JPS636213Y2 - - Google Patents
Info
- Publication number
- JPS636213Y2 JPS636213Y2 JP1982178967U JP17896782U JPS636213Y2 JP S636213 Y2 JPS636213 Y2 JP S636213Y2 JP 1982178967 U JP1982178967 U JP 1982178967U JP 17896782 U JP17896782 U JP 17896782U JP S636213 Y2 JPS636213 Y2 JP S636213Y2
- Authority
- JP
- Japan
- Prior art keywords
- frame
- electrode
- electrolytic cell
- frames
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005192 partition Methods 0.000 claims description 16
- 239000003014 ion exchange membrane Substances 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 12
- 239000008151 electrolyte solution Substances 0.000 claims description 9
- 238000000638 solvent extraction Methods 0.000 claims description 2
- 239000003792 electrolyte Substances 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000013464 silicone adhesive Substances 0.000 description 1
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
【考案の詳細な説明】
〔考案の技術分野〕
本考案は液透過型電解槽に関し、より詳細には
液透過型電極、たとえばフエルト状の電極を使用
した二液性のレドツクス型電池に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a liquid-permeable electrolytic cell, and more particularly to a two-component redox type battery using a liquid-permeable electrode, such as a felt-like electrode.
第4図は従来の液透過型電解槽1を分解した状
態を示し、両端の仕切板2、2′の間にイオン交
換膜5が配置され、このイオン交換膜5と仕切板
2の間に枠3、3′が、更に枠3、3′の間に電極
枠4が配置されており、同様にイオン交換膜5と
仕切板2′の間にも枠3″、3、および電極枠
4′が配置されている。
FIG. 4 shows a disassembled state of a conventional liquid-permeable electrolytic cell 1, in which an ion exchange membrane 5 is arranged between the partition plates 2 and 2' at both ends, and between the ion exchange membrane 5 and the partition plate 2. Frames 3, 3' are further arranged, and an electrode frame 4 is arranged between the frames 3, 3', and similarly, frames 3'', 3, and an electrode frame 4 are arranged between the ion exchange membrane 5 and the partition plate 2'. ' is placed.
これら電解槽の各構成部材は、重ねられ、一体
に固定されて一つの電解槽が形成され、電極枠4
および4′の枠空間には液透過型電極6、6′がそ
れぞれ充填されていた。 Each component of these electrolytic cells is stacked and fixed together to form one electrolytic cell, and the electrode frame 4
The frame spaces 4' and 4' were filled with liquid permeable electrodes 6 and 6', respectively.
第5図は、かかる従来の電解槽の縦断面分解図
を示す。 FIG. 5 shows an exploded longitudinal cross-sectional view of such a conventional electrolytic cell.
ここで仕切板2、2′は炭素板、グラフアイト
板、カーボンプラスチツク等の導電性材料からな
り、枠3、3′、3″、3および電極枠4、4′
の材質はポリ塩化ビニル、ポリエチレン、エポキ
シ樹脂等の樹脂であり、電極としては、液流通性
の多孔質電極、すなわち厚さ0.5mm〜10mm程度の
金属フエルト、金属網の積層物、カーボンフエル
ト、カーボンクロス、ポーラスカーボン等の液透
過型電極が使用された。 Here, the partition plates 2, 2' are made of a conductive material such as a carbon plate, a graphite plate, a carbon plastic, etc., and the frames 3, 3', 3'', 3 and the electrode frames 4, 4'
The material is a resin such as polyvinyl chloride, polyethylene, or epoxy resin, and the electrode is a porous electrode with liquid flow, that is, a metal felt with a thickness of about 0.5 mm to 10 mm, a laminate of metal mesh, carbon felt, Liquid permeable electrodes such as carbon cloth and porous carbon were used.
また、イオン交換膜5としては、陽イオン交換
膜等が使用され、かかるイオン交換膜は陽極液と
陰極液との混合を防止する機能を有し、イオン導
電性である必要がある。 Further, as the ion exchange membrane 5, a cation exchange membrane or the like is used, and the ion exchange membrane must have a function of preventing mixing of the anolyte and catholyte and be ion conductive.
電極の寸法は横18cm、縦24cm程度で、電極枠4
にシリコン系接着剤などで貼りつけて固定した
り、或いは単に各構成部材を積層することにより
電極を物理的に押えつけても十分に固定すること
ができる。 The dimensions of the electrode are approximately 18 cm in width and 24 cm in height, with electrode frame 4
The electrodes can be sufficiently fixed by pasting them with a silicone adhesive or by simply stacking each component and physically pressing down on the electrodes.
そして、中間のイオン交換膜5と仕切板2の間
に形成された部分およびイオン交換膜5と仕切板
2′との間の部分は、一方が陽極室、他方は陰極
室として使用され、たとえば第4図に示したよう
に、矢印aに沿つて各部材の供給孔を経て電極枠
4に供給された陽極液は、電極枠に形成されたス
リツトSを経て電極6に至り、矢印A方向に流れ
る間に電解されてスリツトS′から矢印bおよび
b′に沿つて排出される。 One of the portions formed between the intermediate ion exchange membrane 5 and the partition plate 2 and the portion between the ion exchange membrane 5 and the partition plate 2' is used as an anode chamber and the other as a cathode chamber, for example. As shown in FIG. 4, the anolyte supplied to the electrode frame 4 through the supply holes of each member along the arrow a reaches the electrode 6 through the slit S formed in the electrode frame, and then reaches the electrode 6 in the direction of the arrow A. It is electrolyzed while flowing from slit S' to arrow b and
It is discharged along b′.
陽極液の一部は、電解されずに矢印a′に沿つて
排出され、次の電解槽に同様に供給される。 A portion of the anolyte is discharged along arrow a' without being electrolyzed and is similarly supplied to the next electrolytic cell.
一方、陰極液も同様に矢印dに沿つて供給さ
れ、矢印B方向に流れる間に電極6′により電解
され、矢印e、e′に沿つて排出される。 On the other hand, the catholyte is similarly supplied along the arrow d, electrolyzed by the electrode 6' while flowing in the direction of the arrow B, and discharged along the arrows e and e'.
陰極液の一部は電解されずに、矢印d′に沿つて
排出され、同様に次の電解槽に供給される。 A portion of the catholyte is not electrolyzed but is discharged along arrow d' and is likewise supplied to the next electrolytic cell.
ところで、かかる液透過型電解槽では、電解効
率を高めるためには電極内に均一に電解液を流す
必要があるが、縦方向に長い電解槽または巾方向
長さの大きい電解槽では、第6図に示すように電
解液は陽極液入口側流通孔7から陽極液出口側流
通孔8に向かつて矢印C方向に流れるので、電解
液の停滞しやすい部分Dを生じ、副反応が起り易
い欠点があり、大型の電解槽の実用化は困難であ
つた。 By the way, in such a liquid permeable electrolytic cell, it is necessary to flow the electrolytic solution uniformly into the electrode in order to improve the electrolytic efficiency, but in an electrolytic cell that is long in the vertical direction or large in the width direction, the sixth As shown in the figure, the electrolyte flows from the anolyte inlet side flow hole 7 to the anolyte outlet side flow hole 8 in the direction of arrow C, which creates a portion D where the electrolyte tends to stagnate, resulting in the disadvantage that side reactions are likely to occur. Therefore, it was difficult to put a large electrolytic cell into practical use.
そこで従来は一つの電解槽当りの有効電極面積
が数百cm2の小型の電解槽を多数製作し、用途に応
じて任意の数を電解槽を直列または並列に接続し
て使用していた。 Therefore, in the past, a large number of small electrolytic cells with an effective electrode area of several hundred cm 2 per electrolytic cell were manufactured, and an arbitrary number of electrolytic cells were connected in series or in parallel depending on the purpose.
しかしながら、かかる電解槽の小型化は、電解
槽構成材料の有効利用部分の減少、電解槽の増加
による製作工数の増大などをもたらし、複数の電
解槽を接続した場合の設備費が著しく増大する欠
点があつた。 However, such miniaturization of electrolytic cells results in a decrease in the effective utilization of the electrolytic cell constituent materials, an increase in manufacturing man-hours due to an increase in the number of electrolytic cells, and the drawback that equipment costs increase significantly when multiple electrolytic cells are connected. It was hot.
本考案は上記従来の欠点を解消すべくなされた
ものであり、電解槽内における電解液の停滞を解
消し、電解槽内の電解液の流路長さや流路巾を使
用する電極の性状や電解液の流量にあわせて最適
に設定することができ、電解槽構成材料の有効利
用部分の増大、使用電解槽数の減少による製作工
数の削減をもたらす電解槽を提供することを目的
とするものである。
The present invention was made to eliminate the above-mentioned conventional drawbacks, and it eliminates the stagnation of the electrolyte in the electrolytic cell, and changes the flow path length and width of the electrolyte in the electrolytic cell by changing the properties of the electrodes used. The purpose is to provide an electrolytic cell that can be optimally set according to the flow rate of electrolytic solution, increases the effective utilization of electrolytic cell constituent materials, and reduces manufacturing man-hours by reducing the number of electrolytic cells used. It is.
上記目的を達成する本考案の液透過型電解槽
は、仕切板2、枠3、電極枠4、枠3′、イオン
交換膜5、枠3″、電極枠4′、枠3および仕切
板2′をこの順に重ね、前記電極枠4、4′の枠空
間に液流通性の多孔質電極をそれぞれ保持せしめ
た液透過型電解槽において、前記イオン交換膜5
に隣る枠3′、3″の枠空間に電解液をその流路に
沿つて仕切る案内枠10、10′を設けたことを
特徴とするものである。
The liquid permeable electrolytic cell of the present invention that achieves the above object includes a partition plate 2, a frame 3, an electrode frame 4, a frame 3', an ion exchange membrane 5, a frame 3'', an electrode frame 4', a frame 3, and a partition plate 2. In a liquid permeable electrolytic cell in which the electrode frames 4 and 4' are stacked in this order and porous electrodes that allow liquid flow are held in the frame spaces of the electrode frames 4 and 4', the ion exchange membrane 5
The present invention is characterized in that guide frames 10 and 10' are provided in the frame spaces of adjacent frames 3' and 3'' to partition the electrolyte along its flow path.
以下、本考案を第1図の分解図、第2図の縦断
面分解図に示した実施例にもとづき説明する。 Hereinafter, the present invention will be explained based on an embodiment shown in an exploded view in FIG. 1 and an exploded longitudinal cross-sectional view in FIG.
本考案の電解槽1は、第4図に示した従来の電
解槽と同様に仕切板2、枠3、電極枠4、枠3′、
イオン交換膜5、枠3″、電極枠4′、枠3およ
び仕切板2′をこの順に重ねて構成され、またこ
れら各部材の材質も従来のそれと同様である。 The electrolytic cell 1 of the present invention has a partition plate 2, a frame 3, an electrode frame 4, a frame 3',
It is constructed by stacking the ion exchange membrane 5, frame 3'', electrode frame 4', frame 3, and partition plate 2' in this order, and the materials of these members are the same as those of the conventional one.
ただし本考案においては、イオン交換膜5に隣
る枠3′、3″の枠体空間に、電解液をその流れ方
向に沿つて仕切る案内枠10、10′ががそれぞ
れ配置され、電極枠4、4′の枠空間に配置され
た電極6、6′における電解液の流れを区分して
いる。 However, in the present invention, guide frames 10 and 10' are arranged in the frame spaces of frames 3' and 3'' adjacent to the ion exchange membrane 5, respectively, for partitioning the electrolyte along the flow direction. , 4' divides the flow of the electrolyte in the electrodes 6, 6' arranged in the frame space.
仕切板2、2′と電極6、6′との電気的接触を
良好にする観点から、第1図、第2図に示したよ
うに、案内枠10、10′を枠3′と3″に設ける
のが好ましいが、枠3および3にも案内枠を設
けることもできる。 In order to improve the electrical contact between the partition plates 2, 2' and the electrodes 6, 6', as shown in FIGS. Although it is preferable to provide a guide frame in the frames 3 and 3, it is also possible to provide a guide frame in the frames 3 and 3.
案内枠10、10′の形状は通常では第3図に
示すように柱状であり、配置本数は電極面積の大
きさに応じて適宜決定することができ、電解槽を
構成する各部材を重ね合せることにより物理的に
固定される。 The shape of the guide frames 10, 10' is usually columnar as shown in FIG. 3, and the number of guide frames can be determined as appropriate depending on the size of the electrode area, and each member constituting the electrolytic cell is overlapped. It is physically fixed by this.
なお第3図は、電極6を配置した電極枠4上に
枠3′を重ね、かつこの枠3′の枠空間に案内枠1
0を配置した状態を示している。 In addition, in FIG. 3, a frame 3' is superimposed on the electrode frame 4 on which the electrode 6 is arranged, and a guide frame 1 is placed in the frame space of this frame 3'.
It shows a state in which 0 is placed.
案内枠10は、電解液の流れEに沿い、この流
れを区分するように配置されており、突起部11
を設けて電解液の流れに抵抗を与え、電解液流れ
のより均一化をはかることが好ましい。 The guide frame 10 is arranged along the flow E of the electrolytic solution so as to divide this flow, and the protrusion 11
It is preferable to provide resistance to the flow of the electrolytic solution and to make the flow of the electrolytic solution more uniform.
また隣接する案内枠の突起部11を相互に連結
する連結部を設けて、案内枠全体を#形状とし、
この連結部に電解液を流すための凹部を形成する
こともできる。 Further, a connecting portion is provided to connect the protrusions 11 of adjacent guide frames to each other, so that the entire guide frame has a # shape,
A recessed portion for flowing the electrolyte may also be formed in this connecting portion.
更にこの突起部11に対応して、枠3′にも電
解液の流れに抵抗を与える突起部12を設けるこ
ともできる。 Furthermore, in correspondence with the protrusion 11, a protrusion 12 that provides resistance to the flow of the electrolytic solution may also be provided on the frame 3'.
本考案の電解槽は、上述した各部材を重ね合
せ、外部から一体的に押えつけることによつて形
成される。 The electrolytic cell of the present invention is formed by overlapping each of the above-mentioned members and pressing them together from the outside.
この結果、本考案では案内枠10によつて電極
6が複数に区分され、電解液のマルチ流路が形成
され、あたかも小型の電解槽を平面上に多数配置
したような構造になつている。 As a result, in the present invention, the electrode 6 is divided into a plurality of sections by the guide frame 10, forming multiple flow paths for the electrolytic solution, resulting in a structure as if a large number of small electrolytic cells were arranged on a plane.
今、陽極液について第3図により説明すれば、
陽極液は陽極液入口側流通孔7から供給され、流
路Fに沿つて流れ、次いで矢印Eに沿つて案内枠
10によつて区分された電極に浸透しながら流
れ、一つの電極区分から次の電極区分に供給され
た後に流路Gに集められ、陽極液出口側流通孔8
から排出される。 Now, if we explain the anolyte using Figure 3,
The anolyte is supplied from the anolyte inlet side flow hole 7, flows along the flow path F, and then flows along the arrow E while penetrating the electrodes divided by the guide frame 10, and flows from one electrode section to the next. The anolyte is collected in the flow path G after being supplied to the electrode section of
is discharged from.
流れの方向が逆であるが、陰極液も同様に区分
された電極を流れる。 The catholyte similarly flows through the segmented electrodes, although the direction of flow is reversed.
通電は例えば仕切板2側を正に、2′側を負に
して行われ、陽極液および陰極液が上記のように
区分された電極に接して流れる間に、電解が行わ
れる。 Electricity is supplied, for example, with the partition plate 2 side being positive and the 2' side being negative, and electrolysis is performed while the anolyte and catholyte are flowing in contact with the electrodes divided as described above.
以上述べたように本考案によれば、案内枠によ
つて電極上に電解液のマルチ流路が形成されてお
り、この流路に沿つて電解液が導かれるので、従
来のように電解液が停滞することがなくなり、電
解効率を著しく向上させることができる。
As described above, according to the present invention, multiple flow paths for electrolyte are formed on the electrode by the guide frame, and the electrolyte is guided along these flow paths, so that the electrolyte is stagnation, and the electrolytic efficiency can be significantly improved.
例えば、レドツクス型二次電池の発電部とし
て、個々の電解槽の陰、陽極室における電解液の
流れを、案内枠によつて電解液の流れ沿つて仕切
つた本考案の電解槽を10個直列に接続した場合に
おいて、かかる案内枠のない従来の電解槽に比較
して充放電エネルギー効率を約6%向上させるこ
とができた。また、電解液の停滞が防止されるの
で、電解槽のスケールアツプが容易であり、従来
では不可能であつた大型の電解槽の製作が可能で
ある。 For example, as a power generation part of a redox type secondary battery, ten electrolytic cells of the present invention are connected in series, in which the flow of electrolyte in the negative and anode chambers of each electrolytic cell is partitioned by a guide frame along the flow of electrolyte. When connected to a conventional electrolytic cell without such a guide frame, the charging/discharging energy efficiency could be improved by about 6% compared to a conventional electrolytic cell without such a guide frame. Furthermore, since stagnation of the electrolytic solution is prevented, it is easy to scale up the electrolytic cell, and it is possible to manufacture a large electrolytic cell, which was previously impossible.
更に小型テスト電解槽のデータから大型の電解
槽を設計することも容易である。 Furthermore, it is easy to design a large electrolytic cell from the data of a small test electrolytic cell.
更にまた、電解槽当りの電解能力が向上するの
で、複数の電解槽を配置して使用していた場合の
電解槽数を減少することができ、設備費を大巾に
削減することができる。 Furthermore, since the electrolysis capacity per electrolytic cell is improved, the number of electrolytic cells can be reduced when a plurality of electrolytic cells are arranged and used, and equipment costs can be significantly reduced.
第1図は本考案に係る液透過型電解槽の分解斜
視図、第2図はその縦断面分解図、第3図は案内
枠の配置状況を示す斜視図、第4図は従来の液透
過型電解槽の分解斜視図、第5図はその縦断面分
解図、第6図は従来の電極における電解液の流れ
を示す説明図である。
1……液透過型電解槽、2,2′……仕切板、
3,3′,3″,3……枠、4,4′……電極枠、
5……イオン交換膜、10,10′……案内枠。
Fig. 1 is an exploded perspective view of a liquid permeable electrolytic cell according to the present invention, Fig. 2 is an exploded vertical cross-sectional view thereof, Fig. 3 is a perspective view showing the arrangement of the guide frame, and Fig. 4 is a conventional liquid permeable electrolytic cell. FIG. 5 is an exploded perspective view of a type electrolytic cell, FIG. 5 is an exploded longitudinal cross-sectional view thereof, and FIG. 6 is an explanatory diagram showing the flow of electrolyte in a conventional electrode. 1... Liquid permeable electrolytic cell, 2, 2'... Partition plate,
3, 3', 3'', 3... frame, 4, 4'... electrode frame,
5...Ion exchange membrane, 10,10'...Guide frame.
Claims (1)
換膜5、枠3″、電極枠4′、枠3および仕切板
2′をこの順に重ね、前記電極枠4、4′の枠空間
に液流通性の多孔質電極をそれぞれ保持せしめた
液透過型電解槽において、前記イオン交換膜5に
隣る枠3′、3″の枠空間に電解液をその流路に沿
つて仕切る案内枠10、10′を設けたことを特
徴とする液透過型電解槽。 The partition plate 2, the frame 3, the electrode frame 4, the frame 3', the ion exchange membrane 5, the frame 3'', the electrode frame 4', the frame 3, and the partition plate 2' are stacked in this order, and the frames of the electrode frames 4 and 4' are stacked. In a liquid-permeable electrolytic cell in which a porous electrode that allows liquid flow is held in each space, a guide for partitioning an electrolytic solution into the frame spaces of frames 3' and 3'' adjacent to the ion exchange membrane 5 along the flow path thereof. A liquid permeable electrolytic cell characterized in that frames 10 and 10' are provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1982178967U JPS5983974U (en) | 1982-11-29 | 1982-11-29 | Liquid permeable electrolytic cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1982178967U JPS5983974U (en) | 1982-11-29 | 1982-11-29 | Liquid permeable electrolytic cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5983974U JPS5983974U (en) | 1984-06-06 |
JPS636213Y2 true JPS636213Y2 (en) | 1988-02-22 |
Family
ID=30388412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1982178967U Granted JPS5983974U (en) | 1982-11-29 | 1982-11-29 | Liquid permeable electrolytic cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5983974U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011079692A1 (en) | 2011-07-22 | 2013-01-24 | Chemex Gmbh | Feeders and moldable compositions for their preparation |
-
1982
- 1982-11-29 JP JP1982178967U patent/JPS5983974U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5983974U (en) | 1984-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6905797B2 (en) | Porous mat electrodes for electrochemical reactor having electrolyte solution distribution channels | |
JP6099005B2 (en) | Battery cell and redox flow battery | |
US4344832A (en) | Electrode system for a fuel or electrolysis cell arrangement | |
US3359136A (en) | Rechargeable energy conversion system | |
JP6701514B2 (en) | Redox flow battery electrode and redox flow battery | |
RU2001108582A (en) | MEMBRANES SEPARATED BIPOLAR MULTI-CHAMBER ELECTROCHEMICAL REACTOR | |
GB1594752A (en) | Bipolar electrode construction and battery including the same | |
WO2014083387A1 (en) | Back plate-electrode-membrane assembly for a redox, flow energy storage electrochemical cell | |
DE2507396A1 (en) | ELECTROCHEMICAL CELL | |
US3749608A (en) | Primary electrochemical energy cell | |
JPWO2019012984A1 (en) | Bipolar plate, cell frame, battery cell, cell stack, and redox flow battery | |
US3530005A (en) | Compact electrochemical cell | |
US3119760A (en) | Electrolytic cell for the oxidation and reduction of organic compounds | |
JPS636213Y2 (en) | ||
US3432353A (en) | Fuel cell electrode | |
JPS6039186A (en) | Separate electrochemical assembly | |
GB2093263A (en) | Fuel Cell Blocks | |
US20220238904A1 (en) | Redox flow battery | |
JPS60101881A (en) | Cell structure for redox flow battery | |
US2615061A (en) | Battery plate | |
RU168023U1 (en) | PLANAR BATTERY OF CURRENT SOURCES | |
KR20200055311A (en) | Manifold with back side flow path and Redox flow battery | |
KR20170097416A (en) | Redox Flow Battery for Monopolar type | |
TW202036971A (en) | Battery cell, cell stack and redox flow battery | |
US3306775A (en) | Cell partition for batteries |