JPS6362680B2 - - Google Patents

Info

Publication number
JPS6362680B2
JPS6362680B2 JP1025384A JP1025384A JPS6362680B2 JP S6362680 B2 JPS6362680 B2 JP S6362680B2 JP 1025384 A JP1025384 A JP 1025384A JP 1025384 A JP1025384 A JP 1025384A JP S6362680 B2 JPS6362680 B2 JP S6362680B2
Authority
JP
Japan
Prior art keywords
corrosion
waste gas
heat
heat exchanger
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1025384A
Other languages
Japanese (ja)
Other versions
JPS60155896A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1025384A priority Critical patent/JPS60155896A/en
Publication of JPS60155896A publication Critical patent/JPS60155896A/en
Publication of JPS6362680B2 publication Critical patent/JPS6362680B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 本発明は焼却炉からの廃ガス或いは熱分解炉か
らの熱分解ガス等の高温廃ガスからの熱を回収す
るに適した熱交換器に関し、特にごみ焼却炉の温
水発生器に適した熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger suitable for recovering heat from high-temperature waste gas such as waste gas from an incinerator or pyrolysis gas from a pyrolysis furnace. Concerning heat exchangers suitable for generators.

都市ごみの焼却炉は、都市ごみを焼却して廃棄
物の減容化を計ることを目的として設置されてい
たが、エネルギーの有効利用の観点から、燃焼廃
ガスのもつ熱エネルギーを回収することが急速に
普及してきた。燃焼廃ガスのもつ熱エルギーを最
大限に回収するためには、先ず、廃ガス温度を可
能な限り低温となるまで、熱交換器で冷却するこ
とが重要であるが、ごみ焼却炉からの廃ガス中に
は、多量のダストと多量の塩化水素ガス、硫黄酸
化物等とが含まれているため、廃ガスを低温にす
ると、腐食等の問題が生じ、合理的な熱交換が困
難であつた。
Municipal waste incinerators were installed for the purpose of reducing the volume of waste by incinerating municipal waste, but from the perspective of effective energy use, it was decided to recover the thermal energy of combustion waste gas. has become rapidly popular. In order to recover the maximum amount of thermal energy from combustion waste gas, it is important to first cool the waste gas to the lowest possible temperature using a heat exchanger. The gas contains a large amount of dust and large amounts of hydrogen chloride gas, sulfur oxides, etc., so if the waste gas is lowered to a low temperature, problems such as corrosion will occur, and rational heat exchange will be difficult. Ta.

このことを第1図および第2図を参照して述べ
る。第1図は鋼管1を伝熱管として用いたごみ焼
却炉廃ガスからの温水発生器2を示し、管内側3
に水を通過させ管外側4に廃ガスを導入して温湯
を製造するものであり、1本の伝熱管1は熱交換
器である温水発生器2の2箇所の器壁Wを貫通し
て取り付けられており、このような伝熱管1が多
数配備されている。
This will be explained with reference to FIGS. 1 and 2. Figure 1 shows a hot water generator 2 from garbage incinerator waste gas using a steel pipe 1 as a heat transfer tube.
Hot water is produced by passing water through the tube and introducing waste gas to the outside 4 of the tube, and one heat transfer tube 1 penetrates the wall W of the hot water generator 2, which is a heat exchanger, at two places. A large number of such heat exchanger tubes 1 are installed.

廃ガス中のダストは、一般に温度とは無関係に
伝熱管1に付着することとなり、他方、廃ガス中
の塩化水素ガスや亜硫酸ガス等の腐蝕性ガス成分
は伝熱管1の外側の表面温度がそれぞれの露点温
度以下となれば、その領域に結露して著しい腐食
を発生する。そしてダストが多量に堆積されてく
ると伝熱管の外側の表面温度は、ほとんど伝熱管
内を流れる流体の温度に支配されることになり、
前述の腐蝕性ガス成分が結露することとなる。こ
のような環境においては、炭素鋼鋼管は短時間で
減肉穿孔し、またステンレス鋼管等は応力腐食割
れを生じて使用し耐えることができない。ステン
レス鋼管以上の耐久性を有する伝熱管の材料とし
てはチタンがあるが、しかしチタンと云えどもダ
ストの堆積と腐蝕性ガス成分の腐食作用があれば
局部的に腐食は生じてしまう。
Dust in the waste gas generally adheres to the heat exchanger tube 1 regardless of the temperature, and on the other hand, corrosive gas components such as hydrogen chloride gas and sulfur dioxide gas in the waste gas will adhere to the heat exchanger tube 1 regardless of the temperature. If the temperature falls below the respective dew point, dew condensation will occur in that area and significant corrosion will occur. As a large amount of dust accumulates, the temperature of the outside surface of the heat exchanger tube becomes almost controlled by the temperature of the fluid flowing inside the tube.
The above-mentioned corrosive gas components will condense. In such an environment, carbon steel pipes undergo thinning and perforation in a short period of time, and stainless steel pipes and the like undergo stress corrosion cracking, making them unusable. Titanium is a material for heat exchanger tubes that has more durability than stainless steel tubes, but even titanium can corrode locally if dust accumulates and the corrosive action of corrosive gas components occurs.

本発明はこのような実情に鑑みてなされたもの
で、本発明者らはごみ焼却炉の廃ガス中に設けら
れた伝熱管が損傷されていく過程を綿密に解析
し、そして損傷の原因となる因子を排除する技術
を完成し、本発明に至つたものである。
The present invention was made in view of the above circumstances, and the present inventors have carefully analyzed the process by which heat transfer tubes installed in the waste gas of waste incinerators are damaged, and have determined the cause of the damage. The present invention was achieved by perfecting a technique to eliminate this factor.

本発明者らの研究によれば、廃ガス中のダスト
は廃ガス流路の中央部分よりも器壁に近い部分に
吹きだまりのように堆積し易いため、伝熱管の外
側の表面温度は器壁近傍においてより低温となる
ことが判明した。また伝熱管の入口側と出口側と
を比較すれば、より低温の流体が通過している入
口側の方がその表面温度はより低温となつてい
た。このような条件の下ではたとえチタン製の伝
熱管を用いても酸露点腐食はさけることができな
かつた。
According to the research of the present inventors, dust in the waste gas is more likely to accumulate like a snowdrift in the part closer to the vessel wall than in the central part of the waste gas flow path. It was found that the temperature was lower in the vicinity. Furthermore, when comparing the inlet side and the outlet side of the heat transfer tube, the surface temperature was lower on the inlet side through which the lower temperature fluid was passing. Under such conditions, acid dew point corrosion could not be avoided even if titanium heat exchanger tubes were used.

第2図イ,ロはチタン製の伝熱管を用いた場合
の腐食の状況を示したものであり、腐食は器壁W
近傍において発生しているので、その部分のみを
拡大して図示している。腐食部5の器壁Wの内側
6と外側7とにわたつて存在しており、又廃ガス
流れ(矢印A)の背面側を中心に発生していた
(第2図ロ)。器壁Wの内側6における腐食はチタ
ン管1上に堆積したダストとチタン管との間のチ
タン管表面が酸露点温度以下に冷却されるため
に、腐蝕性ガス成分が結露し、そして腐食された
ものであり、さらに器壁Wの外側7における腐食
は、器壁内において生じた結露が流れ出すことに
よつて生じた腐食である。
Figure 2 A and B show the corrosion situation when titanium heat exchanger tubes are used.
Since it occurs in the vicinity, only that part is shown enlarged. It existed on the inside 6 and outside 7 of the vessel wall W of the corroded part 5, and was generated mainly on the back side of the waste gas flow (arrow A) (Fig. 2B). Corrosion on the inner side 6 of the vessel wall W occurs because the surface of the titanium tube between the dust deposited on the titanium tube 1 and the titanium tube is cooled below the acid dew point temperature, and corrosive gas components condense and corrode. Furthermore, the corrosion on the outside 7 of the vessel wall W is corrosion caused by condensation generated within the vessel wall flowing out.

本発明者らはこのような腐食を見極めた上で第
1図に示した温水発生器に対して、次のような試
験を行つた。
After identifying such corrosion, the present inventors conducted the following tests on the hot water generator shown in FIG. 1.

(1) ダスト付着防止試験 チタン管を伝熱管として用い、器壁貫通分に
おいて、セラミツクス製のスリーブでチタン管
を覆つた。この結果、セラミツクスリーブで覆
われた部分ではダストの付着はなかつたが、チ
タン管表面が酸露点温度以下になり、そして廃
ガスが侵入してくるために腐蝕性ガス成分の結
露がみられ、結局酸露点腐食は防止できなかつ
た。
(1) Dust adhesion prevention test A titanium tube was used as a heat transfer tube, and the part that penetrated the vessel wall was covered with a ceramic sleeve. As a result, although there was no dust adhering to the area covered by the ceramic sleeve, the surface of the titanium tube became below the acid dew point temperature, and as waste gas entered, condensation of corrosive gas components was observed. In the end, acid dew point corrosion could not be prevented.

(2) 結露侵入防止試験 (1)のセラミツクススリーブの代りに、フツ素
樹脂系の粘着テープを巻いて、結露した腐蝕性
成分がチタン管表面に接触しないようにした。
又、粘着テープの代りにフツ素樹脂系の塗料を
同じ目的で塗布してフツ素樹脂コーテングを施
した。
(2) Condensation penetration prevention test Instead of the ceramic sleeve in (1), a fluororesin-based adhesive tape was wrapped to prevent condensed corrosive components from coming into contact with the titanium tube surface.
Also, instead of using adhesive tape, a fluororesin-based paint was applied for the same purpose to provide a fluororesin coating.

この結果は、粘着テープの接着性の低下とガ
ス流による粘着テープの剥離や、フツ素樹脂表
面に発生する局部的なピンホールなどのために
長期間にわたる使用に耐えることができず、酸
露点腐食が発生した。
As a result, the adhesive tape cannot withstand long-term use due to reduced adhesiveness, peeling of the adhesive tape due to gas flow, and local pinholes that occur on the fluororesin surface, and the acid dew point Corrosion occurred.

一般に耐蝕性にすぐれた材料としてチタンは知
られており、また耐熱性合成樹脂を用いて伝熱管
の外側を被覆する技術は例えば特公昭48−897号
公報に開示されている。しかしながら、かかる公
知技術では合成樹脂で被覆しているので、樹脂の
軟化温度以上の熱交換器には使用できない。通常
廃ガス用の熱交換器は温度500〜600℃で使用され
るので、この公知技術に適用できない。
Titanium is generally known as a material with excellent corrosion resistance, and a technique for coating the outside of a heat exchanger tube with a heat-resistant synthetic resin is disclosed, for example, in Japanese Patent Publication No. 48-897. However, since this known technique is coated with a synthetic resin, it cannot be used in a heat exchanger whose temperature is higher than the softening temperature of the resin. Since heat exchangers for waste gas are normally used at temperatures of 500 to 600°C, this known technology cannot be applied.

さらに実開昭52−37662号公報には排ガス管を
貫通するスチール製のチユーブの外周にガラスラ
イニングおよびパツキンを設けた技術が開示され
ている。しかしながら、前述の如くチタン製のチ
ユーブでもダストの堆積等により局部腐蝕を生ず
るので、仮に前記公知技術のスチール製のチユー
ブをチタンに代えても、局部腐蝕は防止できな
い。
Furthermore, Japanese Utility Model Application Publication No. 52-37662 discloses a technique in which a glass lining and packing are provided around the outer periphery of a steel tube that passes through an exhaust gas pipe. However, as mentioned above, even a tube made of titanium causes local corrosion due to the accumulation of dust, etc., so even if the tube made of steel of the prior art is replaced with titanium, local corrosion cannot be prevented.

したがつて本発明の目的は、高温の条件下でも
局部腐蝕を防止できる廃ガス用熱交換器を提供す
るにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a waste gas heat exchanger that can prevent local corrosion even under high temperature conditions.

本発明によれば、廃ガス流に多数の伝熱管を接
触せしめて、廃ガスの熱回収を行う廃ガス用熱交
換器において、チタンによつて構成した伝熱管
と、その伝熱管の外周面にほどこした耐熱耐蝕性
の層と、その耐熱耐蝕性の層の外周面に巻かれた
ヤーンパツキンと、そのヤーンパツキンの外周面
を覆うセラミツクススリーブと、そのセラミツク
ススリーブと器壁との間に設けられ、セラミツク
ススリーブに巻装された別のヤーンパツキンとを
備えている。
According to the present invention, in a waste gas heat exchanger that recovers heat from waste gas by bringing a large number of heat transfer tubes into contact with a waste gas flow, the heat transfer tubes are made of titanium, and the outer peripheral surface of the heat transfer tubes is made of titanium. A heat-resistant and corrosion-resistant layer applied to the surface, a yarn packing wound around the outer circumferential surface of the heat-resistant and corrosion-resistant layer, a ceramic sleeve covering the outer circumferential surface of the yarn packing, and a ceramic sleeve provided between the ceramic sleeve and the vessel wall. and another yarn packing wrapped in a ceramic sleeve.

したがつて、器壁近傍のチタン製の伝熱管とヤ
ーンパツキンとの間にダストがはいり、腐蝕成分
が結露しても、チタン製の伝熱管の外周面にほど
こした耐熱耐蝕性の層によつて結露した腐蝕成分
が直接に伝熱管に作用しないので、伝熱管の腐蝕
を防止できる。さらに、セラミツクススリーブが
ヤーンパツキンを介して設けられているので、ダ
クトが直接に耐熱耐蝕性の層の上にはいりにく
く、また廃ガス流が直接に耐熱耐蝕性の層に接接
しない。そのために耐熱耐蝕性の層の温度はチタ
ン製の伝熱管の温度に近付き、比較的に低温に維
持することができ、耐熱耐蝕性の層の寿命を高め
ることができる。ヤーンパツキンは廃ガスが器壁
外に流出するのを防止している。
Therefore, even if dust gets into the space between the titanium heat exchanger tube and the yarn packing near the vessel wall, and corrosive components condense, the heat-resistant and corrosion-resistant layer applied to the outer surface of the titanium heat exchanger tube will prevent the dust from entering. Since the corrosive components condensed on the heat exchanger tubes do not directly act on the heat exchanger tubes, corrosion of the heat exchanger tubes can be prevented. Furthermore, since the ceramic sleeve is provided through the yarn packing, it is difficult for the duct to pass directly onto the heat-resistant and corrosion-resistant layer, and the waste gas flow does not come into direct contact with the heat- and corrosion-resistant layer. Therefore, the temperature of the heat-resistant and corrosion-resistant layer approaches the temperature of the titanium heat exchanger tube, and can be maintained at a relatively low temperature, thereby increasing the life of the heat-resistant and corrosion-resistant layer. The yarn packing prevents waste gas from flowing out of the vessel wall.

それ故に、本発明によれば、もつともダストが
付着しやすい器壁部分の伝熱管に廃ガスの侵入を
できるだけ防止し、万一侵入しても耐熱耐蝕性の
層によつて直接に伝熱管の表面に腐蝕成分が作用
しないようにしたので、実質的に伝熱管の腐蝕が
防止できる。
Therefore, according to the present invention, it is possible to prevent waste gas from entering the heat exchanger tubes in the part of the vessel wall where dust easily adheres, and even if it does, it can be directly removed from the heat exchanger tubes by the heat-resistant and corrosion-resistant layer. Since corrosive components are prevented from acting on the surface, corrosion of the heat exchanger tubes can be substantially prevented.

本発明の実施に際し、耐熱耐蝕性の層としては
フツ素樹脂系の粘着テープを貼着するか、或いは
フツ素樹脂系のコーテイングを施すのが好まし
い。
In carrying out the present invention, it is preferable to attach a fluororesin-based adhesive tape or apply a fluororesin-based coating as the heat-resistant and corrosion-resistant layer.

またセラミツクススリーブは前述の如く器壁の
内側のダストが多数に堆積する領域に設けられる
が、その領域としては器壁の内側に150〜200mm程
度が好ましい。このセラミツクススリーブは器壁
の外側に対しては本来不要であるが、取付を容易
にするために50〜200mm程延在させるのが好まし
い。
Further, as mentioned above, the ceramic sleeve is provided in the area inside the vessel wall where a large amount of dust accumulates, and this area is preferably about 150 to 200 mm inside the vessel wall. Although this ceramic sleeve is essentially unnecessary for the outside of the vessel wall, it is preferable to extend it by about 50 to 200 mm to facilitate installation.

次に、第3図を参照して本発明の実施例を説明
すれば、第3図イ,ロは本発明を実施した熱交換
器に用いるチタン製の伝熱管の器壁部分における
拡大図であつて、チタン製の伝熱管すなわちチタ
ン管1に温水発生器の器壁Wを貫通して配備さ
れ、器壁の内側6および外側7にそれぞれ200mm
づつの領域について、チタン管の表面をフツ素樹
脂の粘着テープ8を巻き、その外側をセラミツク
ススリーブ9で覆つている。粘着テープ8とセラ
ミツクススリーブ9との間及びセラミツクススリ
ーブ9と器壁Wとの間はヤーンパツキン10を巻
装して廃ガスが外側7へ漏れ出ないようにしてい
る。チタン管1を水が流れる場合には、熱交換器
の全てのチタン管1の器壁Wの貫通部において、
図示如き防蝕対策を施すべきであるけれども、チ
タン管1内を空気等の気体が流れる場合において
は、チタン管の外表面が酸露点温度以下となる領
域に配置されるチタン管についてのみ、かかる防
蝕対策を施すだけでよい。
Next, an embodiment of the present invention will be described with reference to FIG. 3. FIGS. 3A and 3B are enlarged views of the wall portion of a titanium heat exchanger tube used in a heat exchanger embodying the present invention. A heat exchanger tube made of titanium, that is, a titanium tube 1 is installed to penetrate the vessel wall W of the hot water generator, and a diameter of 200 mm is placed on the inside 6 and outside 7 of the vessel wall.
For each region, the surface of the titanium tube is wrapped with a fluororesin adhesive tape 8, and the outside thereof is covered with a ceramic sleeve 9. A yarn packing 10 is wrapped between the adhesive tape 8 and the ceramic sleeve 9 and between the ceramic sleeve 9 and the vessel wall W to prevent waste gas from leaking to the outside 7. When water flows through the titanium tubes 1, at the penetration parts of the vessel wall W of all the titanium tubes 1 of the heat exchanger,
Although corrosion prevention measures as shown in the figure should be taken, when gas such as air flows through the titanium tube 1, such corrosion prevention measures are applied only to titanium tubes placed in an area where the outer surface of the titanium tube is below the acid dew point temperature. All you have to do is take measures.

このように本発明は、廃ガス流に多数の伝熱管
を接触せしめて廃ガスの熱回収を行う熱交換器に
おいて、伝熱管をチタンによつて構成し、該伝熱
管の壁面側端部を耐熱、耐蝕性の層すなわち粘着
テープ或いはコーテイングを施し、さらにその外
側をセラミツクススリーブで覆つたので、伝熱管
の器壁貫通部において簡単な防蝕処置を施すだけ
で廃ガス中のダストと塩化水素ガス、亜硫酸ガス
等の腐蝕性ガス成分とが競合することで急速に進
行する酸露点腐食を防止することができる。した
がつて、都市ごみ焼却炉の廃ガスから熱エネルギ
ーを回収する温水発生器、空気予熱器等の熱交換
器としては極めて優れたものと云える。
As described above, the present invention provides a heat exchanger that recovers heat from waste gas by bringing a large number of heat transfer tubes into contact with the waste gas flow, in which the heat transfer tubes are made of titanium, and the wall side ends of the heat transfer tubes are made of titanium. By applying a heat-resistant and corrosion-resistant layer (adhesive tape or coating) and then covering the outside with a ceramic sleeve, dust in the waste gas and hydrogen chloride gas can be removed simply by applying simple anti-corrosion treatment at the part where the heat exchanger tube penetrates the vessel wall. It is possible to prevent acid dew point corrosion, which rapidly progresses due to competition with corrosive gas components such as sulfur dioxide and sulfur dioxide gas. Therefore, it can be said that it is extremely excellent as a heat exchanger for hot water generators, air preheaters, etc. that recover thermal energy from waste gas from municipal waste incinerators.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の廃ガス用温水発生器の概略図、
第2図イ,ロは第1図の温水発生器の伝熱管の腐
食の状況を示す平面図および断面図、第3図イ,
ロは本発明の実施例の要部を示す第2図と同様な
平面図および断面図である。 1……伝熱管、2……温水発生器、3……伝熱
管内側、4……伝熱管外側、W……温水発生器
壁、5……腐食部分、6……器壁内側、7……器
壁外側、8……耐熱、耐食粘着テープ、9……セ
ラミツクススリーブ、10……ヤーンパツキン。
Figure 1 is a schematic diagram of a conventional waste gas hot water generator.
Figure 2 A and B are a plan view and cross-sectional view showing the state of corrosion of the heat transfer tube of the hot water generator in Figure 1, and Figure 3 A,
B is a plan view and a cross-sectional view similar to FIG. 2 showing essential parts of an embodiment of the present invention. 1...Heat transfer tube, 2...Hot water generator, 3...Inside of heat transfer tube, 4...Outside of heat transfer tube, W...Wall of hot water generator, 5...Corroded part, 6...Inside of vessel wall, 7... ...outer side of the vessel wall, 8...heat-resistant, corrosion-resistant adhesive tape, 9...ceramics sleeve, 10...yarn packing.

Claims (1)

【特許請求の範囲】[Claims] 1 廃ガス流に多数の伝熱管を接触せしめて、廃
ガスの熱回収を行う廃ガス用熱交換器において、
チタンによつて構成した伝熱管と、その伝熱管の
外周面にほどこした耐熱耐蝕性の層と、その耐熱
耐蝕性の層の外周面に巻かれたヤーンパツキン
と、そのヤーンパツキンの外周面を覆うセラミツ
クススリーブと、そのセラミツクススリーブと器
壁との間に設けられ、セラミツクススリーブに巻
装された別のヤーンパツキンとを備えることを特
徴とする廃ガス用熱交換器。
1. In a waste gas heat exchanger that recovers heat from waste gas by bringing a large number of heat transfer tubes into contact with the waste gas flow,
A heat transfer tube made of titanium, a heat-resistant and corrosion-resistant layer applied to the outer circumferential surface of the heat transfer tube, a yarn packing wrapped around the outer circumferential surface of the heat-resistant and corrosion-resistant layer, and the outer circumferential surface of the yarn packing. A waste gas heat exchanger comprising a ceramic sleeve for covering the ceramic sleeve and another yarn packing provided between the ceramic sleeve and a vessel wall and wrapped around the ceramic sleeve.
JP1025384A 1984-01-25 1984-01-25 Heat exchanger for waste gas Granted JPS60155896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1025384A JPS60155896A (en) 1984-01-25 1984-01-25 Heat exchanger for waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1025384A JPS60155896A (en) 1984-01-25 1984-01-25 Heat exchanger for waste gas

Publications (2)

Publication Number Publication Date
JPS60155896A JPS60155896A (en) 1985-08-15
JPS6362680B2 true JPS6362680B2 (en) 1988-12-05

Family

ID=11745149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1025384A Granted JPS60155896A (en) 1984-01-25 1984-01-25 Heat exchanger for waste gas

Country Status (1)

Country Link
JP (1) JPS60155896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055034A1 (en) 2009-11-03 2011-05-12 Isp Investments Inc. Use of yeast peptide hydrolysate as an active agent for strengthening hair

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7229697B2 (en) * 2018-08-15 2023-02-28 三菱重工業株式会社 Heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237662U (en) * 1975-09-10 1977-03-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055034A1 (en) 2009-11-03 2011-05-12 Isp Investments Inc. Use of yeast peptide hydrolysate as an active agent for strengthening hair

Also Published As

Publication number Publication date
JPS60155896A (en) 1985-08-15

Similar Documents

Publication Publication Date Title
JPH03500809A (en) Heat exchanger and heat pipe for it
JPS5833094A (en) Heat pipe type heat exchanger
JPS6362680B2 (en)
JPS605278Y2 (en) Heat exchanger
JPH08210617A (en) Exhaust gas treating apparatus for incinerating facility
CN208108153U (en) A kind of corrosion-resistant GGH flue gas heat-exchange unit
JP2996128B2 (en) Air heater for high temperature corrosion resistance
JPS63247596A (en) Heat transmission pipe for heat exchanging
CN219573294U (en) High-temperature-resistant and corrosion-resistant thermocouple
JPS57131998A (en) Sulfuric acid and dew-point corrosion resisting heat exchanger
JP2001004228A (en) Latent heat recovery heat exchanger
CN218583874U (en) Sealing structure of waste heat boiler tube plate and heat exchange tube
JPS6080095A (en) Shell tube heat exchanger
JP2005069575A (en) Heat exchanger
JPH0755387A (en) Heat transfer tube for heat exchanger
JPH08313192A (en) Spray coating film for heat resistant member
JP2996129B2 (en) Air heater for high temperature corrosion resistance
CN206772456U (en) A kind of long-lived temperature measuring equipment of quick response
Ball et al. Condensing heat-exchanger systems for oil-fired residential/commercial furnaces and boilers Phase I and II
JPS60164168A (en) Heat exchanger
JPS6037399B2 (en) Heat exchanger
JP2001263604A (en) Heat exchanger
JPS63318390A (en) Expansion joint
JPH09269111A (en) High temperature air heater
JP3041770U (en) Boiler heat transfer tube weld structure