JPS6362542A - Film forming method - Google Patents
Film forming methodInfo
- Publication number
- JPS6362542A JPS6362542A JP61203598A JP20359886A JPS6362542A JP S6362542 A JPS6362542 A JP S6362542A JP 61203598 A JP61203598 A JP 61203598A JP 20359886 A JP20359886 A JP 20359886A JP S6362542 A JPS6362542 A JP S6362542A
- Authority
- JP
- Japan
- Prior art keywords
- film
- molecules
- molecule
- pattern
- liquid surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 40
- 239000007788 liquid Substances 0.000 claims abstract description 44
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 230000002209 hydrophobic effect Effects 0.000 claims description 4
- 230000007480 spreading Effects 0.000 claims description 3
- 238000003892 spreading Methods 0.000 claims description 3
- 230000001186 cumulative effect Effects 0.000 claims description 2
- 230000006378 damage Effects 0.000 abstract description 4
- 230000003628 erosive effect Effects 0.000 abstract description 2
- 229930187834 Arachidin Natural products 0.000 abstract 1
- 238000009413 insulation Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 58
- 239000000758 substrate Substances 0.000 description 26
- 230000004888 barrier function Effects 0.000 description 24
- 239000002253 acid Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 239000008346 aqueous phase Substances 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000007261 regionalization Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- CUFNKYGDVFVPHO-UHFFFAOYSA-N azulene Chemical compound C1=CC=CC2=CC=CC2=C1 CUFNKYGDVFVPHO-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000018 DNA microarray Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000005442 molecular electronic Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/18—Processes for applying liquids or other fluent materials performed by dipping
- B05D1/20—Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
- B05D1/202—Langmuir Blodgett films (LB films)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は成膜方法に関し、中でも所望パターンの単分子
膜あるいは昨分子累積膜を支持体上に形成することが可
能な新規な成膜方法に関するものである。本発明の方法
は、有機半導体素子等を形成する上に極めて有用なもの
であり、エレクトロニクス分野、中でも分子エレクトロ
ニクス分野あるいはバイオエレクトロニクス分野の発展
に大きく寄午するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a film forming method, and in particular, a novel film forming method capable of forming a monomolecular film or a monomolecular film with a desired pattern on a support. It is related to. The method of the present invention is extremely useful for forming organic semiconductor devices and the like, and will greatly contribute to the development of the electronics field, particularly the molecular electronics field or the bioelectronics field.
(従来の技術)
近年、有機を導体素子など有機材料のエレクトロニクス
分野への進展は目覚ましく、有機材料を用いた論理素f
、メモリ素子等の分子デバイスや生体関連物質からなる
論理素子(例えばバイオ・チップス)あるいは打機配線
等も作成されるに至っている。(Prior art) In recent years, there has been remarkable progress in the field of electronics using organic materials, such as organic conductor elements, and logic elements using organic materials.
, molecular devices such as memory elements, logic elements made of biologically related substances (eg, biochips), and wires made by punching machines have also been created.
このような有機材料を用いて上記のような名種デバイス
や配線を作成する際の有機薄膜の形成方法としては、例
えば蒸着、スパッタリング、化学気相堆積法(CVD法
)等の成膜方法や、ラングミュア・プロジェット法(以
下、LB法と略)(例えば、新実験化学講座、第18章
498頁〜507頁、丸善刊などを参照)と呼ばれる単
分子膜累積法等の成膜方法が一般に知られている。中で
もLB法は、高度の秩序性及び均一性を有する薄膜の形
成が、上記蒸着等のような減圧操作を要する成膜方法と
は異なり、常温、常圧下で簡易に行なわれるため注[J
されている。このLB法は、親水性部位と疎水部位とを
併有する分子を水相トに展開し、その面密度を適宜増し
てゆくと、親水性と疎水性のバランスが適当な場合には
、該分子が水相−Lで親水性部位を下に向け、疎水部位
を上に向けて単分子膜を形成することを利用して膜形成
を行なうものである。Methods for forming organic thin films when creating the above-mentioned famous devices and wiring using such organic materials include, for example, deposition methods such as evaporation, sputtering, and chemical vapor deposition (CVD). , a film formation method such as the monomolecular film accumulation method called the Langmuir-Prodgett method (hereinafter abbreviated as LB method) (for example, see New Experimental Chemistry Course, Chapter 18, pp. 498-507, published by Maruzen, etc.). generally known. Among these, the LB method can easily form a thin film with a high degree of order and uniformity at room temperature and pressure, unlike the above-mentioned deposition methods that require reduced pressure operations.
has been done. This LB method develops a molecule that has both hydrophilic and hydrophobic sites in an aqueous phase and increases its areal density appropriately.If the balance between hydrophilicity and hydrophobicity is appropriate, the molecule is The film is formed by forming a monomolecular film in the aqueous phase -L with the hydrophilic sites facing downward and the hydrophobic sites facing upward.
すなわち、このような分子は二次元粒子系として振舞い
、分子の面密度が低い場合には、一分子当りの面積(分
子占仔面禎)と表面圧の間にはニー次元理想気体の状態
方程式が成り立つ「気体膜」となるが、表面圧をヒげ分
子の面密度を高くすると、分子間の相互作用が強まり、
二次元固体の「凝縮膜(または固体膜)」となる。この
凝縮膜は分子の配列、配向がきれいにそろい、高度な秩
序性及び均一性を存している。そして、この凝縮膜はガ
ラス等の基板に1層つつ移しとることができ、1層また
は同一基板に重ねて複数回単分子膜を移し取ることによ
って、単分子膜または単分子累積膜を基板−ヒに得るこ
とができる。このようにして得られる単分子膜または弔
分子累積膜は、高度の秩序性を有した極めて良質の膜と
なる。基板への移し取りの方法としては、垂直浸漬法、
水モ付着法、回転ドラム法などが知られている。In other words, such molecules behave as a two-dimensional particle system, and when the areal density of molecules is low, the two-dimensional ideal gas equation of state is established between the area per molecule (molecular zhanzi mending) and the surface pressure. However, when the surface pressure and the surface density of the molecules are increased, the interaction between the molecules becomes stronger.
It becomes a two-dimensional solid "condensation film (or solid film)." This condensed film has well-aligned molecules and a high degree of order and uniformity. This condensed film can be transferred one layer at a time to a substrate such as glass, and by transferring the monomolecular film in one layer or multiple times on the same substrate, the monomolecular film or monomolecular cumulative film can be transferred from the substrate to the substrate. You can get it easily. The monomolecular film or the molecule-accumulated film thus obtained is a film of extremely high quality with a high degree of order. The methods of transferring to the substrate include vertical immersion method,
Known methods include the water mop deposition method and the rotating drum method.
このような成1反方法を用いて−h記のような各種素r
や配線か形成される訳であるが、その際、これら素子の
機能性部位や配線部を構成する薄膜を所要のパターンに
賦形化するためのバターニングは、F記のような成11
Q方法によって基板上に膜を形成した後、#膜を機械的
に剥離あるいはエツチング除去する等により行なうのが
一般的であった。By using such a production method, various elements such as those listed in h.
At that time, the patterning process for shaping the thin films that make up the functional parts and wiring parts of these elements into the desired pattern is performed using the formation method described in Section F.
It has been common practice to form a film on a substrate by the Q method and then mechanically peel off or remove the # film by etching.
しかしながら、このような方法では成膜後にパターニン
グ工程が別途必要で工程数が多くなり、しかも膜形成後
に機械的あるいはエツチング等の物理的処理や化学的処
理を施すため、膜が化学的に溶損されたり、破損された
りして、得られる素子や配線の特性を劣化させてしまう
ことがあった。However, this method requires a separate patterning process after film formation, which increases the number of steps.Furthermore, since the film is subjected to physical treatment such as mechanical or etching or chemical treatment after film formation, the film may be damaged by chemical erosion. This may lead to deterioration of the characteristics of the resulting element or wiring.
(発明が解決しようとする問題点〕
本発明は上記の諸点に鑑み成されたものであって、本発
明の目的とするところは、従来の成膜方法の欠点を解消
し、膜の破壊や溶損を生じることなくパターンの形成が
可能で、しかも素子特性などを劣化させることのない新
規な成膜方法を提供することにある。(Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned points, and the purpose of the present invention is to eliminate the drawbacks of the conventional film forming method and prevent film destruction. It is an object of the present invention to provide a novel film forming method that allows pattern formation without causing melt damage and does not cause deterioration of device characteristics.
本発明の別の目的は、工程数を簡略化し、常温、常圧下
においても容易にパターニングの可能な新規な成膜方法
を提供することにある。Another object of the present invention is to provide a novel film forming method that simplifies the number of steps and allows easy patterning even at room temperature and pressure.
(問題点を解決するためのf段)
本発明の上記目的は、以下の本発明によって達成される
。(F stage for solving the problems) The above objects of the present invention are achieved by the present invention as described below.
すなわち本発明は、液面に成膜分子をパターン状に展開
し、該パターン状の成膜分子を移し取ることによって支
持体上にパターンを形成することを特徴とする成膜方法
である。That is, the present invention is a film forming method characterized by forming a pattern on a support by spreading film forming molecules in a pattern on a liquid surface and transferring the patterned film forming molecules.
すなわち、本発明の方法は、具体的には前述した1 1
1法において、液面に成1摸分子を展開する際に、tめ
所要とする素子や配線のパターンに応じた形状に成膜分
子を展開し、該液面に展開された成膜分子のパターンを
そのまま支持体に移し取ることにより成膜を行なうもの
である。従って、本発明の方法では成膜と同時にパター
ン化が行なわれ、素子あるいは配線形成時における工程
数の簡略化を達成することができる。また、パターン形
成に際して、従来の如き機械的剥離やエツチング等の処
理を特に必要としないので、得られる素子や配線の特性
を劣化させることもなく、しかも常温、常圧Fで容易に
成1反を行ない得るものである。That is, the method of the present invention specifically applies to the above-mentioned 1 1
In method 1, when deploying a sample molecule on the liquid surface, the film-forming molecule is developed in a shape corresponding to the desired element or wiring pattern, and the film-forming molecule spread on the liquid surface is Film formation is performed by transferring the pattern as it is onto a support. Therefore, in the method of the present invention, patterning is performed at the same time as film formation, and the number of steps in forming elements or wiring can be simplified. Furthermore, since pattern formation does not require special treatments such as conventional mechanical peeling or etching, it does not deteriorate the characteristics of the resulting elements or wiring, and can be easily formed at room temperature and pressure F. It is possible to do this.
本発明において液面に展開する成膜分子は、所要とする
配線や素子特性等に応じた所望のものを適宜選択使用す
ることができるが、分子内に疎水性部位と親水性部位と
を併有し、液面で単分子膜を容易に形成する分子が好適
に用いられる。具体的には、例えば特開昭60−246
357号公報に開示されであるような電荷移動型の両親
媒性有機化合物などが挙げられる。In the present invention, the film-forming molecules developed on the liquid surface can be selected and used as desired depending on the required wiring, device characteristics, etc., but the molecules may contain both hydrophobic and hydrophilic sites. Molecules that can easily form a monomolecular film on the liquid surface are preferably used. Specifically, for example, Japanese Patent Application Laid-Open No. 60-246
Examples include charge-transfer type amphipathic organic compounds as disclosed in Japanese Patent No. 357.
この上うな成膜分pを移し取る支持体も、該成膜分子と
同様に所要とする配線や素子特性等に応じたものを適宜
選択使用することができる。具体的には各種の基板が代
表的なものとして挙げられる。もちろん基板材質や形状
等は特に限定されない。また、支持体は、このような基
板の他、その上に各種パターンの機能層が設けられる半
導体素子等であってもよい。Moreover, the support to which the film-forming component p is transferred can be appropriately selected and used according to the required wiring, device characteristics, etc., as well as the film-forming molecules. Specifically, various types of substrates are representative. Of course, the substrate material, shape, etc. are not particularly limited. In addition to such a substrate, the support may be a semiconductor element or the like on which functional layers of various patterns are provided.
以下、必要に応じて図面を参照しつつ、本発明の詳細な
説明する。Hereinafter, the present invention will be described in detail with reference to the drawings as necessary.
第1図に本発明の基本的な一態様を示す。すなわち本発
明においては、例えば第1図(a)に示す如くに成膜分
子をパターン状に液面に展開する。FIG. 1 shows one basic aspect of the present invention. That is, in the present invention, film-forming molecules are spread on the liquid surface in a pattern, as shown in FIG. 1(a), for example.
本例では成膜分子を2種とし、その一方をアラキシン酸
などの絶縁性を示す分子(これを分子Aとする)、他方
をテトラシアノキジメタンドコシルビリジニウムなどの
導電性を示す分子(これを分子Bとする)として、これ
ら2種の分子を第1図(a)に示す如くに液面5にA、
B、A、B ・・・・・・ の順に交互に展開して、
該液面5上にそれぞれ分子A、Bよりなる単分子11i
a、bをストライブ状(例えばa8、 b3、 al、
b2+++・・・ と魯ったように)に形成した後、
基板7を液面5を横切るように垂直に上下させてこれを
そのまま移し取り、第1図(b)に示した如きストライ
プ状の配線パターンを↓(板7上に形成したものである
。In this example, two types of film-forming molecules are used, one of which is a molecule that exhibits insulating properties such as araxic acid (this is referred to as molecule A), and the other is a molecule that exhibits conductivity such as tetracyanokidimethanandocylviridinium (this is referred to as molecule A). These two types of molecules are placed on the liquid surface 5 as shown in FIG.
B, A, B...... Expand alternately in the order,
Single molecules 11i each consisting of molecules A and B are on the liquid surface 5.
a, b in striped form (e.g. a8, b3, al,
b2+++...) After forming it,
The substrate 7 was moved vertically up and down across the liquid surface 5 and transferred as it was, and a striped wiring pattern as shown in FIG. 1(b) was formed on the substrate 7.
本発明において、上記の如き液面への成膜分子の展開は
例えば以下のようにして行なうとよい。In the present invention, the above-mentioned spreading of the film-forming molecules onto the liquid surface may be carried out, for example, as follows.
まず、成膜分子を所要の溶媒、例えば上記アラキシン酸
であればクロロホルム等、またテトラシアノキジメタン
ドコシルビリジニウムであればアセトニトリルとベンゼ
ンの(1:1)混合溶媒等に溶解させた後、液面の面積
を可変にすることのできる移動障壁等を有する水相に展
開する。この際、例えば上記第1図に示したような2種
の分子よりなるストライブ状のパターンを得るのであれ
ば、まず分子Aを液面5に展開し、移動障壁4−1を前
方に移動させて分子の表面圧を挙げ、単分子膜alを得
る。この時、移動障壁4−2はフックIOにより4−1
と同様に前後に動くことが可能である。First, the film-forming molecules are dissolved in a required solvent, such as chloroform for the above-mentioned araxic acid, or a mixed solvent of acetonitrile and benzene (1:1) for tetracyanoquidimethanandocylpyridinium. It is developed into an aqueous phase that has a moving barrier etc. that can make the area of the liquid surface variable. At this time, for example, if you want to obtain a striped pattern made of two types of molecules as shown in FIG. The surface pressure of the molecules is raised to obtain a monomolecular film Al. At this time, the moving barrier 4-2 is moved to 4-1 by the hook IO.
It is possible to move back and forth in the same way.
次に、移動障壁4−1に隣接するようにして膜拡散防止
のための固定障壁(不図示)を設けた後、分7− Bを
液面に展開するべく移動障壁4−1を後方に移動させる
。このような状態で、移動障壁4−1と昨分子11Qa
+との間に分子Bを展開し、移動障壁を上記と同様に前
方に移動させ単分子膜す、を得る。このような操作を順
次繰り返して、それぞれ分子AおよびBがal、bI、
al、b2−・・・・・ の順に交互に繰り返されたス
トライブ状のパターンを液面に得るのである。この際、
固定障壁は液面に分子を展開するたび毎に順次移動させ
てゆき、液面へのパターン形成後にこれを取り除くとよ
い。Next, after providing a fixed barrier (not shown) to prevent film diffusion so as to be adjacent to the moving barrier 4-1, the moving barrier 4-1 is moved backward in order to spread the portion 7-B on the liquid surface. move it. In this state, the migration barrier 4-1 and the previous molecule 11Qa
Molecule B is expanded between + and the migration barrier is moved forward in the same manner as above to obtain a monomolecular film. By repeating these operations sequentially, molecules A and B become al, bI,
A stripe-like pattern is obtained on the liquid surface, which is alternately repeated in the order of al, b2-.... On this occasion,
The fixed barrier is preferably moved sequentially each time molecules are spread on the liquid surface, and removed after pattern formation on the liquid surface.
尚、移動障壁および固定障壁の形状を種々に変更するこ
とにより、上記ストライブパターンのみならず、所望形
状のパターンを液面に得ることができるものである。ま
た、液面に展開する分子は必ずしも2種である必要はな
く、例えば分子AおよびBをそれぞれ複数の分子の混合
物として液面に展開してパターンを得ることも可能であ
るし、3種以上の分子を用いてそれら分子が互いに独立
した形態のパターンを得ることももちろん可能である。By variously changing the shapes of the moving barrier and the fixed barrier, it is possible to obtain not only the stripe pattern described above but also a pattern of a desired shape on the liquid surface. In addition, it is not necessary that two types of molecules are developed on the liquid surface; for example, it is possible to obtain a pattern by developing molecules A and B as a mixture of molecules each on the liquid surface, or three or more types of molecules can be developed on the liquid surface. Of course, it is also possible to obtain a pattern in which the molecules are independent from each other using the molecules.
次に、本発明の方法を具現化するに好適な装置の一例を
第2図に示す。Next, FIG. 2 shows an example of an apparatus suitable for implementing the method of the present invention.
本例の装置は前述したストライブパターンを得るに好適
なもので、図中に符合3で示すものは成膜分子を展開す
る水相13を保持する水槽である。The apparatus of this example is suitable for obtaining the above-mentioned stripe pattern, and what is indicated by reference numeral 3 in the figure is a water tank that holds an aqueous phase 13 in which film-forming molecules are developed.
該水槽3には移動障壁4−1および4−2が設けられて
いる。移動障壁4−1および4−2は、表面圧力計1を
介して表面圧センサー6に接続された表面圧力制御装置
2に接続されており、表面圧力センサ−6で検知した成
膜分子の表面圧に基づいた該障壁4−1および4−2の
移動制御による成膜分子の表面圧の制御が行ない得るよ
うにされるとともに、個々の独立、任意移動も可能なよ
うにされている。尚、図中に符合7で示すものは支持体
としての基板、8は液面5に対して上下移動が可能な基
板ホルダーであり、基板7への成膜分子の移し取りは、
基板ホルダー8に保持した基板7を液面5を横切るよう
に上下に移動させることにより行なう。The water tank 3 is provided with moving barriers 4-1 and 4-2. The movement barriers 4-1 and 4-2 are connected to a surface pressure control device 2 connected to a surface pressure sensor 6 via a surface pressure gauge 1, and the surface of the film-forming molecules detected by the surface pressure sensor 6 is The surface pressure of the film-forming molecules can be controlled by controlling the movement of the barriers 4-1 and 4-2 based on the pressure, and independent and arbitrary movement of each is also possible. In addition, what is indicated by the reference numeral 7 in the figure is a substrate as a support, and 8 is a substrate holder that can be moved up and down with respect to the liquid level 5. Transfer of the film-forming molecules to the substrate 7 is as follows.
This is done by moving the substrate 7 held by the substrate holder 8 up and down across the liquid level 5.
上記の如き成II!2装置を用い、成膜は例えば以下の
ような操作によって行なう。尚、液面に展開する成膜分
子は、nf述したようなA、Hの2種として説明を行な
う。Sei II as above! Using two apparatuses, film formation is performed, for example, by the following operations. In addition, the film-forming molecules developed on the liquid surface will be explained as two types, A and H as described in nf.
まず、液面を清浄にし、所要の溶媒に溶かした成膜分子
の溶液の一方を、第3図(a)に示す如くにスポイト1
2等を用いて液面5上に滴下し、液面に該分子を展開す
る。First, the liquid surface is cleaned, and one side of the solution of film-forming molecules dissolved in the required solvent is poured into the dropper as shown in Fig. 3(a).
2 or the like onto the liquid surface 5 to spread out the molecules on the liquid surface.
11f1述の如く液面に展開した成膜分子は二次元粒子
系として振舞い、分子の面密度が低い場合には、一分子
当りの面積(分子占有面積)と表面圧の間には二次元理
想気体の状態方程式が成り立つ「気体膜」となる。次い
で、この気体膜の状態から、第3図(b)に示1−如く
に徐々に移動障壁4−1を左方に動かし、分子が展開し
ている液面の領域を次第に縮めて面密度を増してやると
、分子間の相!1作用が強まり、二次元液体の液体膜を
経て二次元固体の「凝縮膜(または固体膜)」となる。As mentioned in 11f1, the film-forming molecules spread out on the liquid surface behave as a two-dimensional particle system, and when the surface density of the molecules is low, there is a two-dimensional ideal relationship between the area per molecule (molecular occupied area) and the surface pressure. It becomes a "gas film" in which the gas equation of state holds true. Next, from this state of the gas film, the moving barrier 4-1 is gradually moved to the left as shown in Figure 3(b), and the area of the liquid surface where the molecules are spread is gradually reduced to increase the areal density. When we increase the intermolecular phase! 1 action becomes stronger, and it becomes a two-dimensional solid "condensation film (or solid film)" through a two-dimensional liquid film.
こうして、分子の配列、配向かきねいに揃い、高度の秩
序性及び均一性を持ったM薄膜性を有する単分子膜aが
液面5上に得られる。In this way, a monomolecular film a having M thin film properties with a high degree of order and uniformity in which the molecules are arranged and oriented well is obtained on the liquid surface 5.
この際、表面圧センサー6で液面上の単分子膜の表面圧
を測定しつつ、移動障壁4−1の左右の動きを制御し、
基板への移し取りおよび次の分子の展開に好適な表面圧
に設定する。一般に基板に移し取るに好適な表面圧は1
5〜35dyn/cm程度である。At this time, while measuring the surface pressure of the monomolecular film on the liquid surface with the surface pressure sensor 6, the left and right movement of the moving barrier 4-1 is controlled,
Set the surface pressure to be suitable for transfer to the substrate and development of the next molecule. Generally, the suitable surface pressure for transferring to the substrate is 1
It is about 5 to 35 dyn/cm.
このような表面圧に設定した後、IIQ拡散防止のため
の固定障壁9を移動障壁4−1に隣接するように設け、
その後第3図(C)に示す如くに再度移動障壁4〜1を
右方に移動させ、第3図(d)に示す如くに先に展開し
た分子とは別の分子を液面に展開する。その後、上記同
様の操作を行なって、第3図(e)に示す如くに該分子
よりなる単分子膜すを得る。After setting such a surface pressure, a fixed barrier 9 for preventing IIQ diffusion is provided adjacent to the moving barrier 4-1,
Thereafter, as shown in FIG. 3(C), the moving barriers 4 to 1 are moved to the right again, and as shown in FIG. 3(d), molecules different from those previously developed are deployed on the liquid surface. . Thereafter, the same operations as above are performed to obtain a monomolecular film made of the molecules as shown in FIG. 3(e).
このような分子の展開操作を繰り返して、面別の第1図
に示したと同様のストライブ状のパターンを液面に得た
(第3図(f)参照)後、基板(不図示)を液面5を横
切るように上下に移動させて、基板表面に当該パターン
状の単分子膜を移し取ることにより、コ、ζ板上に当該
単分子膜のパターンを形成することができる。この際、
基板の上下を繰り返せば、基板上にパターン状に形成さ
れた弔分子累積膜を得ることができる。基板のL下は、
O1〜1 c+n/sec程度の速度で行なうとよい
。After repeating this molecule development operation to obtain a striped pattern on the liquid surface similar to that shown in FIG. 1 for each surface (see FIG. 3(f)), the substrate (not shown) was By moving the monomolecular film vertically across the liquid surface 5 and transferring the patterned monomolecular film onto the substrate surface, the pattern of the monomolecular film can be formed on the ζ plate. On this occasion,
By repeatedly moving the substrate up and down, it is possible to obtain a layer of accumulated molecules formed in a pattern on the substrate. Below L of the board is
It is preferable to carry out the process at a speed of about O1-1 c+n/sec.
また、基板への移し取りの最中にも表面圧センサーを動
作させておき、」、(板への移し取りにともなう表面圧
の変動に対応するへ〈フックlOをはずして移動障壁4
−2の制御を行なうとよい(この際は、移動障壁4−1
は動かさない)。参考までに基板7への成膜分子11の
移し取りの状態の一例を第4図に示す。In addition, the surface pressure sensor is operated during the transfer to the board.
-2 control (in this case, moving barrier 4-1
does not move). For reference, an example of the transfer state of the film-forming molecules 11 onto the substrate 7 is shown in FIG.
尚、上記2おいては特に示さなかったが、J、L板への
膜の移し取りは、−ヒ述した垂直浸111法の他、水・
ト付着法や回転ドラム法によることももちろん可i′〕
ヒである。Although not specifically shown in 2 above, the film can be transferred to the J and L plates by the vertical immersion method 111 mentioned above, as well as by water immersion method.
Of course, it is also possible to use the drum adhesion method or the rotating drum method.
It's Hi.
以下に本発明の実施例を示1−0
実施例1
第2図に例示の如き成膜装置を用い、第1図に例示のス
トライブ状の配線パターンを以下のようにして作成した
。Examples of the present invention are shown below.1-0 Example 1 Using a film forming apparatus as illustrated in FIG. 2, the striped wiring pattern illustrated in FIG. 1 was created in the following manner.
成IIQ分Y−は2種とし、その一方を絶縁性を有する
アラキシン酸として、該分子の3 x 10” mol
/ffのクロロホルム溶液をまず:A整した。これとは
別に、もう一方の成膜分子として導電性を有するドコシ
ルビリジニウムージテトラシアノキジメタンを用い、該
分子の3 X 10゛4mol/uのベンセンルアセト
ニトリル(1:1)溶液を調整した。There are two types of composition IIQ component Y-, one of which is araxic acid having insulating properties, and 3 x 10" mol of the molecule.
A chloroform solution of /ff was first adjusted to:A. Separately, using conductive docosylpyridinium ditetracyanoki dimethane as the other film-forming molecule, a solution of 3 x 10゛4 mol/u of this molecule in benzenely acetonitrile (1:1) was prepared. did.
これら分子を水相(濃度4×10°’ mol/fL、
pH5,6、水温20℃の塩化カドミウム水溶液)に展
開し、上記ストライブパターンの配線を第3図に例示の
方法に準じて次のように作成した。These molecules were added to the aqueous phase (concentration 4 × 10°' mol/fL,
A cadmium chloride aqueous solution (pH 5, 6, water temperature 20° C.) was developed, and wiring in the above stripe pattern was created as follows according to the method illustrated in FIG.
最初に、アラキシン酸溶液を上記塩化カドミウム水溶液
の液面5に展開し、溶媒を蒸発除去後、移動障壁4を移
動させ、表面圧を:l0dyn/鳴まで高めてアラキシ
ン酸の単分子膜aを5m1幅に形成したく第3図(b)
参照)。First, an araxic acid solution is spread on the liquid surface 5 of the cadmium chloride aqueous solution, and after the solvent is evaporated and removed, the transfer barrier 4 is moved and the surface pressure is increased to 10 dyn/sing to form a monomolecular film a of araxic acid. Figure 3 (b)
reference).
次いて、移動障壁に隣接するように固定障壁9を配した
。そして、移動障壁4を初期位置まで移動させた後、ド
コシルピリジニウムージテトラシアノキジメタンを上記
アラキシン酸の単分子11qと移動障壁の間の液面に展
開したく第3図(d)参照)。溶媒を蒸発除去後、移動
1IiX壁4を移動させ、表面圧を30dyn/cmま
で高めて上記アラキシン酸の弔分子膜に隣接した状態で
、ドコシルピリジニウムージテトラシアノキジメタンの
単分子++i bを5mff1幅に液面に形成した(第
3図(e)参照)。Next, a fixed barrier 9 was placed adjacent to the moving barrier. After moving the migration barrier 4 to the initial position, docosylpyridinium ditetracyanokidimethane is spread on the liquid surface between the single molecule 11q of alaxic acid and the migration barrier, see FIG. 3(d). ). After removing the solvent by evaporation, the moving 1IiX wall 4 was moved, the surface pressure was increased to 30 dyn/cm, and a single molecule of docosylpyridinium-ditetracyanokidimethane ++i b was formed on the liquid surface to a width of 5 mff1 (see Fig. 3(e)).
以後同様な操作を繰り返し行ない、液面5.トに第3図
(f)の如きストライブ状のパターンを得た。After that, repeat the same operation until the liquid level reaches 5. A striped pattern as shown in FIG. 3(f) was obtained.
最後に、ガラス基板(30x IO+nm)を速度10
mm/secで液面を横切るように1往復させて話法面
上のパターンを移し取ることにより、ドコシルビリジニ
ウムージテトラシアノキジメタンを導電層とするストラ
イブ状の配線パターンを基板上に得た。こうして得られ
た配線パターンは膜の損傷もなく、導電性にも優れた5
ものであった。Finally, the glass substrate (30x IO+nm) was placed at a speed of 10
By transferring the pattern on the surface by making one reciprocation across the liquid surface at a rate of mm/sec, a striped wiring pattern with docosylpyridinium ditetracyanoki dimethane as a conductive layer is formed on the substrate. Obtained. The wiring pattern obtained in this way has no damage to the film and has excellent conductivity.
It was something.
実施例2
アラキシン酸の代りにアズレン系スクアリリウム色素を
用いた他は、実施例1と同様にしてストライブ状の配線
パターンを作成したところ、実施例1と同様な結果を1
!?た。Example 2 A striped wiring pattern was created in the same manner as in Example 1, except that an azulene-based squarylium dye was used instead of araxic acid, and the same results as in Example 1 were obtained.
! ? Ta.
実施例3
ドコシルピリジニウムージテトラシアノキジメタンの代
りにオクタデシルピリジニウムージテトラシアノキノジ
メタンを用いた他は、実施例1と同様にしてストライブ
状の配線パターンを作成したところ、実施例1と同様な
結果を得た。Example 3 A striped wiring pattern was created in the same manner as in Example 1 except that octadecylpyridinium-ditetracyanoquinodimethane was used instead of docosylpyridinium-ditetracyanoquinodimethane. Results similar to 1 were obtained.
以トに説明した如く、本発明の方法ては成膜と同時にパ
ターン化が行なわわるため、素fあるいは配線形成時に
おける丁稈数の簡略化を達成することができる。また、
パターン形成に際して、従来の如き機械的剥判やエツチ
ング等の処理を特に必要としないので、得られる素子や
配線の特性を劣化させることもなく、しかも常温、常圧
下で容易に成膜を行なうことができ、エレクトロニクス
分野の今後の発展に大きな寄与をなすものとして大いに
期待できるものである。As explained above, in the method of the present invention, patterning is performed at the same time as film formation, so that it is possible to simplify the number of elements f or the number of culms during wiring formation. Also,
When forming a pattern, there is no need for conventional treatments such as mechanical stripping or etching, so there is no deterioration in the characteristics of the resulting elements or wiring, and the film can be easily formed at room temperature and pressure. It is highly anticipated that it will make a major contribution to the future development of the electronics field.
4、図の簡単な説明
第1図(a)乃至(b)は、本発明の方法の基本的な態
様を説明するための模式図で、それぞわ第1図(a)に
は成膜分子を液面に展開した際の一態様が、また第1図
(b)には成膜分子を支持体−Lに移し取った際の一態
様が示されており、第2図(a)乃至(b)は本発明の
方法を具現化するに好適な成膜装置の一例であり、それ
ぞれ第2図(a)には該装置の模式的斜視図が、また第
2図(b)には慈装置の模式的断面図が示されており、
第3図(a)乃至(f)はそれぞれ本発明の方法におけ
る成膜操作の一例を説明するための図、第4図は成膜分
子の基板への移し取りの状態の一例を説明するための図
である。4. Brief explanation of the figures Figures 1(a) and 1(b) are schematic diagrams for explaining the basic aspects of the method of the present invention. FIG. 1(b) shows one mode when the molecules are developed on the liquid surface, and FIG. 2(a) shows one mode when the film-formed molecules are transferred to the support -L. 2(b) to 2(b) are examples of a film forming apparatus suitable for embodying the method of the present invention, and FIG. 2(a) is a schematic perspective view of the apparatus, and FIG. 2(b) is a schematic perspective view of the apparatus. A schematic cross-sectional view of the Ji device is shown.
3(a) to 3(f) are diagrams for explaining an example of a film forming operation in the method of the present invention, respectively, and FIG. 4 is a diagram for explaining an example of a state in which film forming molecules are transferred to a substrate. This is a diagram.
Claims (2)
ン状の成膜分子を移し取ることによって支持体上にパタ
ーンを形成することを特徴とする成膜方法。(1) A film forming method characterized by forming a pattern on a support by spreading film forming molecules in a pattern on a liquid surface and transferring the patterned film forming molecules.
位と疎水性部位とを併有する分子の単分子膜または単分
子累積膜であることを特徴とする特許請求の範囲第1項
に記載の成膜方法。(2) The pattern on the support is a monomolecular film or a monomolecular cumulative film of molecules having at least a hydrophilic site and a hydrophobic site. Film formation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61203598A JPS6362542A (en) | 1986-09-01 | 1986-09-01 | Film forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61203598A JPS6362542A (en) | 1986-09-01 | 1986-09-01 | Film forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6362542A true JPS6362542A (en) | 1988-03-18 |
Family
ID=16476710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61203598A Pending JPS6362542A (en) | 1986-09-01 | 1986-09-01 | Film forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6362542A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015511877A (en) * | 2012-02-10 | 2015-04-23 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Method for depositing particles on a substrate comprising forming a particle film structure on a liquid transport device |
JP2015512769A (en) * | 2012-02-10 | 2015-04-30 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Method for forming a structure by arranging a particle film on a substrate using a liquid transport device |
JP2015513448A (en) * | 2012-02-10 | 2015-05-14 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | A method for moving an object on a substrate using a dense particle film, comprising the step of forming a connecting portion on the object |
-
1986
- 1986-09-01 JP JP61203598A patent/JPS6362542A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015511877A (en) * | 2012-02-10 | 2015-04-23 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Method for depositing particles on a substrate comprising forming a particle film structure on a liquid transport device |
JP2015512769A (en) * | 2012-02-10 | 2015-04-30 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Method for forming a structure by arranging a particle film on a substrate using a liquid transport device |
JP2015513448A (en) * | 2012-02-10 | 2015-05-14 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | A method for moving an object on a substrate using a dense particle film, comprising the step of forming a connecting portion on the object |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI467636B (en) | Method to provide a patterned orientation template for a self-assemblable polymer | |
CN102568498B (en) | Block copolymer is from combined method and the substrate for the patterning being consequently formed | |
GB2583590A (en) | Heated nanowells for polynucleotide synthesis | |
US7432120B2 (en) | Method for realizing a hosting structure of nanometric elements | |
TW201137527A (en) | Method for providing an ordered layer of self-assemblable polymer for use in lithography | |
EP1630882A1 (en) | Nanometric structure and corresponding manufacturing method | |
JPS59183861A (en) | Method and apparatus for forming alternate monomolecular layers | |
PT1868738E (en) | Thiol functionalised coatings and method for producing the same | |
CN108389784B (en) | The preparation method of patterned metal layer | |
US7892719B2 (en) | Photonic crystal EUV photoresists | |
US7557069B2 (en) | Combinatorial synthesis on arrays | |
JPS6362542A (en) | Film forming method | |
JP4700345B2 (en) | Arrays of molecules coated electrodes and their manufacture | |
US4835083A (en) | Method for patterning electroconductive film and patterned electroconductive film | |
WO2005083519A2 (en) | Methods of patterning a surface using single and multilayer molecular films | |
EP1162459A1 (en) | Rough charged solid phase for attachment of biomolecules | |
JPS6310586A (en) | Electric circuit | |
KR101554067B1 (en) | Method for controlling block copolymer self-assembly using immersion annealing and the nanostructures obtained by the method | |
Ibenskas et al. | Ordering of monomers, dimers and polymers of deposited Br 2 I 2 Py molecules: a modeling study | |
JP3205367B2 (en) | Fabrication of striped Langmuir-Blodgett films. | |
JP2006512917A (en) | Laser exposure of photosensitive mask for DNA microarray fabrication | |
JPS6333895A (en) | Manufacture of electric circuit | |
JPH0684439B2 (en) | Polymer thin film manufacturing method | |
JPS6310585A (en) | Electric circuit | |
JPS62294433A (en) | Film forming apparatus |