JPS6362157A - Diaphragm for redox flow battery - Google Patents

Diaphragm for redox flow battery

Info

Publication number
JPS6362157A
JPS6362157A JP61202639A JP20263986A JPS6362157A JP S6362157 A JPS6362157 A JP S6362157A JP 61202639 A JP61202639 A JP 61202639A JP 20263986 A JP20263986 A JP 20263986A JP S6362157 A JPS6362157 A JP S6362157A
Authority
JP
Japan
Prior art keywords
alkylamine
diaphragm
cation exchange
membrane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61202639A
Other languages
Japanese (ja)
Inventor
Takahisa Yamamoto
宜契 山本
Yasuhiro Kagiyama
鍵山 安弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP61202639A priority Critical patent/JPS6362157A/en
Publication of JPS6362157A publication Critical patent/JPS6362157A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a diaphragm which has small transmissivity of metallic ions and which is high in voltage and coulomb efficiencies, by forming an alkylamine thin film on one of the surfaces of a cation exchange film. CONSTITUTION:A known cation exchange film is used as this film. After one or more kinds of sulfonic halide radicals such as sulfonyl chloride are introduced as amide acceptor radicals into the cation exchange film or its precursor, the surface or the surface vicinity of the film is processed by alkylamine to obtain an acid amide reaction. As regards alkylamine, saturated straight chain aliphatic amine is suitable in point of a speed of its reaction to acid halide radicals or the like, but unsaturated or chain aliphatic amine is available. The number of carbon is 4-30, especially 8-20 for suitable chain length of chain aliphatic amine.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレドックスフロー電池用隔膜に関する。詳しく
は、陽イオン交換膜の少なくと4−4の表面にアルキル
アミンの薄層を有スる、特に鉄/クロム系のレドックス
フロー電池システムにおいて電圧効率およびクーロン効
率を高くするために好適なレドックスフロー電池用隔膜
を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a diaphragm for a redox flow battery. Specifically, a redox membrane having a thin layer of alkylamine on at least 4-4 surfaces of a cation exchange membrane is suitable for increasing voltage efficiency and coulombic efficiency, especially in iron/chromium-based redox flow battery systems. A diaphragm for a flow battery is provided.

(従来技術) 従来、隔膜に上り隣極と陰極を分離した場極室および陰
極室に、陽極液として塩化鉄/塩酸溶液、陰極液として
塩化クロム/塩酸溶液をそれぞれ循環し、各々の金属イ
オンが2価445価と酸化還元することで充・放電を行
うレドックスフロー電池ht知られている。かかるレド
ックスフロー電池用の隔膜としては、■プロトン透過性
に優れクロム(Cr )イオンや鉄(Fe)イオンの透
過の少ないこと■耐塩酸性で且つ強度が優れるとと■使
用系での膜抵抗が小さく充・放電時の電気抵抗が小さい
こと等が要求されており、例えば陰イオン交換膜(特開
昭53−112431号)や、また陽イオン交換膜(野
崎ら、電子技術総合研究所調査報告、第201号、(1
979))が提案されている。しかしながら、陰イオン
交換膜の場合、両極室の金属イオンの混合は防止できる
が、クロルイオンCCC)が膜中を移動すること等によ
り、使用系での膜抵抗が大きく、充・放電時の電圧降下
(IRdrop)が大きくなる問題がある。また陽イオ
ン交換膜の場合、プロトンイオンが膜中を移動するため
使用系での膜抵抗は小さくなるが、金属イオンの混合が
生じるため、自己放電の原因となったり、金属塩等の活
物質の溶解度や濃度を低下させる問題がある。
(Prior art) Conventionally, an iron chloride/hydrochloric acid solution was circulated as an anolyte and a chromium chloride/hydrochloric acid solution was circulated as a catholyte in a field chamber and a cathode chamber that separated the adjacent electrode from the cathode through a diaphragm, and each metal ion A redox flow battery is known that performs charging and discharging by oxidizing and reducing the valence of 2 and 445. A diaphragm for such a redox flow battery should: ■ be excellent in proton permeability and have low permeation of chromium (Cr) ions and iron (Fe) ions; ■ have excellent hydrochloric acid resistance and strength; and ■ have low membrane resistance in the system in which it is used. It is required to be small and have low electrical resistance during charging and discharging, for example, anion exchange membranes (Japanese Patent Application Laid-open No. 112431/1983) and cation exchange membranes (Nozaki et al., Research Report of Electronic Technology Research Institute). , No. 201, (1
979)) has been proposed. However, in the case of anion exchange membranes, mixing of metal ions in both electrode chambers can be prevented, but due to the movement of chlorine ions (CCC) in the membrane, the membrane resistance in the system used is large, and the voltage during charging and discharging is There is a problem that the drop (IRdrop) becomes large. In addition, in the case of cation exchange membranes, proton ions move through the membrane, which reduces the membrane resistance in the system used, but since metal ions are mixed, it may cause self-discharge, and active materials such as metal salts may There is a problem of decreasing the solubility and concentration of

上記した問題に対して、最近では例えば陰イオン交換薄
層と陽イオン交換薄層を有し、塩酸中での交流抵抗が0
.03〜2Ω・−である隔膜(特開昭59−2051<
55号)、両表層が陰イオン交換薄層よりなり、更にそ
の中間層として少くとも陽イオン交換層が存在し、塩酸
中の交流抵抗が0.03〜2Q−一である隔膜(特開昭
60−20462号)、陽イオン交換膜の表面を高架橋
度の場イオン交換樹脂、高架橋度の陰イオン交換樹脂、
ポリアミン、疎水性高分子から選ばれた物質により被覆
せしめた隔膜(特開昭60−160560号)等が提案
されて論る。
To solve the above-mentioned problem, recently, for example, a thin anion exchange layer and a thin cation exchange layer have been developed, and AC resistance in hydrochloric acid is 0.
.. A diaphragm having a resistance of 03 to 2Ω・- (JP-A-59-2051<
No. 55), both surface layers are composed of anion exchange thin layers, and at least a cation exchange layer is present as an intermediate layer between them, and the AC resistance in hydrochloric acid is 0.03 to 2Q-1 (Japanese Patent Application Laid-open No. 60-20462), a field ion exchange resin with a high degree of crosslinking, an anion exchange resin with a high degree of crosslinking,
A diaphragm coated with a substance selected from polyamines and hydrophobic polymers (Japanese Unexamined Patent Publication No. 160560/1983) has been proposed and discussed.

(発明が解決しようとする課題) しかしながら、上記の如き提案された隔膜も、その要求
される全ての機能を満足するもノテナく、工業的なレド
ブクスフロー電池用の隔膜として用いた場合に、更に金
属イオンの透過量が小さく電圧効率およびクーロン効率
の高い隔膜が要望されている。
(Problem to be Solved by the Invention) However, although the proposed diaphragm as described above satisfies all the required functions, it is difficult to use the diaphragm when used as a diaphragm for an industrial Redovx flow battery. There is a demand for a diaphragm with a small amount of ion permeation and high voltage efficiency and Coulombic efficiency.

(課題を解決するための手段) 本発明者らは上記した課題に鑑み鋭意検討した結果、隣
イオン交換膜の少なくとも一方の表面に特定した鎖長の
アルキルアミンを反応結合させた隔膜が、上記した隔膜
として好適であることを見い出し、本発明を提案するに
至った。即ち、本発明は陽イオン交換膜の少なくとも一
方の表面にアルキルアミンの薄層を有するレドックスフ
ロー電池用隔膜である。
(Means for Solving the Problems) As a result of intensive studies in view of the above-mentioned problems, the present inventors have found that a diaphragm in which an alkylamine of a specified chain length is reactively bonded to at least one surface of an adjacent ion-exchange membrane has been developed as described above. The present inventors have discovered that the present invention is suitable as a diaphragm, and have proposed the present invention. That is, the present invention is a diaphragm for a redox flow battery having a thin layer of alkylamine on at least one surface of a cation exchange membrane.

本発明で用いる陽イオン交換膜は、特に限定されず公知
の陽イオン交換膜を用いることが出来る。一般には陽イ
オン交換基または陽イオン交換基の導入に適した官能基
を有するモノマー、ハロゲン置換アルキル基と重合可能
なビニル基とを併せ有する芳香族化合物。
The cation exchange membrane used in the present invention is not particularly limited, and any known cation exchange membrane can be used. In general, a monomer having a cation exchange group or a functional group suitable for introducing a cation exchange group, an aromatic compound having both a halogen-substituted alkyl group and a polymerizable vinyl group.

架橋剤9重合触媒、上記モノマーと共重合可能な他のモ
ノマー、可塑剤、あるいは必要に応じて補強材としての
微粉末熱可塑性高分子物質、基材などを適宜組み合せて
重合した後、架橋処理および必要に応じてイオン交換基
を導入して得た膜が用いられる。
Cross-linking agent 9 After polymerization with a suitable combination of a polymerization catalyst, other monomers copolymerizable with the above monomers, a plasticizer, or if necessary a finely powdered thermoplastic polymer substance as a reinforcing material, a base material, etc., cross-linking treatment is performed. And, if necessary, a membrane obtained by introducing an ion exchange group is used.

上記の陽イオン交換基または陽イオン交換基の導入に適
した官能基を有するモノマーとしてはスチレン、ビニル
トルエン、スチレンスルホン酸誘導体、ビニルスルホン
酸誘L’G 体。
Examples of monomers having a cation exchange group or a functional group suitable for introduction of a cation exchange group include styrene, vinyltoluene, styrene sulfonic acid derivatives, and vinyl sulfonic acid derivatives.

アクリル酸エステル、無水マレイン酸などが用いられる
。架橋剤としては一般にジビニルベンゼンなどのジビニ
ル化合物が用いられる。
Acrylic acid ester, maleic anhydride, etc. are used. Divinyl compounds such as divinylbenzene are generally used as crosslinking agents.

また、ハロゲン置換アルキル基と重合可能なビニル基と
を併せ有する芳香族化合物としては、例工ばクロロメチ
ルスチレン、クロロメチルビニルナフタレン、ブロモメ
チルスチレン、ブロモメチルビニルナフタレンなどが用
いられる。重合触媒としては、例えばベンゾイルパーオ
キサイド、アゾビスインブチロニトリル、ジクミルパー
オキサイドなどである。
Examples of the aromatic compound having both a halogen-substituted alkyl group and a polymerizable vinyl group include chloromethylstyrene, chloromethylvinylnaphthalene, bromomethylstyrene, and bromomethylvinylnaphthalene. Examples of the polymerization catalyst include benzoyl peroxide, azobisin butyronitrile, and dicumyl peroxide.

共重合可能な他のモノマーとしては、例えばアクリロニ
トリル、無水マレイン酸、アクリル酸エステル類、メタ
クリル酸エステル類などが用いられる。微粉末の熱可塑
性高分子物質としては、例えば、ポリエチレン、ポリプ
ロビレン、ポリ塩化ビニル、アクリロニトリル−塩化ビ
ニル共重合体、塩化ビニル−塩化ビニリデン共重合体、
NBR,SBR,ポリブタジェンなど公知の高分子化合
物で可溶性・分散性のものである。さらに、基材として
は無機質、有機質を問わず、例えば硝子繊維。
Examples of other copolymerizable monomers include acrylonitrile, maleic anhydride, acrylic esters, and methacrylic esters. Examples of fine powder thermoplastic polymer substances include polyethylene, polypropylene, polyvinyl chloride, acrylonitrile-vinyl chloride copolymer, vinyl chloride-vinylidene chloride copolymer,
It is a known soluble and dispersible polymer compound such as NBR, SBR, and polybutadiene. Furthermore, the base material may be inorganic or organic, such as glass fiber.

ビニロン、カネロン、テヒロン* 7 ) ” :/ 
hサラン、ナイロン、ボンネルC以上、商品名)。
Vinylon, Kanelon, Tehiron*7) ”:/
Saran, nylon, Bonnell C or higher, product name).

ポリエチレン、ポリプロピレンなどの公知の布状物ある
いは網状物9編物が用いられる。
A known cloth or net-like material such as polyethylene or polypropylene may be used.

本発明において陽イオン交換膜の少なくとも一方の面に
アルキルアミンの薄層を形成させる方法は特に制限され
な論が、一般に酸アミド化(結合)によって該アルキル
アミンを結合させることが推奨される。即ち、陽イオン
交換膜またはその前駆体にアミド化受容基として、例え
ばスルホニルクロライド、スルホニルブロマイド、スル
ホニルアイオダイドのようなスルホン酸ハライド基、同
じくカルボン酸ハライド基または無水スルホン酸基。
In the present invention, the method for forming a thin layer of alkylamine on at least one surface of the cation exchange membrane is not particularly limited, but it is generally recommended to bond the alkylamine by acid amidation (bonding). That is, cation exchange membranes or their precursors may have sulfonic acid halide groups, such as sulfonyl chloride, sulfonyl bromide, sulfonyl iodide, as well as carboxylic acid halide groups or sulfonic anhydride groups, as amidation acceptor groups.

無水カルボン酸基の一種以上を導入した後。After introducing one or more carboxylic anhydride groups.

その表面または表面近傍をアルキルアミンで処理するこ
とによって酸アミド化反応を行わせる方法が好ましAo アルキルアミンとしては、上記の酸ハライド基などとの
反応速度の点から飽和の直鎖状脂肪族アミンが好ましい
が、不飽和あるいは分岐状の脂肪族アミンであっても有
効である。
A method in which the acid amidation reaction is carried out by treating the surface or the vicinity of the surface with an alkylamine is preferable.As the Ao alkylamine, from the viewpoint of reaction rate with the above-mentioned acid halide group, saturated linear aliphatic Amines are preferred, but unsaturated or branched aliphatic amines are also effective.

鎖状脂肪族アミンの鎖長は炭素数4〜30、特に8〜2
0が好ましく、鎖長が4より短かいアミンを用いた場合
には、得られる隔膜の金属イオンの透過量が多く、また
、鎖長が30より長いアミンを用いた場合には、膜抵抗
が大きくなるため好ましくなAoかかる鎖状脂肪族のア
ルキルアミンとして1例えばブチルアミン、オクチルア
ミン、ヘキサメチレンジアミン、ラウリルアミン、ステ
アリルアミン。
The chain length of the chain aliphatic amine is 4 to 30 carbon atoms, especially 8 to 2 carbon atoms.
0 is preferable, and when an amine with a chain length shorter than 4 is used, the amount of metal ions permeated through the obtained diaphragm is large, and when an amine with a chain length longer than 30 is used, the membrane resistance is Preferred chain aliphatic alkylamines such as butylamine, octylamine, hexamethylene diamine, laurylamine, and stearylamine are preferable because of their large size.

ジオクチルアミン、シアミルアミン、エチレンジアミン
、ジー(2エチルヘキシル)アミン、N−メチルヘキシ
ルアミン、N−メチルプロピルアミン、ジアリルアミン
、ジデシルアミンなどが用いられる。また、芳香族のア
ルキルアミンとして例えばベンジルアミン。
Dioctylamine, cyamylamine, ethylenediamine, di(2ethylhexyl)amine, N-methylhexylamine, N-methylpropylamine, diallylamine, didecylamine, etc. are used. Further, as an aromatic alkylamine, for example, benzylamine.

ジベンジルアミン、1・3ジー4−ピペリジルプロパン
、ジシクロヘキシルアミン、4ピペコリンなどが用いら
れる。
Dibenzylamine, 1,3-4-piperidylpropane, dicyclohexylamine, 4-pipecoline, etc. are used.

本発明において場イオン交換膜またはその前駆体の表面
にアルキルアミンを反応させる条件は、減圧、常圧ある
いは加圧下で温度は一20℃から高分子化合物の分解劣
化が生起しない温度以下であれば特に制限ないが、層状
に表層部のみ反応せしめる場合には反応が該アミンの反
応律速によって進行するように比較的短時間で反応させ
るのが好ましい。反応後はアルキルアミンを溶解するよ
うな溶媒によって未反応の過剰のアルキルアミンを洗滌
除去して後、未反応の残余の酸ハライド基あるいは酸無
水物基を陽イオン交換基に変換すればよい。イオン交換
基への変換手段は、従来公知の加水分解反応が何ら制限
なく用いられる。例えばアルカリ金属、アルカリ土類金
属、水酸イオン型有機アミン類の水溶液。
In the present invention, the conditions for reacting the alkylamine on the surface of the field ion exchange membrane or its precursor are as follows: under reduced pressure, normal pressure, or increased pressure, the temperature is from -20°C to a temperature below which decomposition and deterioration of the polymer compound does not occur. Although there is no particular restriction, when only the surface layer of the layer is reacted, it is preferable to react in a relatively short time so that the reaction proceeds depending on the reaction rate of the amine. After the reaction, excess unreacted alkylamine may be washed away with a solvent that dissolves the alkylamine, and the remaining unreacted acid halide groups or acid anhydride groups may be converted into cation exchange groups. As a means for converting into an ion exchange group, conventionally known hydrolysis reactions can be used without any limitations. For example, aqueous solutions of alkali metals, alkaline earth metals, and hydroxide ion type organic amines.

水−有機溶媒混合系などの中に常温、加温下に高分子化
合物を浸漬して加水分解させればヨイ。最も一般的には
水酸化す) IJウム、水酸化カリウム等の水溶液、ア
ルコール溶液。
It is possible to hydrolyze a polymer compound by immersing it in a water-organic solvent mixture at room temperature or under heating. (most commonly hydroxide) Aqueous or alcoholic solutions of IJum, potassium hydroxide, etc.

アルコール性水溶液等が用いられるが、高分子化合物の
種類によって高分子鎖を膨潤させうる溶媒を適宜選択す
ればよい。
Although an alcoholic aqueous solution or the like is used, a solvent that can swell the polymer chain may be appropriately selected depending on the type of polymer compound.

さらに具体的にスルホン酸アSド型についテ例示スると
、例えばスチンン、ジビニルベンゼンなどの七ツマー混
合物を重合して得た三次元構造の樹脂基体を、クロロス
ルホン酸または四塩化炭素、テトラクロロエタンなどの
溶媒で希釈したクロルスルホン酸液中に常温または常温
より低い温度で浸漬するが、あるいはSO2およびC2
zのガス中で紫外線照射して光化学的にクロルスルホン
化した後アルキルアミン或いはそれの溶液を塗布するか
、該溶液に浸漬することによって基体表面のスルホニル
クロライド基とアミノ基とを反応させる。かぐして得ら
れるスルホン酸アミドを表面に有する樹脂基体は、次い
でアルカリ溶液中に浸漬し、残余のスルホニルクロライ
ド基ヲスルホン酸塩に変換する。また、同様にカルボン
酸アミド型については、例えば無水マレイン酸、スチレ
ン、ジビニルベンゼン。
To give a more specific example of the S-type sulfonic acid, for example, a resin substrate with a three-dimensional structure obtained by polymerizing a heptamer mixture of chlorosulfonic acid or carbon tetrachloride, tetrachloride, etc. Immersion in a chlorosulfonic acid solution diluted with a solvent such as chloroethane at room temperature or lower than room temperature, or SO2 and C2
After photochemically chlorosulfonating the substrate by irradiating it with ultraviolet rays in a gas of Z, the sulfonyl chloride group on the surface of the substrate is reacted with the amino group by applying an alkylamine or a solution thereof or by immersing it in the solution. The resin substrate having the sulfonic acid amide on the surface obtained by smelting is then immersed in an alkaline solution to convert the remaining sulfonyl chloride groups into sulfonate. Similarly, examples of carboxylic acid amide types include maleic anhydride, styrene, and divinylbenzene.

ハロアルキルスチレンの共重合体からなる樹脂基体の表
面を、アルキルアミン溶液で処理することによって酸ア
ミド結合を形成させた後、残余のカルボン酸無水物を加
水分解して本発明のレドックスフロー電池用隔膜を得る
ことが出来る。
The surface of a resin base made of a copolymer of haloalkylstyrene is treated with an alkylamine solution to form an acid amide bond, and the remaining carboxylic acid anhydride is then hydrolyzed to form the redox flow battery diaphragm of the present invention. can be obtained.

本発明において陽イオン交換膜表面のアルキルアミンの
層の厚みは、陽イオン交換膜の柵類、イオン交換容量等
により選定されるが、アルキルアミンの反応量が要論と
膜の電気抵抗が大きくなる。したがって、本発明の隔膜
は、アルキルアミンが結合していない場イオン交換膜に
比して、I N−HCl中で測定した電気抵抗が1.5
倍を越えない範囲であることが望ましい。そのためには
、膜の片面にのみに2ooX以上膜の厚みの1A以下、
全イオン交換基の1〜50%の範囲で反応させることが
有効である。なお、その量が少なすぎる場合には、金属
イオンの透過量が大きくクーロン効率が低下するし、逆
に大きい場合には、放電時のIRdrop が大きくな
り、いづれの場合も本発明の目的が溝足に達成されない
In the present invention, the thickness of the alkylamine layer on the surface of the cation exchange membrane is selected depending on the fence of the cation exchange membrane, the ion exchange capacity, etc., but the reaction amount of the alkylamine is important and the electrical resistance of the membrane is large. Become. Therefore, the diaphragm of the present invention has an electrical resistance measured in IN-HCl of 1.5 compared to a field ion exchange membrane to which no alkylamine is bonded.
It is desirable that the range does not exceed twice that. For this purpose, it is necessary to apply a film with a thickness of 2ooX or more and a thickness of 1A or less on only one side of the film.
It is effective to react in a range of 1 to 50% of the total ion exchange groups. Note that if the amount is too small, the amount of metal ions permeated will be large and the Coulombic efficiency will be reduced, and if it is too large, the IR drop during discharge will be large, and in either case, the purpose of the present invention is not achieved. Not achieved on the feet.

(作用および効果) 以上の説明のように、アルキルアミンの薄層を陽イオン
交換膜の表面に形成させた本発明のレドックスフロー電
池用隔膜によれば、%lC鉄/クロム系レドックスフロ
ー電池システムにおいて電圧効率およびクーロン効率を
高くすることが出来る。
(Functions and Effects) As described above, according to the redox flow battery diaphragm of the present invention in which a thin layer of alkylamine is formed on the surface of the cation exchange membrane, the %lC iron/chromium based redox flow battery system It is possible to increase the voltage efficiency and coulomb efficiency.

この様な本発明の隔膜が優れた性能を発揮する詳しい作
用機構は明確ではないが、酸アミド基とアルキル基の結
合の相乗作用によるものと推定される。
Although the detailed mechanism by which the diaphragm of the present invention exhibits such excellent performance is not clear, it is presumed to be due to the synergistic effect of the bond between the acid amide group and the alkyl group.

(実施例) 以下、本発明を実施例に基づき詳細に説明するが、本発
明は以下の実施例に特に限定されるものではない。
(Examples) Hereinafter, the present invention will be described in detail based on Examples, but the present invention is not particularly limited to the following Examples.

実施例1および比較例1 メチシン10重景部、クロロメチルスチ1/ン2重量部
、アクリロニトリル2重量部、ジオクチルフタレート1
重量部および微粉末ポリ塩化ビニル1重量部を加熱混合
したモノマー混合液に−べ゛ンゾイルパーオキサイド0
.2重量部を添加し、ポリ塩化ビニル布に塗布した後、
加熱重合して高分子膜母体(厚膜)を得た。得られた厚
膜を硫酸−クロルスルホン酸(1:1)の液において、
40℃で1時間処理した。次いで、上記膜をジオクチル
アミンの5%(インプロピルエーテル)溶液に16時間
浸漬した後、2規定の苛性ソーダ水溶液に2時間浸漬す
ることによって本発明の隔膜を得た。
Example 1 and Comparative Example 1 10 parts by weight of methicine, 2 parts by weight of chloromethylstyrene, 2 parts by weight of acrylonitrile, 1 part by weight of dioctyl phthalate
Add 0 parts by weight of benzoyl peroxide to a monomer mixture solution prepared by heating and mixing 1 part by weight of finely powdered polyvinyl chloride.
.. After adding 2 parts by weight and applying it to a polyvinyl chloride cloth,
A polymer membrane matrix (thick film) was obtained by heating and polymerizing. The obtained thick film was placed in a solution of sulfuric acid-chlorosulfonic acid (1:1),
It was treated at 40°C for 1 hour. Next, the membrane was immersed in a 5% dioctylamine (inpropyl ether) solution for 16 hours, and then in a 2N aqueous sodium hydroxide solution for 2 hours to obtain a diaphragm of the present invention.

他方、比較のために上記クロルスルホン化処理した膜を
ジオクチルアミンで処理することなく、2規定の苛性ソ
ーダ水溶液に2時間浸漬することによって、陽イオン交
換膜とした。
On the other hand, for comparison, the chlorosulfonated membrane was immersed in a 2N aqueous solution of caustic soda for 2 hours without being treated with dioctylamine to obtain a cation exchange membrane.

上記したそれぞれの膜を陽極および陰極の各々にカーボ
ンクロスミ極を有する電極面積10Jである液流通型の
単電池セルに組み込み、1.5Mのクロムおよび1.5
Mの鉄を含む4規定の塩酸水溶液で、温度40℃、1!
流密度AQmA/4において充・放電の実験を行なった
Each of the above-mentioned membranes was assembled into a liquid flow type unit cell having an electrode area of 10 J and having a carbon cloth minode at each of the anode and cathode.
A 4N hydrochloric acid aqueous solution containing M iron at a temperature of 40°C and 1!
Charging and discharging experiments were conducted at a flow density of AQmA/4.

結果を第1表に示す。The results are shown in Table 1.

実施例2および比較例2 スチレン10重量部、純度55%のジビニルベンゼン1
重量部、ジブチルフタレート1重量部、ポリ塩化ビニル
微粉末5重量部およびベンゾイルパーオキサイド0.2
重tiを混合して得たペースト状混合物をポリ塩化ビニ
ル製の布に塗布し、脱気し1両面をポリエスチルフィル
ムでおおい、70℃で3時間、80℃で4時間加熱重合
し、厚みが約0.13mの高分子膜状物を得た。これを
98%濃硫酸と純度90%以上のクロルスルホン酸の1
=1の混合物中に40℃、45分間で浸漬してスルホニ
ルクロライド基とスルホン酸基を導入した。スルホニル
クロライド基のスルホン酸に対する比は60:40であ
った。次いで、この膜の表面の水分をふき取って後に風
乾し、これをブチルアミン5%(ヘキサン)溶液の中に
そのまま室温で8時間浸漬した後、2規定の苛性ソーダ
水溶液中に1時間浸漬し、更に1規定の塩酸に浸漬し本
発明の隔膜を得た。
Example 2 and Comparative Example 2 10 parts by weight of styrene, 1 part of divinylbenzene with a purity of 55%
parts by weight, 1 part by weight of dibutyl phthalate, 5 parts by weight of fine polyvinyl chloride powder, and 0.2 parts by weight of benzoyl peroxide.
A paste-like mixture obtained by mixing heavy titanium was applied to a polyvinyl chloride cloth, deaerated, one side covered with polyester film, and heated and polymerized at 70°C for 3 hours and 80°C for 4 hours. A polymer membrane with a length of about 0.13 m was obtained. This is mixed with 98% concentrated sulfuric acid and chlorosulfonic acid with a purity of over 90%.
1 for 45 minutes at 40° C. to introduce sulfonyl chloride groups and sulfonic acid groups. The ratio of sulfonyl chloride groups to sulfonic acid was 60:40. Next, the water on the surface of this membrane was wiped off and air-dried, and it was immersed in a 5% butylamine (hexane) solution for 8 hours at room temperature, then immersed in a 2N aqueous solution of caustic soda for 1 hour, and The diaphragm of the present invention was obtained by immersing it in specified hydrochloric acid.

他方、比較のためクロルスルホン化処理までは同一にし
、次いでそのまt2規定の苛性ソーダ溶液に浸漬した後
、1規定塩酸に浸漬し陽イオン交換膜を得た。
On the other hand, for comparison, the membranes were subjected to the same chlorosulfonation treatment, and then immersed in t2 normal caustic soda solution and then immersed in 1 N hydrochloric acid to obtain a cation exchange membrane.

以下、実施例1と同様にして充・放電の実験を行った結
果を第1表に示す。
Table 1 below shows the results of charging and discharging experiments conducted in the same manner as in Example 1.

実施例3および比較例6 スチレン10重量部、純度的55%のジビニルベンゼン
szz部、ブロモメチルスチレン3重量部、無水マレイ
ン酸4重量部、ジオキサン71i量部およびアゾインブ
チロニトリル2重量部を加えて均一に混合し、これを2
枚の平行なガラス板の間にポリプロピレンの布をはさん
だものへ流し込んだ。60℃4時間、70℃7時間オー
トクレーブ中で加圧下に加熱し、放冷後、ガラス板を除
き布に補強された高分子膜状物を取り出した。次いで、
これをN−メチルヘキシルアミンの中に25℃で2時間
浸漬した。更にこれを2規定苛性ソーダのメタノール−
水の1:1混合溶液中に浸漬して酸無水物基を加水分解
しカルボン酸塩をNa塩に変換することによって本発明
の@膜を得た。
Example 3 and Comparative Example 6 10 parts by weight of styrene, 55% pure divinylbenzene szz parts, 3 parts by weight of bromomethylstyrene, 4 parts by weight of maleic anhydride, 71 parts of dioxane and 2 parts by weight of azoinbutyronitrile. Add and mix evenly, then add 2
It was poured into a polypropylene cloth sandwiched between two parallel glass plates. It was heated under pressure in an autoclave at 60° C. for 4 hours and at 70° C. for 7 hours, and after cooling, the glass plate was removed and the polymer membrane reinforced with cloth was taken out. Then,
This was immersed in N-methylhexylamine at 25°C for 2 hours. Furthermore, this was mixed with methanol of 2N caustic soda.
The @ membrane of the present invention was obtained by immersing it in a 1:1 mixed solution of water to hydrolyze the acid anhydride group and convert the carboxylate to Na salt.

他方、比較のために上記合成した高分子膜状物をN−メ
チルヘキシルアミンと反応させないで直接加水分解処理
のみすることによりて陽イオン交換膜を得た。
On the other hand, for comparison, a cation exchange membrane was obtained by directly hydrolyzing the polymer membrane synthesized above without reacting it with N-methylhexylamine.

以下、実施例1と同様にして充・放電の実験を行った結
果を第1表に併記する。
The results of charging and discharging experiments conducted in the same manner as in Example 1 are also listed in Table 1 below.

実施例4および比較例4 テトラフルオロエチレンとパーフルオロ(3,6−シオ
キサー4−メチル−7−オクテンスルホニルフルオライ
ド)の共重合膜状物を水600部、ジメチルスルホキシ
ド400部および水酸化カリウム15部からなる浴に浸
漬して加水分解処理してスルホン酸カリウム型の陽イオ
ン交換膜とした。次に、この膜を60℃の3N硝酸中に
浸漬して完全に酸型に変換した後、両膜面上に五塩化リ
ンの結晶を均一に分散させ、これを150℃に保った熱
板の間にはさんで、五塩化リンの結晶を昇華させて1時
間放置した。
Example 4 and Comparative Example 4 A copolymer film of tetrafluoroethylene and perfluoro(3,6-thioxer-4-methyl-7-octensulfonyl fluoride) was mixed with 600 parts of water, 400 parts of dimethyl sulfoxide, and 15 parts of potassium hydroxide. A potassium sulfonate type cation exchange membrane was obtained by immersing the membrane in a bath consisting of 300 ml of water and hydrolyzing it. Next, this film was immersed in 3N nitric acid at 60°C to completely convert it to the acid form, and then phosphorus pentachloride crystals were uniformly dispersed on both film surfaces, and this was placed between a hot plate kept at 150°C. The crystals of phosphorus pentachloride were sublimed and left for 1 hour.

次に、この膜をヘキサメチレンジアミン400部と水1
00部からなる浴に室温で24時間浸漬して後、これを
そのまま水−ジメチルスルホキシトーカ性ンーダからな
る加水分解塔に浸漬して未反応のスルホニルクロライド
基を加水分解処理し念。この膜を1規定塩酸で充分に洗
浄および浸漬することによって本発明の隔膜を得た。
Next, this membrane was mixed with 400 parts of hexamethylene diamine and 1 part of water.
After immersing the sample in a bath consisting of 0.00 parts at room temperature for 24 hours, it was immersed as it was in a hydrolysis tower consisting of a water-dimethylsulfoxy toker solution to hydrolyze unreacted sulfonyl chloride groups. The diaphragm of the present invention was obtained by thoroughly washing and immersing this membrane in 1N hydrochloric acid.

他方、比較のために上記膜をヘキサメチレンジアミンで
処理することなく、加水分解を行な込陽イオン交換膜と
した。
On the other hand, for comparison, the above membrane was hydrolyzed without being treated with hexamethylene diamine to obtain a cation exchange membrane.

以下、実施例1と同様にして充・放電の実験を行った結
果を第1表に併記する。
The results of charging and discharging experiments conducted in the same manner as in Example 1 are also listed in Table 1 below.

Claims (1)

【特許請求の範囲】 1)陽イオン交換膜の少なくとも一方の表面にアルキル
アミンの薄層を有するレドックスフロー電池用隔膜 2)アルキルアミンが炭素数4〜30の鎖状脂肪族アミ
ンである特許請求の範囲第1項記載の隔膜 3)アルキルアミンがジオクチルアミン、ブチルアミン
、N−メチルヘキシルアミンおよびヘキサメチレンジア
ミンから選ばれた少なくとも1種である特許請求の範囲
第1項記載の隔膜 4)陽イオン交換膜の表面にアルキルアミンが化学結合
で薄層を形成してなる特許請求の範囲第1項記載の隔膜 5)アルキルアミンの結合量が全イオン交換基の1〜5
0%である特許請求の範囲第1項記載の隔膜
[Claims] 1) A diaphragm for a redox flow battery having a thin layer of alkylamine on at least one surface of the cation exchange membrane.2) A patent claim in which the alkylamine is a chain aliphatic amine having 4 to 30 carbon atoms. 3) The diaphragm according to claim 1, wherein the alkylamine is at least one selected from dioctylamine, butylamine, N-methylhexylamine, and hexamethylene diamine 4) Cation 5) A diaphragm according to claim 1, wherein the alkylamine forms a thin layer on the surface of the exchange membrane through chemical bonding.
The diaphragm according to claim 1, which is 0%
JP61202639A 1986-08-30 1986-08-30 Diaphragm for redox flow battery Pending JPS6362157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61202639A JPS6362157A (en) 1986-08-30 1986-08-30 Diaphragm for redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61202639A JPS6362157A (en) 1986-08-30 1986-08-30 Diaphragm for redox flow battery

Publications (1)

Publication Number Publication Date
JPS6362157A true JPS6362157A (en) 1988-03-18

Family

ID=16460669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61202639A Pending JPS6362157A (en) 1986-08-30 1986-08-30 Diaphragm for redox flow battery

Country Status (1)

Country Link
JP (1) JPS6362157A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092883A1 (en) * 2013-12-18 2015-06-25 日新電機 株式会社 Redox flow battery
JP2016524280A (en) * 2013-05-16 2016-08-12 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery with hydrated ion exchange membrane with maximum water domain cluster size
KR20170112562A (en) * 2016-03-31 2017-10-12 주식회사 엘지화학 Ion exchange membrane, electrochemical cell, flow battery and fuel cell comprising the same, and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524280A (en) * 2013-05-16 2016-08-12 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery with hydrated ion exchange membrane with maximum water domain cluster size
WO2015092883A1 (en) * 2013-12-18 2015-06-25 日新電機 株式会社 Redox flow battery
JPWO2015092883A1 (en) * 2013-12-18 2017-03-16 日新電機株式会社 Redox flow battery
KR20170112562A (en) * 2016-03-31 2017-10-12 주식회사 엘지화학 Ion exchange membrane, electrochemical cell, flow battery and fuel cell comprising the same, and method for manufacturing the same
JP2019503418A (en) * 2016-03-31 2019-02-07 エルジー・ケム・リミテッド Ion exchange separation membrane, electrochemical cell including the same, flow cell and fuel cell, and manufacturing method thereof
US10711093B2 (en) 2016-03-31 2020-07-14 Lg Chem, Ltd. Ion exchange separation membrane, electrochemical cell including same, flow cell and fuel cell, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4169023A (en) Electrolytic diaphragms, and method of electrolysis using the same
US3257334A (en) Electrodialysis membrane from perhalogenated fluorocarbons
US3909378A (en) Composite cation exchange membrane and use thereof in electrolysis of an alkali metal halide
US4101395A (en) Cathode-structure for electrolysis
CA1046457A (en) Electrolytic diaphragms, and method of electrolysis using the same
US4166014A (en) Electrolytic diaphragms, and method of electrolysis using the same
JPS6362157A (en) Diaphragm for redox flow battery
JPS60250009A (en) Production of perfluorocarbon polymer having sulfonic acid functional group
US4806219A (en) Method of double decomposition of neutral salt
JPS6324565A (en) Diaphragm for redox flow cell
JP2504135B2 (en) Cation exchange membrane for electrolysis
US4366262A (en) Method for catalyzed conversion of perfluorocarbon cationic exchange functionality with SF4
JPS61185507A (en) Production of anion exchange material
JPS582970B2 (en) Youion Koukan Makunoseizouhouhou
JPH01136983A (en) Production of quaternary ammonium hydroxide
JPS5939453B2 (en) Method for manufacturing cation exchanger
JPS63137187A (en) Double decomposition method of neutral salt
JPS5830333B2 (en) Kairiyou Ion Koukantaino Seizouhouhou
JPH1087854A (en) Bipolar film
JPS5940848B2 (en) Manufacturing method of cation exchange membrane
JPS6026142B2 (en) Method for manufacturing ion exchanger
JPS6240372B2 (en)
JPS6241067B2 (en)
JPS5842274B2 (en) Fukugoukamamaku
JPS6258382B2 (en)