A (en) 1986-09-03 1986-09-03 Resin-aluminum composite material having excellent cold moldability

Publications (1)

Publication Number Publication Date
JPS6362728A true JPS6362728A (en) 1988-03-19

Family

ID=16560459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20869086A Pending JPS6362728A (en) 1986-09-03 1986-09-03 Resin-aluminum composite material having excellent cold moldability

Country Status (1)

Country Link
JP (1) JPS6362728A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314535A (en) * 1991-01-21 1992-11-05 Toyo Kohan Co Ltd Steel sheet coated with polyester resin for deep drawable can with thin wall and original sheet
CN102655956A (en) * 2009-12-28 2012-09-05 Jx日矿日石金属株式会社 Copper foil and copper-clad laminate plate using same
JP2018115376A (en) * 2017-01-19 2018-07-26 株式会社神戸製鋼所 Aluminum alloy soft foil for molding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713476B2 (en) * 1978-03-13 1982-03-17
JPS58112732A (en) * 1981-12-26 1983-07-05 大日本印刷株式会社 Laminated metallic vessel
JPS6013633U (en) * 1983-07-08 1985-01-30 富士通株式会社 Seat switch connection configuration
JPS6036938A (en) * 1983-08-10 1985-02-26 Shinkosumosu Denki Kk Gas detector utilizing optical fiber
JPS60214955A (en) * 1984-04-09 1985-10-28 東洋アルミニウム株式会社 Aluminum laminate for draw forming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713476B2 (en) * 1978-03-13 1982-03-17
JPS58112732A (en) * 1981-12-26 1983-07-05 大日本印刷株式会社 Laminated metallic vessel
JPS6013633U (en) * 1983-07-08 1985-01-30 富士通株式会社 Seat switch connection configuration
JPS6036938A (en) * 1983-08-10 1985-02-26 Shinkosumosu Denki Kk Gas detector utilizing optical fiber
JPS60214955A (en) * 1984-04-09 1985-10-28 東洋アルミニウム株式会社 Aluminum laminate for draw forming

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314535A (en) * 1991-01-21 1992-11-05 Toyo Kohan Co Ltd Steel sheet coated with polyester resin for deep drawable can with thin wall and original sheet
CN102655956A (en) * 2009-12-28 2012-09-05 Jx日矿日石金属株式会社 Copper foil and copper-clad laminate plate using same
JP2018115376A (en) * 2017-01-19 2018-07-26 株式会社神戸製鋼所 Aluminum alloy soft foil for molding

Similar Documents

Publication Publication Date Title
KR101167874B1 (en) Laminate steel sheet for two-piece can body, two-piece can body made of laminate steel sheet, and method for production of the two-piece can body
JP6206195B2 (en) A composite body, a structure in which a sealant layer is laminated on the composite body.
EP0684123A2 (en) Stretched polychlorotrifluoroethylene film, process for production thereof and packaged product using the film
EP1914026B1 (en) Process for producing two piece can
US2820733A (en) Production of stretched laminates
DE3110247A1 (en) PACKING FILM OF FIVE LAYERS
JPS6362728A (en) Resin-aluminum composite material having excellent cold moldability
WO2008096613A1 (en) Laminate steel sheet for two-piece can, method for production of two-piece can, and two-piece laminate can
EP1914065A1 (en) Laminate steel sheet for two-piece can, method for manufacture of two-piece can, and two-piece laminate can
JP2018076127A (en) Packing material and formed case
JPS6362729A (en) Resin-aluminum composite material having excellent cold moldability
US3719551A (en) Process for producing a lead-plastic laminate and a laminate produced by the process
JP2007042469A (en) Package material for battery case and case for battery
CN111376545A (en) High-deep-drawing forming-performance aluminum-plastic composite film and preparation method thereof
JP2567588B2 (en) Laminated body and manufacturing method thereof
WO2007020950A1 (en) Laminate steel sheet for can body of two-piece can and two-piece can comprising laminate steel sheet
JPH0532285Y2 (en)
JPH0532286Y2 (en)
JP2562420Y2 (en) Laminated aluminum foil
WO2014084248A1 (en) Packaging material for cold forming and press-through pack formed using same
JP2563481Y2 (en) Laminated aluminum foil
JP3808144B2 (en) Coextruded composite film for deep drawing packaging
JPS6097850A (en) Composite film for deep-drawing molding
CN217319600U (en) Withstand voltage complex film for lithium cell
JP2929679B2 (en) Packaging film