JPS6362552B2 - - Google Patents

Info

Publication number
JPS6362552B2
JPS6362552B2 JP5211480A JP5211480A JPS6362552B2 JP S6362552 B2 JPS6362552 B2 JP S6362552B2 JP 5211480 A JP5211480 A JP 5211480A JP 5211480 A JP5211480 A JP 5211480A JP S6362552 B2 JPS6362552 B2 JP S6362552B2
Authority
JP
Japan
Prior art keywords
weight
hot water
glass powder
resin
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5211480A
Other languages
Japanese (ja)
Other versions
JPS56148538A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5211480A priority Critical patent/JPS56148538A/en
Publication of JPS56148538A publication Critical patent/JPS56148538A/en
Publication of JPS6362552B2 publication Critical patent/JPS6362552B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はオニツクス、オパール、マーブル等の
透明感のある模様をもつ熱硬化性樹脂成形品に関
するもので、その目的は熱水あるいは薬剤に対し
て極めて優れた耐久性を有する熱硬化性樹脂成形
品を提供することにある。 本発明の分野に係わる先行技術として米国特許
第3396067号がある。該特許によれば、粒度がほ
ぼ100メツシユ以下のある種のガラス粉末(例え
ば、フエロー社製フリツト#3134、#3278)を60
〜85%不飽和ポリエステル樹脂に添加し、オニツ
クス調模様を成形品に付与することを特徴とする
成形品の製造法が明示されている。一般的に、液
体と、その液体に不溶性で粒形が不定形である粉
末固体粒子との混合系においては、各々の屈折率
が同一であるとしても、固体粒子の粒界面の一部
では、入射光に対しそれを全反射する臨界角以上
の角度面が必ず存在するため光の散乱が起こる。 このような混合系の外観は、固体の粒形が小さ
い場合には半乳濁のオパール調を呈し、粒径が大
きくなるにつれ光散乱の減少により透明性が増加
するが、部分的にキラキラと見える光輝性を呈す
るようになる。従つてこのような混合系の外観を
完全に透明でかつ均一にすることは極めて困難と
思われるが、粒界面での散乱を極力抑えるよう非
常に狭い範囲の粒度分布をもつ球状粒子を使用す
ればかなり高い透明性を得ることは可能と思われ
る。又、このような場合に使用するガラス粉末を
製造するには、通常、ボールミル、振動ミル等を
用いて粉砕するが、これらにより得られた粉末の
粒度分布は広範囲にわたつており(1〜300μ程
度)その粒形は光散乱を起こしやすい突起部を多
く持つ不定形となる。更に、ガラス、樹脂の屈折
率についても、それぞれのロツトにより多少のず
れは常に起こつており、これらの混合物である樹
脂成形品は不均一要因をかなり含んでいるため、
たとえトーナーによる模様付けを行なわなくとも
不鮮明な模様状を呈する外観を持つ透明感を有す
る成形品となる。 このような成形品を得るに際し、前記先行技術
の方法によるときは、成形品の耐熱水性や耐薬品
性は著しく悪く、実質的には浴槽や洗面ボール等
への利用は不可能で、その用途が制限されている
のが現状である。 発明者等はこのような現状に鑑み、極めて優れ
た耐熱水性、耐薬品性を有するオニツクス、オパ
ールあるいはマーブル等の透明感のある模様をも
つ熱硬化性樹脂成形品の製造について種々検討し
た。 耐熱水性、耐薬品性を向上させる方法として
は、(1)耐熱水性、耐薬品性の著しく高い被覆層を
成形品表面に形成する。(2)使用するベースの熱硬
化性樹脂そのものの耐熱水性、耐薬品性を向上さ
せる。(3)充填剤としてのガラス粉末の耐化学性を
向上させる、等の方法が考えられる。そこでベー
ス樹脂として一般タイプオルソ系不飽和ポリエス
テル樹脂(耐熱水性80時間)を用い、成形品の表
面に施す透明樹脂層(厚さ0.4〜0.6mm)として耐
熱水性が特に優れたビスフエノール系不飽和ポリ
エステル樹脂(耐熱水性3000時間)を用い、先行
技術の示すところ(前述の米国特許第3396067号
により試験片を作製した。一方、ベース樹脂、表
面の透明樹脂層共に耐熱水性ビスフエノール系不
飽和ポリエステル樹脂を用いて先と同一条件で試
験片を作製した。これら2種類の試験片を用い、
90℃熱水中で連続熱水テストを実施する一方、室
温の水中による連続浸漬テストも実施した。 熱水試験の結果、ベース樹脂がオルソ系不飽和
ポリエステル樹脂の試験片は40時間で、表面の透
明樹脂層には何等変化が認められなかつたにもか
かわらず、内部のガラス粉末充填樹脂層が白化し
たため、外観は全く透明性を失つた。一方、ベー
ス樹脂に耐熱水性ビスフエノール系不飽和ポリエ
ステル樹脂を使用した試験片も耐熱水性樹脂を使
用しているのにかかわらず、60時間でベースにオ
ルソ系不飽和ポリエステル樹脂を使用した試験片
とほぼ同様に外観の透明性を失つた。常温の水中
で200時間浸漬した試験片には、いずれも何の変
化も認められなかつた。上述の実験では全く耐熱
水性、耐薬品性の異なる2種の樹脂でベース樹脂
層を形成したにもかかわらず両試験片には耐熱水
性の差がほとんど認められなかつたことになる。
即ち、ガラス粉末(先行技術の示すフエロー社フ
リツト#3134を使用)を充填剤として多量に含有
するベース樹脂層では、使用する樹脂のもつ耐熱
水性の程度の差程には成形品の耐熱水性の差が現
れない。これは、ベース樹脂中に多量に(先行技
術の示す樹脂30重量部に#3134ガラス粉末70重量
部)存在するガラス粉末と熱水とが何等かの形で
この現象に関与していることを示していると考
え、次に、充填剤とするガラス性質の差による成
形品の耐熱水性の差を調べるため、市販されてい
るガラス製品の中で特に耐化学薬品性の優れてい
る透明パイレツクスガラスと同等のグレードのガ
ラス粉末を100メツシユ全通するよう粉砕して充
填剤とし、ベース樹脂、表面の透明樹脂層共に耐
熱水性ビスフエノール系不飽和ポリエステル樹脂
を用い、先述と同様の方法で試験片を作製し、耐
熱水テストを先述と同一条件で実施した。 テスト結果は、90℃60時間暴露で外観にわずか
の白色化が認められ、80時間ではさらに白色化が
強くなり、100時間でほぼ完全に白色不透明とな
つたが、表面の透明樹脂層には何等変化は認めら
れなかつた。以上の実験事実から、ベース樹脂と
して著しく耐熱水性の優れたものを使用するか、
充填剤として用いるガラス粉末の耐化学性を向上
させることで、該成形品の耐熱性をある程度改良
できることがわかつたが、その程度では、成形品
の実用上(少なくとも90℃熱水中連続150時間暴
露でほとんど変化が認められぬ程度の性能が必
要)十分でない。 発明者等は上述の実験結果及びその他の事実か
ら白色不透明化の進行の最も可能性の高いプロセ
スを次のように推測した。即ち、高温で活性の高
くなつた熱水が、表面の透明樹脂層を容易に通り
抜け、ベース樹脂中に分散しているガラス粒子の
近傍に達する。一方、ガラス粒子は本来、極性の
高い親水性表面を有するため、極性の低い樹脂と
はその界面で高い接着力が得られ難いため、樹脂
とガラス粉末表面との界面には、一種の粒界層と
もいえるものが存在すると考えられ、ガラス粒子
の近傍に達した熱水は、ガラス表面の高極性によ
り、この粒界層に引き込まれガラス表面を侵食す
る。熱水によりガラス表面からのガラス成分の溶
出が起こり、これによるベース樹脂の加水分解作
用が加わり、樹脂とガラス粒子表面の界面剥離が
加速的に進行し、成形品全体を白色、不透明化さ
せる、と推定した。又、熱水暴露終了後は、ベー
ス樹脂中に残留する水分が徐々に蒸発することに
よつて、樹脂とガラス粒子との界面に生ずる“空
隙”により乱屈折を起こすため、成形品の外観上
の透明度は時間の経過と共にさらに悪化する。 従つて、該成形品の耐熱水性を向上させるため
には、樹脂とガラス粒子の表面とが完全に結合
し、粒界層が存在しないようにするのが最も効果
的であると考え、発明者等は種々研究を重ねた結
果、本発明を完成するに至つた。 即ち、本願の第1の発明の要旨とするところ
は、酸化物組成SiO240〜65重量%(以下重量
%)、B2O310〜30%、1価のアルカリ金属酸化物
の1種又はそれ以上の合計量が5〜20%、2価の
アルカリ土類金属酸化物及びZnOの1種又はそれ
以上の合計量が5〜30%、Al2O30〜15%、TiO20
〜10%、ZrO20〜10%で酸化物組成の合計が100
%であるガラス粉末の表面を、不飽和二重結合を
分子内に有するシランカツプリング剤で処理し、
該被処理ガラス粉末を充填剤として、不飽和二重
結合を有する熱硬化性樹脂に用いたことを特徴と
する、透明感を有する模様をもつ熱硬化性樹脂成
形品であり、第2の発明は、前記第1の発明の成
形品の表面に充填剤としてのガラス粉末を含まな
い透明な樹脂層を形成し、本質的に2層構造であ
つて、透明感を有する模様をもつ熱硬化性樹脂成
形品である。 次に本発明の特許請求の範囲の限定理由につい
て述べる。 充填剤として用いるガラス粉末の酸化物組成に
対する限定の必要性は前述の如く、ガラスの耐化
学薬品性の向上は熱硬化性樹脂成形品の耐熱水性
の向上につながると共に、成形品に透明感を与え
るため、使用するベース樹脂の屈折率とほぼ一致
した屈折率のガラスを得るためである。 SiO2の量を40〜65重量%としたのは、ガラス
耐化学薬品性の向上、又は維持に必要であり、
B2O3の量を10〜30重量%、1価のアルカリ金属
酸化物の1種又はそれ以上の合計量を5〜20重量
%、2価のアルカリ土類金属酸化物及びZnOの1
種又はそれ以上の合計量を5〜30重量%としたの
は、これを充填した成形品に透明感を与えるのに
適した屈折率のガラスを得るため、又耐熱水性向
上のため必要であるからであり、Al2O3、TiO2
ZrO2量は上述のガラスのもつ性質を助長するに
必要なためである。 次に上述の組成範囲のガラス粉末の表面を不飽
和二重結合を分子内に有するシランカツプリング
剤で処理することの必要性は、該成形品に実用に
耐え得る耐熱水性、耐薬品性を与えるためのガラ
ス粒子表面と樹脂との界面の結合を得るのに必要
なためである。この機構を更に詳細に説明すれば (a) 不飽和二重結合を分子内に有するシランカツ
プリング剤とガラス表面との反応 R―Si―(OR′)3+3H2O→ シラン化合物 空気中の水分 R―Si―(OH)3+3R′OH↑ …(1) アルコール R:例えばCH2=CH―、
The present invention relates to a thermosetting resin molded product having a transparent pattern such as onyx, opal, or marble. Our goal is to provide the following. Prior art related to the field of the present invention is US Pat. No. 3,396,067. According to the patent, certain glass powders with a particle size of approximately 100 mesh or less (e.g., Ferro frit #3134, #3278) are
A method for producing a molded article characterized by adding it to ~85% unsaturated polyester resin to impart an onyx-like pattern to the molded article is specified. Generally, in a mixed system of a liquid and powder solid particles that are insoluble in the liquid and have an amorphous shape, even if the refractive index of each is the same, at some of the grain boundaries of the solid particles, Light scattering occurs because there is always a surface with an angle greater than or equal to the critical angle that totally reflects the incident light. The appearance of such a mixed system is that when the solid particle size is small, it exhibits a semi-opalescent appearance, and as the particle size increases, transparency increases due to a decrease in light scattering, but some parts become glittery. It begins to exhibit visible brilliance. Therefore, it would be extremely difficult to make such a mixed system completely transparent and uniform in appearance, but it is possible to use spherical particles with a very narrow particle size distribution to minimize scattering at grain boundaries. It seems possible to obtain a fairly high degree of transparency. In addition, to produce glass powder used in such cases, it is usually ground using a ball mill, vibration mill, etc., but the particle size distribution of the powder obtained by these methods ranges over a wide range (1 to 300 μm). degree) The grain shape is amorphous with many protrusions that easily cause light scattering. Furthermore, there is always some deviation in the refractive index of glass and resin depending on each lot, and resin molded products that are a mixture of these contain considerable non-uniformity factors.
Even if no pattern is applied with a toner, the molded product has a transparent appearance and an appearance with an indistinct pattern. When such a molded product is obtained by the method of the prior art, the hot water resistance and chemical resistance of the molded product are extremely poor, and it is virtually impossible to use it for bathtubs, wash basins, etc. Currently, there are restrictions. In view of the current situation, the inventors have conducted various studies on the production of thermosetting resin molded articles having transparent patterns such as onyx, opal, or marble, which have extremely excellent hot water resistance and chemical resistance. As a method for improving hot water resistance and chemical resistance, (1) a coating layer with extremely high hot water resistance and chemical resistance is formed on the surface of the molded product. (2) Improving the hot water resistance and chemical resistance of the base thermosetting resin used. (3) Possible methods include improving the chemical resistance of glass powder used as a filler. Therefore, we used a general type ortho-unsaturated polyester resin (hot water resistance 80 hours) as the base resin, and used a bisphenol-based unsaturated polyester resin with particularly excellent hot water resistance as the transparent resin layer (0.4 to 0.6 mm thick) applied to the surface of the molded product. A test piece was prepared using polyester resin (hot water resistance 3000 hours) according to the prior art (US Pat. No. 3,396,067 mentioned above).On the other hand, both the base resin and the transparent resin layer on the surface were made of hot water resistant bisphenol unsaturated polyester resin. Test pieces were prepared using resin under the same conditions as before.Using these two types of test pieces,
While a continuous hot water test was carried out in 90℃ hot water, a continuous immersion test in room temperature water was also carried out. As a result of the hot water test, the test piece whose base resin was ortho-unsaturated polyester resin showed no change in the transparent resin layer on the surface after 40 hours, but the inner glass powder-filled resin layer changed. Due to the whitening, the appearance completely lost its transparency. On the other hand, a test piece using a hot water-resistant bisphenol unsaturated polyester resin as the base resin was also compared to a test piece using an ortho unsaturated polyester resin as the base after 60 hours, despite using a hot water resistant resin. In almost the same way, the transparency of the appearance was lost. No change was observed in any of the test pieces immersed in water at room temperature for 200 hours. In the above experiment, although the base resin layer was formed from two types of resins with completely different hot water resistance and chemical resistance, there was almost no difference in hot water resistance between the two test pieces.
In other words, in a base resin layer that contains a large amount of glass powder (using Ferro Fritz #3134 as shown in the prior art) as a filler, the difference in the hot water resistance of the resin used depends on the hot water resistance of the molded product. No difference appears. This suggests that the glass powder and hot water present in large amounts in the base resin (70 parts by weight of #3134 glass powder per 30 parts by weight of the resin shown in the prior art) are somehow involved in this phenomenon. Next, in order to investigate the difference in hot water resistance of molded products due to the difference in the properties of the glass used as a filler, we decided to use transparent pyrex, which has particularly excellent chemical resistance among commercially available glass products. Glass powder of the same grade as glass was crushed to pass through 100 meshes as a filler, and tested in the same manner as above using hot water-resistant bisphenol unsaturated polyester resin for both the base resin and the transparent resin layer on the surface. A piece was prepared and a hot water resistance test was conducted under the same conditions as described above. The test results showed a slight whitening in the appearance after 60 hours of exposure at 90°C, further whitening became stronger after 80 hours, and almost completely white and opaque after 100 hours, but the transparent resin layer on the surface No changes were observed. From the above experimental facts, it is necessary to use a base resin with extremely high hot water resistance, or
It has been found that by improving the chemical resistance of the glass powder used as a filler, the heat resistance of the molded product can be improved to some extent, but to this extent, it is difficult to improve the heat resistance of the molded product for practical purposes (at least 150 hours of continuous water treatment in hot water at 90°C). The performance must be such that almost no change is observed upon exposure)) is not sufficient. Based on the above experimental results and other facts, the inventors have deduced the most likely process for the progress of white opacity as follows. That is, hot water, which has become highly active at high temperatures, easily passes through the transparent resin layer on the surface and reaches the vicinity of the glass particles dispersed in the base resin. On the other hand, since glass particles inherently have a hydrophilic surface with high polarity, it is difficult to obtain high adhesive strength at the interface with a resin with low polarity. It is thought that there is a layer, and hot water that reaches the vicinity of the glass particles is drawn into this grain boundary layer due to the high polarity of the glass surface and erodes the glass surface. Hot water causes elution of glass components from the glass surface, which adds to the hydrolysis effect of the base resin, which accelerates interfacial peeling between the resin and the glass particle surface, making the entire molded product white and opaque. estimated that. In addition, after exposure to hot water, the moisture remaining in the base resin gradually evaporates, causing irregular refraction due to the "voids" created at the interface between the resin and the glass particles, which may affect the appearance of the molded product. The clarity worsens over time. Therefore, in order to improve the hot water resistance of the molded product, the inventors believe that it is most effective to completely bond the resin and the surface of the glass particles so that no grain boundary layer exists. As a result of various studies, they completed the present invention. That is, the gist of the first invention of the present application is that the oxide composition is SiO 2 40 to 65% by weight (hereinafter referred to as weight %), B 2 O 3 10 to 30%, and one type of monovalent alkali metal oxide. or more, the total amount of one or more of divalent alkaline earth metal oxides and ZnO is 5-30%, Al 2 O 3 0-15%, TiO 2 0
~10%, ZrO2 0~10% with a total oxide composition of 100
% of glass powder is treated with a silane coupling agent having unsaturated double bonds in the molecule,
A thermosetting resin molded article having a transparent pattern, characterized in that the treated glass powder is used as a filler in a thermosetting resin having an unsaturated double bond, and the second invention is a thermosetting resin that forms a transparent resin layer containing no glass powder as a filler on the surface of the molded article of the first invention, has an essentially two-layer structure, and has a transparent pattern. It is a resin molded product. Next, reasons for limiting the scope of claims of the present invention will be described. As mentioned above, it is necessary to limit the oxide composition of the glass powder used as a filler. Improving the chemical resistance of glass leads to improving the hot water resistance of thermosetting resin molded products, and also improves the transparency of the molded products. This is to obtain a glass having a refractive index that almost matches the refractive index of the base resin used. The amount of SiO 2 is set at 40 to 65% by weight because it is necessary to improve or maintain the chemical resistance of the glass.
The amount of B 2 O 3 is 10 to 30% by weight, the total amount of one or more monovalent alkali metal oxides is 5 to 20% by weight, and the total amount of one or more monovalent alkali metal oxides is 5 to 20% by weight.
The reason why the total amount of seeds or more is 5 to 30% by weight is necessary in order to obtain a glass with a refractive index suitable for imparting transparency to molded products filled with it, and to improve hot water resistance. from Al 2 O 3 , TiO 2 ,
This is because the amount of ZrO 2 is necessary to promote the above-mentioned properties of the glass. Next, it is necessary to treat the surface of the glass powder having the composition range mentioned above with a silane coupling agent having unsaturated double bonds in the molecule, so that the molded product has hot water resistance and chemical resistance that can withstand practical use. This is because it is necessary to obtain a bond between the surface of the glass particles and the resin to provide a bond. To explain this mechanism in more detail, (a) Reaction between a silane coupling agent having an unsaturated double bond in the molecule and the glass surface R―Si―(OR′) 3 +3H 2 O→ Silane compound in the air Water R―Si―(OH) 3 +3R′OH↑ …(1) Alcohol R: For example, CH 2 =CH-,

【式】等 R′:例えば―CH3、―C2H5等 (b) 不飽和二重結合を分子内に有するシランカツ
プリング剤と不飽和二重結合を有する熱硬化性
樹脂との反応は、樹脂の硬化に際し、ラジカル
重合により架橋する。これを具体的に説明する
と、成形品を急速硬化した場合に、シラン処理
なしのものは、界面剥離により、シラン処理の
ものに比べ、著しい白化、耐熱水性の劣化現象
が生じることから、シランが固液界面の強化に
対し、極めて効果的に働いていることがわか
る。このことからも前記架橋反応の生起は推測
できるが、次にこれを実験結果に基づいて説明
する。 使用樹脂 FG―283(大日本インキ株式会社製耐熱水グ
レード) 表面層樹脂 FG―387(大日本インキ株式会社製高耐熱水
性グレード) サンプル ガラス粉末はすべて米国フエロー社#3134同
等品を使用。樹脂、表面層樹脂、成形法はす
べて同じ。 〔A〕 無処理ガラス粉末使用 〔B〕 ビニルトリエトキシシラン(信越化学KBE
―1003)0.1%処理ガラス粉末使用(有機反応
基・エチレン性二重結合) CH2=CHSi(OC2H53 〔C〕 γ―メタクリロキシプロピルトリメトキシ
シラン(信越化学KBM―503)0.1%処理ガラ
ス粉末使用(有機反応基・エチレン性二重結
合) 〔D〕 β―(34エポキシシクロキシル)エチルト
リメトキシシラン(信越化学KBM―303)0.1
%処理ガラス粉末使用(有機反応基・エポキシ
基) 〔E〕 N―β(アミノエチル)γ―アミノプロピル
トリメトキシシラン(信越化学KBM―602)
0.1%処理ガラス使用(有機反応基・アミノ基) H2NC2H4NHC3H6Si(OCH33 耐熱水テスト(97℃100時間)結果
[Formula] R′: For example, -CH 3 , -C 2 H 5 , etc. (b) Reaction between a silane coupling agent having an unsaturated double bond in the molecule and a thermosetting resin having an unsaturated double bond is crosslinked by radical polymerization during curing of the resin. To explain this more specifically, when molded products are rapidly cured, those without silane treatment will experience more pronounced whitening and deterioration of hot water resistance due to interfacial peeling than those treated with silane. It can be seen that it works extremely effectively to strengthen the solid-liquid interface. Although it can be inferred from this that the crosslinking reaction occurs, this will be explained next based on experimental results. Resin used: FG-283 (hot water resistant grade manufactured by Dainippon Ink Co., Ltd.) Surface layer resin FG-387 (high hot water resistant grade manufactured by Dainippon Ink Co., Ltd.) All sample glass powders used were equivalent to #3134 made by Ferro Co., Ltd. in the United States. The resin, surface layer resin, and molding method are all the same. [A] Use of untreated glass powder [B] Vinyltriethoxysilane (Shin-Etsu Chemical KBE)
-1003) Use of 0.1% treated glass powder (organic reactive group/ethylenic double bond) CH 2 = CHSi (OC 2 H 5 ) 3 [C] γ-methacryloxypropyltrimethoxysilane (Shin-Etsu Chemical KBM-503) 0.1 % treated glass powder used (organic reactive group/ethylenic double bond) [D] β-(34epoxycycloxyl)ethyltrimethoxysilane (Shin-Etsu Chemical KBM-303) 0.1
% treated glass powder used (organic reactive group/epoxy group) [E] N-β (aminoethyl)γ-aminopropyltrimethoxysilane (Shin-Etsu Chemical KBM-602)
Using 0.1% treated glass (organic reactive group/amino group) H 2 NC 2 H 4 NHC 3 H 6 Si (OCH 3 ) 3 Hot water test (97℃ 100 hours) results

【表】 以上の実験結果より、耐熱水性について、シラ
ンカツプリング剤分子中にエチレン性二重結合を
有するものが、しからざるものに対して有効なこ
とが認められるが、これは不飽和二重結合を有す
る熱硬化性樹脂と不飽和二重結合を有するシラン
カツプリング剤の反応が生起していることを裏付
けるものである。 このように不飽和二重結合を分子内に有するシ
ランカツプリング剤によつて処理したガラス粉末
を充填剤として用いるときは、一方において該シ
ランカツプリング剤とガラス表面との反応が、他
方においてシランカツプリング剤と熱硬化性樹脂
との架橋反応がほぼ同時に生起し、両者が協働し
てガラス粒子表面と樹脂との界面を強固に結合さ
せ熱水による界面の侵食を防ぐのである。 以上のとおり本発明においては、成形品に透明
感及び耐熱水性、耐薬品性を与えるためのガラス
粉末組成の特定と、不飽和二重結合を分子内に有
する特定のシランカツプリング剤による処理とい
う手段が相まつて初期の目的を達成したものであ
る。 又、充填剤として用いるガラス粉末の表面を不
飽和二重結合を分子内に有するシランカツプリン
グ剤で処理することによつて、更に本発明の優れ
た工業的利点が具現する。即ち、該成形品を成形
中急速に硬化促進(加熱又は硬化剤の増量)し得
ることである。無処理のガラス粉末を充填剤とし
て用いた場合には、成形中急速に硬化を促進させ
ると樹脂の硬化発熱及び硬化収縮により内部に強
い応力が発生し、樹脂とガラス粉末との界面に剥
離を生じ成形品が白色不透明化したり、成形品に
クラツクを生じたりする。このため硬化には十分
長い時間をかける必要があつた。この点、本発明
に従えば、界面が十分強化されているため、加熱
又は硬化剤の増量による急速硬化が可能となる
(例えば、ガラス粉末を充填剤として全体の70重
量%程度使用して厚さ15mmの成形品を製造する場
合、良好な透明度をもつた成形品を得るには、無
処理のガラス粉末を使用すると常温硬化で数時間
以上の硬化時間を必要とするが、本発明のシラン
処理ガラス粉末を使用すれば60〜80℃の加熱で20
〜40分間での急速硬化ができる。)。工業的には生
産工程に係るコストの大巾低減を可能にすると共
に該製品の耐熱水性、耐薬品性を著しく向上させ
る等正に画期的な方法である。 次に第2の発明として特許請求の範囲第2項に
記載し、実施例2に具体的に述べた如く、前記成
形品の表面に充填剤としてのガラス粉末を含まな
い透明な樹脂層を形成し、本質的に2層構造とす
ることにより耐熱水性をより向上させると共に特
許請求の範囲第1項により具現された模様の外観
を一層強調し、成形品の審美感を向上させる効果
を有するものである。 本発明のベース樹脂として用いられる不飽和二
重結合を有する熱硬化性樹脂としては、その物理
的化学的性質、コスト、作業性等から不飽和ポリ
エステル樹脂が最も一般的であるが、要するに、
シラン分子内に存する不飽和二重結合とラジカル
重合する能力を有する不飽和二重結合を有し、硬
化後十分な透明性をもつたものであればその種類
を問わず、用途によつてはビニルエステル樹脂
(エポキシアクリレート樹脂)、熱硬化性アクリル
樹脂、ジアリルフタレート樹脂等にすべて適用し
得るものである。 又、本発明においてガラス粉末の表面を処理す
る不飽和二重結合を分子内に有するシランカツプ
リング剤としては、ビニルトリエトキシシラン
CH2=CHSi(OC2H53、ビニルトリス―β―メト
キシエトキシシランCH2=CHSi(OCH3
OC2H53、γ―メタアクリロキシプロピルトリメ
トキシシランCH2=C(CH3)C(O)OC3H6Si
(OCH33等があげられ、これらの使用量は、ガ
ラス100重量部に対して0.01〜0.5重量部の範囲が
一般的であるが、ガラス粉末の粒度、耐熱水性の
程度、コスト等を考慮して適切な添加量が決定さ
れる。更に表面処理されたガラス粉末粒子の大き
さは成形品表面に粗いガラス粒子が突出しないた
めにも、又樹脂との混合を容易とするためにも、
80メツシユを全通するのが好ましい。又80メツシ
ユを全通する表面処理されたガラス粉末の樹脂へ
の添加割合は、成形時の作業性、成形品の強度、
模様の具現状態等から樹脂との合計量の40〜80重
量%が好ましい。 以上述べた如く、本発明は不飽和二重結合を有
する熱硬化性樹脂に、前述の特定組成を有するガ
ラス粒子の表面を不飽和二重結合を分子内に有す
るシランカツプリング剤で処理した被処理ガラス
粉末を充填剤として添加することによつて、不飽
和二重結合を分子内に有するシランカツプリング
剤を介して樹脂とガラス粒子表面とに強固な化学
的結合を生じさせると共に樹脂、ガラス粉末の混
合に際し良好な分散性を与え、所期の通り所望の
模様と透明性を有し、かつ耐熱水性、強度に優れ
た熱硬化性樹脂成形品を良好な作業性をもつて得
ることに成功したものである。 次に本発明を具体的な実施例により従来方法に
よる製品との比較を含めてその有効性を明らかに
する。 実施例 1 (1) 充填剤用ガラス粉末の製造 酸化物組成が、SiO265重量%(以下重量
%)、B2O312%、Na2O+K2O10%、CaO11%、
Al2O32%であるガラス100重量部にビニルトリ
エトキシシラン〔CH2=CHSi(OC2H53〕(信
越化学製KBE―1003)を0.04重量部添加しボ
ールミルで粉砕しながらガラス粉末を表面処理
した後80メツシユを通過させたものを充填剤と
して用いる。 (2) ニユートラルコンパウンドの準備 硬化促進剤を予め含んだイソフタール酸系不
飽和ポリエステル樹脂(大日本インキ化学工業
製FG―283)30重量部に(1)で用意した被処理ガ
ラス粉末70重量部を加えてよく混合しニユート
ラルコンパウンドとする。 (3) 模様付用トーナーの準備 硬化促進剤を予め含んだイソフタール酸系不
飽和ポリエステル樹脂(前述FG―283)30重量
部にルチル型酸化チタン(石原産業製R―820)
30重量部、硫酸バリウム(工業試薬一級)40重
量部を加え十分混合して白色トーナーとし、又
同じイソフタール酸系不飽和ポリエステル樹脂
30重量部に黒酸化鉄(チタン工業製BL―500)
30重量部、炭酸カルシウム(日東粉化製NS―
100)40重量ぶ加えて十分混合し黒色トーナー
とする。 (4) 成形 板成形用型を用意し、予定製品重量の約30%
に相当するニユートラルコンパウンドに適量の
硬化剤を加えて撹拌した後型に均一に流し込
み、型全体に振動を加えて十分脱泡する。次
に、先に用意した白色、黒色トーナーを所望の
模様が出るよう全体に亙つて流し込み、トーナ
ーとコンパウンドが部分的に不規則に或いは縞
模様が生じるようにコンパウンド中に深く浅く
スパチユラを突つ込んだり、又成形、硬化後表
面に細い線状の模様が浮き出るようスパチユラ
にトーナーを付けてコンパウンド中に深く突つ
込み、線を引くようにした後、残りのコンパウ
ンドを予定製品重量に達する分だけさらに流し
込み約5分間型に振動を加えて脱泡する。脱泡
完了後60〜70℃の乾燥炉中に型ごと入れ、約20
分間加熱硬化し、冷却、脱型して板状マーブル
調成形板を得た。 (5) 耐熱水試験 (4)で得られた成形板から13cm角の試験片を切
り出しパツチ式熱水試験機にかけ、90℃熱水中
に表面を暴露し、連続200時間の熱水テストを
実施したところ、試験後試験片は極くわずか黄
味を帯びたが透明感を阻害する白色化は全く認
められなかつた。 実施例 2 (1) 充填剤用ガラス粉末の製造 米国フエロー社フリツト#3134と同組成〔エ
フ、エツチ、ノートン著「陶芸用セラミツク」
(F・H・Norton:「Ceramic for the artist
pottery」)P.225、1956年より〕のSiO246.5重
量%(以下重量%)B2O323%Na2O10.5%
CaO20%であるガラスを合成した。 (a) このガラス100重量部にγ―メタアクロキ
シプロピルトリメトキシシラン〔CH2=C
(CH3)C(O)OC3H6Si(OCH33(信越化学
製KBM―503)〕を0.05重量部添加し、ボー
ルミルで粉砕しながら表面処理した後、80メ
ツシユを通過させて得たガラス粉末を〔Aパ
ウダー〕とし、 (b) (a)と同じガラスをそのままボールミルで粉
砕した後80メツシユを通過させて得たガラス
粉末を〔Bパウダー〕とし、〔Aパウダー〕
〔Bパウダー〕2種のガラス粉末を熱硬化性
樹脂充填剤として用いる。 (2) ニユートラルコンパウンドの準備 硬化促進剤を予め含んだ高耐熱水性ビスフエ
ノール系不飽和ポリエステル樹脂(大日本イン
キ化学製FG―387)を2つの容器に各40重量部
づつ用意し、これに(1)で準備した〔Aパウダ
ー〕〔Bパウダー〕を各々60重量部づつ添加し
十分混合して、〔Aパウダー〕〔Bパウダー〕を
各々含有したニユートラルコンパウンド〔Aコ
ンパウンド〕〔Bコンパウンド〕を得た。 (3) 型の整備と透明樹脂層の形成 板成形用型2台を用意し、型表面を十分整備
し離型剤を塗布する。次に、前記ビスフエノー
ル系不飽和ポリエステル樹脂(FG―387)に硬
化促進剤、硬化剤を加えてよく撹拌し、スプレ
ーにて型表面に厚み約0.4mmになるべく均一に
塗布した後十分硬化させる。 (4) 成形 (2)で用意した〔Aコンパウンド〕〔Bコンパ
ウンド〕にそれぞれ適量の硬化剤を加えて撹拌
した後、製品予定重量分を2台の型にそれぞれ
を別々に流し込み約5分間型に振動を加えてよ
く脱泡する。次に60〜70℃の乾燥炉中に型ごと
入れ約20分間加熱硬化し、冷却、脱型して板状
マーブル調成形板〔A成形板〕〔B成形板〕を
得た。 (5) 耐熱水性試験 (4)で得られた〔Aパウダー〕を含有する〔A
成形板〕と、〔Bパウダー〕を含有する〔B成
形板〕とよりそれぞれ13cm角のテストピース切
り出し、パツチ式耐熱水試験装置にかけ90℃で
連続熱水試験を実施した。
[Table] From the above experimental results, it is recognized that silane coupling agents with ethylenic double bonds in their molecules are effective against unsaturated silane coupling agents in terms of hot water resistance. This confirms that a reaction occurs between the thermosetting resin having a double bond and the silane coupling agent having an unsaturated double bond. When glass powder treated with a silane coupling agent having unsaturated double bonds in the molecule is used as a filler, the reaction between the silane coupling agent and the glass surface occurs on the one hand, and the silane coupling agent on the other hand. The crosslinking reaction between the coupling agent and the thermosetting resin occurs almost simultaneously, and the two work together to firmly bond the interface between the glass particle surface and the resin, thereby preventing erosion of the interface by hot water. As described above, the present invention involves specifying the glass powder composition to give the molded product transparency, hot water resistance, and chemical resistance, and treatment with a specific silane coupling agent that has unsaturated double bonds in its molecules. The means together achieved the initial goal. Further, the excellent industrial advantages of the present invention can be realized by treating the surface of the glass powder used as a filler with a silane coupling agent having an unsaturated double bond in the molecule. That is, the curing of the molded article can be rapidly accelerated (by heating or increasing the amount of curing agent) during molding. When untreated glass powder is used as a filler, if hardening is accelerated rapidly during molding, strong stress will be generated internally due to the curing heat generation and curing shrinkage of the resin, resulting in peeling at the interface between the resin and the glass powder. This may cause the molded product to become white and opaque or cause cracks in the molded product. Therefore, it was necessary to take a sufficiently long time for curing. In this regard, according to the present invention, since the interface is sufficiently strengthened, rapid curing is possible by heating or increasing the amount of curing agent (for example, by using glass powder as a filler in an amount of about 70% of the total weight) When manufacturing a molded product with a diameter of 15 mm, using untreated glass powder would require several hours or more of curing time at room temperature in order to obtain a molded product with good transparency. If treated glass powder is used, heating at 60 to 80℃ will
Can be rapidly cured in ~40 minutes. ). Industrially, this is a truly revolutionary method, as it enables a significant reduction in the costs associated with the production process and significantly improves the hot water resistance and chemical resistance of the product. Next, as described in Claim 2 as a second invention, and as specifically described in Example 2, a transparent resin layer containing no glass powder as a filler is formed on the surface of the molded product. However, by essentially having a two-layer structure, the hot water resistance is further improved, and the appearance of the pattern embodied in claim 1 is further emphasized, which has the effect of improving the aesthetic appearance of the molded product. It is. As the thermosetting resin having unsaturated double bonds used as the base resin of the present invention, unsaturated polyester resin is the most common because of its physical and chemical properties, cost, workability, etc.
Regardless of the type, as long as it has an unsaturated double bond that has the ability to undergo radical polymerization with the unsaturated double bond present in the silane molecule, and has sufficient transparency after curing, depending on the use. It is applicable to all vinyl ester resins (epoxy acrylate resins), thermosetting acrylic resins, diallyl phthalate resins, etc. In addition, in the present invention, as a silane coupling agent having an unsaturated double bond in the molecule to treat the surface of glass powder, vinyltriethoxysilane is used.
CH 2 = CHSi(OC 2 H 5 ) 3 , vinyltris-β-methoxyethoxysilane CH 2 = CHSi(OCH 3 .
OC 2 H 5 ) 3 , γ-methacryloxypropyltrimethoxysilane CH 2 =C(CH 3 )C(O)OC 3 H 6 Si
(OCH 3 ) 3 , etc., and the amount used is generally in the range of 0.01 to 0.5 parts by weight per 100 parts by weight of glass, but the particle size of the glass powder, degree of hot water resistance, cost, etc. The appropriate amount to be added is determined by taking this into consideration. Furthermore, the size of the surface-treated glass powder particles is determined to prevent coarse glass particles from protruding onto the surface of the molded product and to facilitate mixing with the resin.
It is preferable to pass the entire 80 meshes. In addition, the ratio of surface-treated glass powder added to the resin that passes through the entire 80 mesh depends on workability during molding, strength of the molded product,
The amount is preferably 40 to 80% by weight of the total amount including the resin, considering the state of the pattern. As described above, the present invention uses a thermosetting resin having unsaturated double bonds, and the surface of glass particles having the above-mentioned specific composition is treated with a silane coupling agent having unsaturated double bonds in the molecule. By adding treated glass powder as a filler, a strong chemical bond is created between the resin and the glass particle surface via the silane coupling agent that has unsaturated double bonds in the molecule, and the resin and glass To provide good dispersibility when mixing powders, to obtain thermosetting resin molded products with desired pattern and transparency, excellent hot water resistance, and strength with good workability. It was a success. Next, the effectiveness of the present invention will be clarified through specific examples, including comparison with products made by conventional methods. Example 1 (1) Production of glass powder for filler The oxide composition was 65% by weight of SiO 2 (hereinafter referred to as % by weight), 12% of B 2 O 3 , 10% of Na 2 O + K 2 O, 11% of CaO,
Add 0.04 parts by weight of vinyltriethoxysilane [CH 2 =CHSi(OC 2 H 5 ) 3 ] (KBE-1003, manufactured by Shin-Etsu Chemical) to 100 parts by weight of glass containing 2 % Al 2 O 3 and grind the glass with a ball mill. After surface treating the powder, it is passed through 80 meshes and used as a filler. (2) Preparation of neutral compound 70 parts by weight of the glass powder to be treated prepared in (1) is added to 30 parts by weight of isophthalic acid-based unsaturated polyester resin (FG-283 manufactured by Dainippon Ink & Chemicals) containing a curing accelerator in advance. Add and mix well to make a neutral compound. (3) Preparation of toner for patterning Add 30 parts by weight of isophthalic acid-based unsaturated polyester resin (FG-283 mentioned above) containing a curing accelerator in advance to rutile-type titanium oxide (R-820 manufactured by Ishihara Sangyo Co., Ltd.)
Add 30 parts by weight and 40 parts by weight of barium sulfate (first grade industrial reagent) and mix thoroughly to make a white toner, and add the same isophthalic acid-based unsaturated polyester resin.
30 parts by weight of black iron oxide (BL-500 manufactured by Titan Industries)
30 parts by weight, calcium carbonate (Nitto Funka NS-
100) Add 40 parts by weight and mix thoroughly to make a black toner. (4) Molding Prepare a plate molding mold, approximately 30% of the planned product weight.
Add an appropriate amount of curing agent to a neutral compound corresponding to , stir it, and then pour it evenly into a mold, and thoroughly defoam by applying vibration to the entire mold. Next, pour the white and black toner prepared earlier over the entire surface so that the desired pattern appears, and poke deep and shallow spatulas into the compound so that the toner and compound form irregular or striped patterns in some areas. After molding and curing, apply toner to the spatula so that a fine line pattern will appear on the surface, and plunge it deeply into the compound to draw a line, then add the remaining compound to the desired weight of the product. Pour some more and vibrate the mold for about 5 minutes to defoam. After degassing is complete, place the mold in a drying oven at 60 to 70℃ for approximately 20 minutes.
The mixture was cured by heating for a minute, cooled, and demolded to obtain a marble-like molded plate. (5) Hot water resistance test A 13cm square test piece was cut out from the molded plate obtained in (4) and placed in a patch-type hot water tester.The surface was exposed to 90°C hot water and the hot water test was continued for 200 hours. When the test was carried out, the test piece had a very slight yellow tinge after the test, but no whitening that would impede transparency was observed at all. Example 2 (1) Manufacture of glass powder for filler Same composition as Fritz #3134 of Ferro Co., Ltd. ["Ceramics for Pottery" by F., H. Norton]
(F.H. Norton: "Ceramic for the artist"
SiO 2 46.5% by weight (hereinafter referred to as weight%) B 2 O 3 23% Na 2 O 10.5%
A glass containing 20% CaO was synthesized. (a) Add γ-methacroxypropyltrimethoxysilane [CH 2 =C
( CH3 )C(O) OC3H6Si ( OCH3 ) 3 (KBM-503 manufactured by Shin-Etsu Chemical)] was added, and the surface was treated while being ground in a ball mill, and then passed through an 80-mesh mesh. The obtained glass powder is called [A powder], (b) The glass powder obtained by crushing the same glass as in (a) in a ball mill and passing it through 80 meshes is called [B powder], and [A powder]
[Powder B] Two types of glass powders are used as thermosetting resin fillers. (2) Preparation of neutral compound Prepare 40 parts by weight of highly heat-resistant water-resistant bisphenol-based unsaturated polyester resin (FG-387 manufactured by Dainippon Ink Chemical Co., Ltd.) in two containers and add it to the mixture. Add 60 parts by weight of each of [A powder] and [B powder] prepared in (1) and mix thoroughly to obtain a neutral compound [A compound] and [B compound] containing [A powder] and [B powder] respectively. I got it. (3) Preparation of molds and formation of transparent resin layer Prepare two molds for plate molding, prepare the mold surfaces thoroughly, and apply mold release agent. Next, add a curing accelerator and curing agent to the bisphenol-based unsaturated polyester resin (FG-387), stir well, and spray it onto the mold surface as evenly as possible to a thickness of about 0.4 mm, and then cure thoroughly. . (4) Molding After adding an appropriate amount of curing agent to [Compound A] and [Compound B] prepared in (2) and stirring, pour each product separately into two molds by the estimated weight of the product and mold for about 5 minutes. Add vibration to defoam well. Next, the mold was placed in a drying oven at 60 to 70°C and heated to harden for about 20 minutes, cooled, and demolded to obtain plate-like marble-like molded plates [molded plate A] and [molded plate B]. (5) Hot water resistance test [A powder] containing [A powder] obtained in (4)
A test piece of 13 cm square was cut out from each of the molded plate] and the molded plate B containing the B powder, and subjected to a continuous hot water test at 90°C using a patch-type hot water tester.

【表】 めテスト前でもわずかな白化現象を呈す
る。
[Table] A slight whitening phenomenon is observed even before the test.

【表】 間
※2:〓A成形板〓は200時間、〓B成形板〓は160
時間
上記両者の耐熱水性試験結果を参考写真として
添付する。写真の上段はA成形板であり、下段
はB成形板である。 実施例 3 (1) 充填剤としてのガラス粉末の製造 酸化物組成が、SiO260重量%(以下重量
%)、B2O325%Na2O5%CaO5%Al2O35%であ
るガラス100重量部にビニルトリス―β―メト
キシエトキシシラン〔CH2=CHSi(OCH3
OC2H53〕(信越化学製KBC1003)を0.1重量部
添加し、ボールミルで粉砕しながら表面処理し
た後、80メツシユを通過させて得た被処理ガラ
ス粉末を充填剤として用いる。 (2) ニユートラルコンパウンドの準備 エポキシアクリレート樹脂(昭和高分子製リ
ポキシR―802)40重量部に(1)で用意した被処
理ガラス粉末60重量部とフタロシアニンブルー
トーナー(顔料含有量30%)0.01重量部及び適
量の硬化促進剤を加えてよく混合し淡青色のニ
ユートラルコンパウンドを用意する。 (3) 模様付用トーナーの準備 エポキシアクリレート樹脂(前述R―802)
30重量部、炭酸カルシウム(前述NS―100)40
重量部、無機緑色顔料(日本フエロー製NV―
11633)30重量部に適量の硬化促進剤を加えて
よく混合し、緑色トーナーとする。 (4) 成形 板成形用型を用意し、ニユートラルコンパウ
ンドに適量の硬化剤を加え、撹拌した後製品予
定重量の約30%を均一に流し込み、振動を加え
てよく脱泡する。脱泡完了後(3)で用意したトー
ナーを所望の模様が出るように流し込み、トー
ナーとコンパウンドとが不規則に混じり合うよ
うにスパチユラでかきまぜた後、製品予定重量
に達する分だけコンパウンドをさらに流し込み
約5分間振動を加えて脱泡する。次に70〜80℃
の乾燥炉中に型ごと入れ約20分間加熱硬化さ
せ、冷却、脱型して淡青色緑模様オニツクス調
成形板を得た。 (5) 耐熱水性試験 (4)で得た成形板から13mm角のテストピース切
り出しパツチ式熱水試験装置にかけ、90℃で連
続200時間の耐熱水試験を実施したところ、試
験面はわずかに黄変したが白化不透明化は起こ
らなかつた。 以上の実施例からも明らかなように、当該成
形品の耐熱水性を著しく向上させかつ具現させ
る模様の透明感を損なわぬようにするため、不
飽和二重結合を有する熱硬化性樹脂の充填剤と
して、特定組成のガラス粉末の表面を不飽和二
重結合を分子内に有するシランカツプリング剤
で処理したものを用いることを特徴とする本発
明は新規で、かつその工業上の効果は極めて大
きい。
[Table] Time *2: 〓A molded plate〓 is 200 hours,〓B molded plate〓 is 160 hours
time
The hot water resistance test results for both of the above are attached as reference photos. The upper part of the photo is the A molded plate, and the lower part is the B molded plate. Example 3 (1) Production of glass powder as filler The oxide composition is 60% by weight of SiO 2 (hereinafter referred to as % by weight), 25% of B 2 O 3 , 5% of Na 2 O, 5% of CaO, and 5% of Al 2 O 3 Vinyltris-β-methoxyethoxysilane [CH 2 = CHSi (OCH 3 .
0.1 part by weight of OC 2 H 5 ) 3 ] (KBC1003 manufactured by Shin-Etsu Chemical Co., Ltd.) is added, the surface is treated while being ground in a ball mill, and the glass powder to be treated is used as a filler by passing it through an 80-mesh mesh. (2) Preparation of neutral compound 40 parts by weight of epoxy acrylate resin (Lipoxy R-802 manufactured by Showa Kobunshi Co., Ltd.), 60 parts by weight of the glass powder to be treated prepared in (1), and 0.01 parts by weight of phthalocyanine blue toner (pigment content 30%) Add parts by weight and appropriate amount of curing accelerator and mix well to prepare a pale blue neutral compound. (3) Preparation of toner for patterning Epoxy acrylate resin (R-802 mentioned above)
30 parts by weight, calcium carbonate (NS-100 mentioned above) 40
Parts by weight, inorganic green pigment (Nippon Ferro NV-
11633) Add an appropriate amount of curing accelerator to 30 parts by weight and mix well to make a green toner. (4) Molding Prepare a mold for molding a plate, add an appropriate amount of curing agent to the neutral compound, stir it, then uniformly pour about 30% of the planned weight of the product into it, and then add vibration to thoroughly defoam. After defoaming is complete, pour in the toner prepared in (3) so that the desired pattern appears, stir with a spatula so that the toner and compound are mixed irregularly, then pour in more compound to reach the planned weight of the product. Vibrate for about 5 minutes to defoam. Then 70-80℃
The mold was placed in a drying oven for about 20 minutes, heated and cured, cooled, and removed from the mold to obtain an onyx-like molded plate with a light blue-green pattern. (5) Hot water resistance test A 13 mm square test piece was cut out from the molded plate obtained in (4) and subjected to a hot water test at 90°C for 200 hours continuously.The test surface was slightly yellow. However, no whitening or opacification occurred. As is clear from the above examples, in order to significantly improve the hot water resistance of the molded product and not to impair the transparency of the pattern, a thermosetting resin filler having unsaturated double bonds is used. The present invention, which is characterized by using a glass powder of a specific composition whose surface is treated with a silane coupling agent having an unsaturated double bond in the molecule, is novel and has extremely large industrial effects. .

Claims (1)

【特許請求の範囲】 1 酸化物組成SiO240〜65重量%(以下重量
%)、B2O310〜30%、1価のアルカリ金属酸化物
の1種又はそれ以上の合計量が5〜20%、2価の
アルカリ土類金属酸化物及びZnOの1種又はそれ
以上の合計量が5〜30%、Al2O30〜15%、TiO20
〜10%、ZrO20〜10%で酸化物組成の合計が100
%であるガラス粉末の表面を、不飽和二重結合を
分子内に有するシランカツプリング剤で処理し、
該被処理ガラス粉末を充填剤として不飽和二重結
合を有する熱硬化性樹脂に用いたことを特徴とす
る、透明感を有する模様をもつ熱硬化性樹脂成形
品。 2 酸化物組成SiO240〜65重量%(以下重量
%)、B2O310〜30%、1価のアルカリ金属酸化物
の1種又はそれ以上の合計量が5〜20%、2価の
アルカリ土類金属酸化物及びZnOの1種又はそれ
以上の合計量が5〜30%、Al2O30〜15%、TiO20
〜10%、ZrO20〜10%で酸化物組成の合計が100
%であるガラス粉末の表面を、不飽和二重結合を
分子内に有するシランカツプリング剤で処理し、
該被処理ガラス粉末を充填剤として不飽和二重結
合を有する熱硬化性樹脂に用いた、透明感を有す
る模様をもつ熱硬化性樹脂成形品の表面に、充填
剤としてのガラス粉末を含まない透明な樹脂層を
形成したことを特徴とする、本質的に2層構造で
あつて、透明感を有する模様をもつ熱硬化性樹脂
成形品。
[Claims] 1. Oxide composition SiO 2 40 to 65% by weight (hereinafter referred to as weight %), B 2 O 3 10 to 30%, and the total amount of one or more monovalent alkali metal oxides is 5. -20%, total amount of one or more of divalent alkaline earth metal oxides and ZnO is 5-30%, Al 2 O 3 0-15%, TiO 2 0
~10%, ZrO2 0~10% with a total oxide composition of 100
% of glass powder is treated with a silane coupling agent having unsaturated double bonds in the molecule,
A thermosetting resin molded article having a transparent pattern, characterized in that the treated glass powder is used as a filler in a thermosetting resin having unsaturated double bonds. 2 Oxide composition SiO 2 40 to 65% by weight (hereinafter referred to as weight %), B 2 O 3 10 to 30%, total amount of one or more monovalent alkali metal oxides 5 to 20%, divalent The total amount of one or more of alkaline earth metal oxides and ZnO is 5 to 30%, Al 2 O 3 0 to 15%, TiO 2 0
~10%, ZrO2 0~10% with a total oxide composition of 100
% of glass powder is treated with a silane coupling agent having unsaturated double bonds in the molecule,
The glass powder to be treated is used as a filler in a thermosetting resin having unsaturated double bonds, and the surface of a thermosetting resin molded product having a transparent pattern does not contain glass powder as a filler. A thermosetting resin molded article having an essentially two-layer structure and having a transparent pattern, characterized by forming a transparent resin layer.
JP5211480A 1980-04-19 1980-04-19 Molding of thermosetting resin Granted JPS56148538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5211480A JPS56148538A (en) 1980-04-19 1980-04-19 Molding of thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5211480A JPS56148538A (en) 1980-04-19 1980-04-19 Molding of thermosetting resin

Publications (2)

Publication Number Publication Date
JPS56148538A JPS56148538A (en) 1981-11-18
JPS6362552B2 true JPS6362552B2 (en) 1988-12-02

Family

ID=12905831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5211480A Granted JPS56148538A (en) 1980-04-19 1980-04-19 Molding of thermosetting resin

Country Status (1)

Country Link
JP (1) JPS56148538A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127365A (en) * 1983-11-18 1985-07-08 Nippon Furitsuto Kk Synthetic resin composition
JPS60127334A (en) * 1983-11-18 1985-07-08 Nippon Furitsuto Kk Filler for synthetic resin molded article
JPS61101552A (en) * 1984-10-22 1986-05-20 Takeda Chem Ind Ltd Unsaturated polyester molding compound for artificial marble
JPS6264858A (en) * 1985-09-17 1987-03-23 Takeda Chem Ind Ltd Unsaturated polyester resin molding compound
JPS63173615A (en) * 1987-01-14 1988-07-18 Nippon Fueroo Kk Manufacture of thermosetting resin molded form
JP2680029B2 (en) * 1988-04-08 1997-11-19 株式会社日立製作所 Thermosetting resin composition

Also Published As

Publication number Publication date
JPS56148538A (en) 1981-11-18

Similar Documents

Publication Publication Date Title
US6127458A (en) Artificial stone composition and method of manufacturing artificial stone
US5324757A (en) Resin-based artificial marble compositions
DE3231845C2 (en)
JPS6362552B2 (en)
US2695850A (en) Plastic composition
US4961995A (en) Polishable, flame retarded, synthetic mineral product
JPH02153966A (en) Glittering resin molding material and molded article
JPS6144747A (en) Manufacture of artificial marble
US4499142A (en) Faced masonry units and facing composition therefor
EP0328630B1 (en) Polishable, flame retarded, synthetic mineral product and method
JP2809022B2 (en) Artificial stone with mottled pattern
JPH02102155A (en) Production of granitic artificial stone
JP2825926B2 (en) Glass materials, glass composite materials and their manufacturing methods
KR950008049B1 (en) Artificial stone
JP3423846B2 (en) Artificial marble pattern material
JPH04280848A (en) Artificial stone
JPH06157103A (en) Grained artificial marble and its production
JPS6227101B2 (en)
WO1998056730A1 (en) Antimicrobial artificial stone and process for the production thereof
JP2002104857A (en) Method of producing artificial marble
JPH0536388B2 (en)
JPH01320247A (en) Resin concrete composition
JPH07242456A (en) Production of antifungal artificial marble product
JPH0826805A (en) Manufacture of artificial marble article having antimicrobial activity
JPH0550473B2 (en)