JPS6361803A - Make-up water facility device - Google Patents

Make-up water facility device

Info

Publication number
JPS6361803A
JPS6361803A JP61203602A JP20360286A JPS6361803A JP S6361803 A JPS6361803 A JP S6361803A JP 61203602 A JP61203602 A JP 61203602A JP 20360286 A JP20360286 A JP 20360286A JP S6361803 A JPS6361803 A JP S6361803A
Authority
JP
Japan
Prior art keywords
make
water
water pump
flow rate
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61203602A
Other languages
Japanese (ja)
Inventor
勝義 是石
山藤 秀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP61203602A priority Critical patent/JPS6361803A/en
Publication of JPS6361803A publication Critical patent/JPS6361803A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は複数の負荷に複数の補給水ポンプにより補給水
を供給するようにした補給水設備装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a make-up water equipment device that supplies make-up water to a plurality of loads using a plurality of make-up water pumps.

(従来の技術) 一般に、従来の補給水設備装置では補給水ポンプの吐出
側圧力により負荷量すなわち補給水ポンプ吐出口を検知
し、負荷量に応じた補給水ポンプの運転を行っている。
(Prior Art) Generally, in conventional make-up water equipment, the load amount, that is, the make-up water pump discharge port is detected based on the discharge side pressure of the make-up water pump, and the make-up water pump is operated according to the load amount.

第4図は従来の補給水設備装置の一例を示すもので、タ
ンク1を水源として3台の補給水ポンプ2により各負荷
3へ給水を行っている。各負荷3はいくつかの群に分け
られ、各群ごとの補給水量を測定する流量計4が各群ご
とに設けられている。
FIG. 4 shows an example of a conventional make-up water equipment, in which water is supplied to each load 3 by three make-up water pumps 2 using a tank 1 as a water source. Each load 3 is divided into several groups, and a flow meter 4 for measuring the amount of makeup water for each group is provided for each group.

このように、いくつかの群に分けて流量計測を行うのは
補給水ポンプ吐出母管5での流量範囲が大きく、この母
管5での流量計測では誤差が大きくなるためである。
The reason why the flow rate is measured in several groups in this manner is that the flow rate range in the make-up water pump discharge main pipe 5 is large, and the error in flow rate measurement in this main pipe 5 becomes large.

一方、補給水ポンプ2は通常1台で連続運転され、負荷
3の負荷量の増加により補給水ポンプ吐出母管5での圧
力低下を圧力検出器(PS) 6で検知すると、2台目
の補給水ポンプ2が自動起動する。
On the other hand, one make-up water pump 2 is normally operated continuously, and when a pressure detector (PS) 6 detects a pressure drop in the make-up water pump discharge main pipe 5 due to an increase in the load amount of the load 3, the second make-up water pump 2 is operated continuously. Makeup water pump 2 starts automatically.

この時、補給水ポンプ吐出母管5での圧力は回復するが
、さらに負荷量が増加した場合、補給水ポンプ吐出母管
5での圧力低下を圧力検出器6で検知して、3台目の補
給水ポンプ2を自動起動するように構成したものである
At this time, the pressure in the make-up water pump discharge main pipe 5 recovers, but if the load increases further, the pressure drop in the make-up water pump discharge main pipe 5 is detected by the pressure detector 6, and the third The make-up water pump 2 is configured to automatically start.

このように、補給水ポンプ2の制御を補給水ポンプ吐出
側に設けられた圧力検出器6の圧力により行っている補
給水設備装置では、以下のような問題が生じる。
As described above, in the make-up water equipment device in which the make-up water pump 2 is controlled by the pressure of the pressure detector 6 provided on the make-up water pump discharge side, the following problems occur.

補給水ポンプ吐出母管5での圧力変化の要因には、補給
水ポンプ2の全揚程だけではなく、水源であるタンク1
の水位が含まれる。つまり、2台目、3台目の補給水ポ
ンプ2が自動起動する際には、既に運転中の補給水ポン
プ2の運転点はタンク水位の最低水位8と最高水位(オ
ーバフロー水位)9の変動幅7にほぼ等しい範囲で変化
することになる。    □ 一般に、2台目、3台目の補給水ポンプ2が自動起動す
るための圧力検出器6の圧力設定値Pは、タンク1の水
位が最低水位8であるとし、この水位8と圧力検出器6
の設置高さの静水頭差H1に、補給水ポンプ定格全揚程
H2を加えた値(H1十H2>としている。つまり、タ
ンク1の水位が最低水位8の状態で補給水ポンプ2が定
格運転した時に2台目又は3台目の補給水ポンプ2が自
動起動することとなる。
The pressure change in the make-up water pump discharge main pipe 5 is caused by not only the total lift of the make-up water pump 2 but also the tank 1 that is the water source.
water level is included. In other words, when the second and third make-up water pumps 2 start automatically, the operating points of the make-up water pumps 2 that are already in operation will vary between the minimum water level 8 and the maximum water level (overflow water level) 9 of the tank water level. It will change within a range approximately equal to the width 7. □ In general, the pressure setting value P of the pressure detector 6 for automatically starting the second and third make-up water pumps 2 is based on the assumption that the water level of the tank 1 is the lowest water level 8, and this water level 8 and the pressure detection Vessel 6
The value is calculated by adding the rated total head H2 of the make-up water pump to the static head difference H1 of the installation height of When this happens, the second or third make-up water pump 2 will automatically start.

今、仮にタンク1の水位がオーバフロー水位9であった
場合、負荷量の増加により待機中の補給水ポンプ2が自
動起動するには、既に運転中の補給水ポンプ2はタンク
1の最低水位8とオーバーフロー水位9の水位変動幅7
に相当する過流量運転をすることになる。このことを更
に第5図の補給水ポンプ2のQ−Hカーブにて説明する
と、待機中の補給水ポンプ2が自動起動する時の、既に
運転中の補給水ポンプ2の運転範囲は定格点のA点から
B点の間となる。A点とB点での補給水ポンプ全揚程差
ト(は第4図に示すタンク1の水位変動幅7に相当する
ものである。
Now, if the water level of the tank 1 is the overflow water level 9, in order for the make-up water pump 2 that is on standby to start automatically due to the increase in load, the make-up water pump 2 that is already in operation must be at the minimum water level of the tank 1 8. and water level fluctuation width 7 of overflow water level 9
This results in overflow operation equivalent to . To further explain this using the Q-H curve of the make-up water pump 2 in Figure 5, when the make-up water pump 2 that is on standby automatically starts, the operating range of the make-up water pump 2 that is already in operation is the rated point. It is between point A and point B of . The make-up water pump total head difference between points A and B (corresponds to the water level fluctuation range 7 of the tank 1 shown in FIG. 4).

このようなことから、補給水ポンプ2の性能特性はタン
ク1の水位変動を考慮する必要があり、特に、水位変動
幅7が大きなタンク1を水源とした場合には、補給水ポ
ンプ2の過流量運転範囲を広げるか、又は吐出流量の変
化に対する全揚程の変化の著しい補給水ポンプ2を用い
る必要がある。
For this reason, the performance characteristics of the make-up water pump 2 need to take into account the water level fluctuations in the tank 1. In particular, when the tank 1 with a large water level fluctuation width 7 is used as the water source, the overload of the make-up water pump 2 must be considered. It is necessary to expand the flow rate operation range or to use a make-up water pump 2 whose total head changes significantly in response to changes in discharge flow rate.

しかしながら、このことはポンプ原動機出力の増加、補
給水圧力の変動増加、設備最高使用圧力の増加などざま
ざまな不具合の要因となる。
However, this causes various problems such as an increase in pump motor output, an increase in fluctuations in make-up water pressure, and an increase in the maximum operating pressure of the equipment.

なお、タンク1の水位変動の影響を受けないように、補
給水ポンプ2の前後の圧力差、つまり補給水ポンプ2の
全揚程のみで補給水ポンプ2の制御を行うことも考えら
れるが、この場合は次のような不具合がある。
Note that in order to avoid being affected by water level fluctuations in the tank 1, it is possible to control the make-up water pump 2 using only the pressure difference before and after the make-up water pump 2, that is, the total lift of the make-up water pump 2; In this case, the following problems occur.

第6図は補給水ポンプ2の運転台数ごとのQ−Hカーブ
を示したものである。この図から運転台数が増えるに従
い、そのQ −Hカーブはより直線的になる。つまり、
流量変化に対する全揚程の変化が少なくなる。このこと
は、補給水ポンプ2の制御を吐出出口の圧力変化を用い
て行うと、圧力検出器6の計器誤差の影響を大きく受け
るようになる。
FIG. 6 shows a QH curve for each number of makeup water pumps 2 in operation. From this figure, as the number of vehicles in operation increases, the QH curve becomes more linear. In other words,
Changes in total head due to changes in flow rate are reduced. This means that if the make-up water pump 2 is controlled using changes in the pressure at the discharge outlet, it will be greatly influenced by the instrument error of the pressure detector 6.

今、補給水ポンプ2が3台とも運転されており、この時
の流量が0点とすると、全揚程はD点となる。この時、
圧力検出器6の計器誤差eにより、圧力検出器6が補給
水ポンプ2の全揚程を5点と検知した場合は負荷量の低
減と判断され、3台の内1台の補給水ポンプ2が自動停
止させられることになる。ところが、実際には負荷量は
低減していないため、2台の補給水ポンプ2で同量を補
給するよう、運転点がF点に向けて変化する。すると、
圧力検出器6が圧力低下を検知し、前に停止させた補給
水ポンプ2を再度起動させることになる。しかも、この
現象は繰り返される。
All three make-up water pumps 2 are now in operation, and if the flow rate at this time is 0 point, the total head will be point D. At this time,
If the pressure detector 6 detects the total head of the makeup water pump 2 as 5 points due to the instrument error e of the pressure detector 6, it is determined that the load amount has been reduced, and one of the three makeup water pumps 2 is activated. It will be automatically stopped. However, since the load amount is not actually reduced, the operating point changes toward point F so that the two make-up water pumps 2 replenish the same amount. Then,
The pressure detector 6 will detect the pressure drop and will restart the make-up water pump 2, which was previously stopped. Moreover, this phenomenon is repeated.

そして、上述したような現象が繰り返されると、ポンプ
原動機への悪影響1、ランニングコストの増加、補給水
圧力の変動等の不具合の要因となる。
If the above-mentioned phenomenon is repeated, it becomes a cause of problems such as an adverse effect on the pump prime mover, an increase in running costs, and fluctuations in make-up water pressure.

したがって、この対策としては予め計器誤差を考慮して
、圧力検出器6の設定値を決定すればよいと考えられる
が、第6図に示したように補給水ポンプ3台運転時のQ
−Hカーブが直線的な場合は計器誤差を考慮することす
らもできないという不具合がある。
Therefore, as a countermeasure against this problem, it is considered that the setting value of the pressure detector 6 should be determined in advance by considering the instrument error, but as shown in Fig. 6, the Q
- If the H curve is linear, there is a problem in that it is impossible to even take into account instrument errors.

以上述べた理由により、補給水ポンプの自動制御は起動
時のみとし、補給水ポンプの停止に際しては運転員の判
断により手動で行われる補給水設備が数多く提案されて
いる。
For the reasons described above, many make-up water facilities have been proposed in which the make-up water pump is automatically controlled only at startup, and the make-up water pump is manually controlled at the operator's discretion when the make-up water pump is stopped.

(発明が解決しようとする問題点) 本発明は、上記事情に鑑みなされたもので、その目的は
、水源タンクの水位変動を考慮することなく補給水ポン
プの性能特性が計画でき、負荷量に応じた適切な台数の
補給水ポンプの自動運転ができ、かつ安定した圧力の補
給水を供給できる補給水設備装置を提供することにおる
(Problems to be Solved by the Invention) The present invention was made in view of the above circumstances, and its purpose is to be able to plan the performance characteristics of the make-up water pump without considering water level fluctuations in the water source tank, and to adjust the load amount accordingly. It is an object of the present invention to provide a make-up water equipment device that can automatically operate an appropriate number of make-up water pumps according to the demand and can supply make-up water at a stable pressure.

[発明の構成] (問題点を解決するための手段) 本発明は上記目的を達成するために、複数の補給水ポン
プから母管を介して複数の負荷に給水を行う補給水設備
装置において、前記複数の負荷を複数の群に分けるとと
もに前記全負荷に流入する給水流量を測定する流量計と
、前記流量計からの出力値に応じて前記補給水ポンプの
運転台数を制御する制御装置を設けたことを特徴とする
ものでおる。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a make-up water equipment device that supplies water from a plurality of make-up water pumps to a plurality of loads via a main pipe. A flow meter that divides the plurality of loads into a plurality of groups and measures the flow rate of water supply flowing into the total loads, and a control device that controls the number of operating makeup water pumps according to the output value from the flow meter. It is characterized by the following.

(作 用) 本発明の補給水設備装置によると、補給水の使用量およ
び使用頻度が各負荷ごとに異なっても全負荷量に応じた
適切な補給水ポンプの起動および停止を自動釣に行うこ
とができ、かつ安定した圧力の補給水を供給できるする
ことかできる。
(Function) According to the make-up water equipment device of the present invention, even if the amount and frequency of use of make-up water differs for each load, the make-up water pump is automatically started and stopped in accordance with the total load amount. It is possible to supply make-up water at a stable pressure.

(実施例) 本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の概略系統図を示すもので、
既に説明した第4図と同一構成箇所には同一符号を付し
てその詳細な説明は省略するものとする。同図において
、タンク1を水源として3台の補給水ポンプ2により補
給水ポンプ吐出母管5を介して各負荷3へ給水を行う。
FIG. 1 shows a schematic system diagram of an embodiment of the present invention.
Components that are the same as those in FIG. 4 already explained are given the same reference numerals, and detailed explanation thereof will be omitted. In the figure, water is supplied to each load 3 via a make-up water pump discharge main pipe 5 by three make-up water pumps 2 using a tank 1 as a water source.

各負荷3はいくつかの群に分けられ、各群ごとの補給水
量か各群ごとに設置された流量計4により計測される。
Each load 3 is divided into several groups, and the amount of make-up water for each group is measured by a flow meter 4 installed for each group.

各流量計4からの流量計測値は流■指示訓11に入力さ
れる。流量指示計11の出力は制御回路12に入力され
る。制御回路12は補給水ポンプ2の起動および停止を
制御する。なお、流量指示計11、制WJ装置12は中
央制御i10内に収納されている。
The flow rate measurement values from each flowmeter 4 are input into the flow instructions 11. The output of the flow rate indicator 11 is input to the control circuit 12. The control circuit 12 controls starting and stopping of the make-up water pump 2. Note that the flow rate indicator 11 and WJ control device 12 are housed within the central control i10.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

原子hプラントではプラント内の水収支の管理上、プラ
ント内への水の流入量及びプラント外への水の流出量を
計測している。補給水設備もその補給量を計測している
。一方、各負荷3は負荷量及び負荷頻度がそれぞれ異な
り、補給水量は時々により大きな範囲の中で変動する。
In an atomic h-plant, the amount of water flowing into the plant and the amount of water flowing out of the plant are measured in order to manage the water balance within the plant. Replenishment water equipment also measures the amount of replenishment. On the other hand, each load 3 has a different load amount and load frequency, and the amount of makeup water sometimes varies within a larger range.

そこで、補給水量の計測は補給水ポンプ吐出母管5で行
うことなく、いくつかの負荷群ごとに行って、計測誤差
が小さくなるように考慮されている。また、作業員の被
曝低減をも考慮し、流量確認は現場で行うことなく、中
央制御至10において各群ごとの流量を流量計11で確
認できるように構成されている。
Therefore, the amount of make-up water is not measured at the make-up water pump discharge main pipe 5, but is measured for each of several load groups in order to reduce measurement errors. In addition, in consideration of reducing radiation exposure of workers, the system is configured such that the flow rate for each group can be checked using a flow meter 11 in the central control station 10, without checking the flow rate on site.

そして、この時の流量は積算流儀として出力してもよい
The flow rate at this time may be output as an integrated flow.

本実施例では、これら流量計4の計測値の合計を瞬間流
ff1QΣとして検知し、その時の流量QΣに適した補
給水ポンプ2の運転台数を選択するように制御装置12
により制御される。
In this embodiment, the control device 12 detects the sum of the measured values of these flowmeters 4 as the instantaneous flow ff1QΣ, and selects the number of operating make-up water pumps 2 suitable for the flow rate QΣ at that time.
controlled by

第2図はこの制御装置12での制御例を示す70−ヂヤ
ートでおる。同図において、いま、補給水ポンプ201
台当りの定、室容量を50 m3/hと仮定する。当初
各流量計にて計測された負荷量の合計QΣが20m3 
/hとする。この時は補給水ポンプ2は1台運転のまま
となる。その後、負荷量の増加により負荷量の合計QΣ
が50m3/hを越えると、2台目の補給水ポンプ2が
自動起動される。
FIG. 2 shows an example of control by this control device 12 at 70-diameter. In the same figure, the make-up water pump 201 is now
Assume that the room capacity per unit is 50 m3/h. Initially, the total amount of load QΣ measured by each flowmeter was 20m3
/h. At this time, only one make-up water pump 2 remains in operation. After that, as the load increases, the total load QΣ
When the water exceeds 50 m3/h, the second make-up water pump 2 is automatically started.

ざらに、負荷量が増え負荷量の合計QΣが100m3/
hを越えると、3台目の補給水ポンプ2か自動起動する
。その後、負荷量の合計QΣか80m3 /hとなった
場合には、3台の内1台の補給水ポンプを自動停止させ
る。
Roughly speaking, the load amount increases and the total load amount QΣ becomes 100m3/
When h is exceeded, the third make-up water pump 2 is automatically started. After that, when the total load QΣ reaches 80 m3/h, one of the three make-up water pumps is automatically stopped.

このように、補給水ポンプ2の運転台数と負荷量との関
係から補給水ポンプ2の自8起動および自動停止を行わ
せるものでおる。
In this way, the makeup water pumps 2 are automatically started and stopped based on the relationship between the number of makeup water pumps 2 in operation and the load amount.

また、上記したように補給水ポンプの自動停止ができる
ことにより、停止させる補給水ポンプのローテーション
を例えば、“Aポンプ運転中−負荷量増加−Bポンプ起
動−負荷量低下−Aポンプ停止パの如く行えば各補給水
ポンプの運転時間を自動的に均一化することも可能とな
る。
In addition, by being able to automatically stop the make-up water pump as described above, the rotation of the make-up water pump to be stopped can be changed to, for example, "A pump running - load increase - B pump starting - load decrease - A pump stopping". If this is done, it will be possible to automatically equalize the operating time of each make-up water pump.

第3図は本発明の他の実施例の概略系統図を示すもので
、上記実施例と同一構成箇所には同一符号を付してその
詳細な説明は省略するものとする。
FIG. 3 shows a schematic system diagram of another embodiment of the present invention, and the same components as in the above embodiment are given the same reference numerals, and detailed explanation thereof will be omitted.

同図に示すように、補給水ポンプ吐出母管5に補給水ポ
ンプ2の制御用の流量計13を設置し、第2図に示すフ
ローチャートに従って制御を行なえば上記実施例と同様
に自動的に補給水ポンプ2の自動起動および自動停止を
行うことができる。この場合、流量計13は補給水量の
全範囲におけるレンジ・アビリティ−を考慮することな
く、補給水ポンプ2の制御に関わる範囲でのレンジ・ア
ビリティ−を考慮すればよい。例えば、補給水ポンプ2
が50m3 /hx3台の場合、約50〜100m3 
/hでのレンジ・アビリティ−を有すればよいこととな
る。
As shown in the figure, if a flow meter 13 for controlling the make-up water pump 2 is installed in the make-up water pump discharge main pipe 5 and the control is performed according to the flowchart shown in FIG. The make-up water pump 2 can be automatically started and stopped. In this case, the flow meter 13 may consider the range ability in the range related to the control of the makeup water pump 2 without considering the range ability in the entire range of makeup water amount. For example, make-up water pump 2
is 50m3/hx3 units, approximately 50-100m3
It is only necessary to have a range ability of /h.

[発明の効果] 以上説明したように、本発明の補給水設備装置によると
、水源タンクの水位変動を考慮することなく、補給水ポ
ンプの性能特性が計画できるので、負荷量に応じた補給
水ポンプの起動及び停止を自動的に行うことができ、か
つ安定した圧力の補給水を供給できるすることができる
。また、補給水ポンプの吐出流量により同ポンプの制御
を行っているので、制御点つまりポンプの起動、停止を
行う設定値点での誤差余裕が大ぎくなり、このため柔軟
性を持った設計が行えるというすぐれた効果を奏する。
[Effects of the Invention] As explained above, according to the make-up water equipment device of the present invention, the performance characteristics of the make-up water pump can be planned without considering water level fluctuations in the water source tank. The pump can be started and stopped automatically, and make-up water at a stable pressure can be supplied. In addition, since the pump is controlled by the discharge flow rate of the make-up water pump, there is a large margin of error at the control point, that is, the set point for starting and stopping the pump, which makes it difficult to design with flexibility. It has excellent effects.

.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略系統図、第2図は本発
明による制御例を示すフローチャート、第3図は本発明
の他の実施例の概略系統図、第4図は従来の補給水設備
装置の概略系統図、第5図、第6図は補給水ポンプの性
能の一部を示ずQ−11カーブを示す図でおる。 1・・・タンク      2・・・補給水ポンプ3・
・・負荷       4・・・流量計5・・・補給水
ポンプ吐出母管 6・−・圧力検出器    7・・・タンク水位変動幅
8・・・タンク最低水位 9・・・タンクオーバーフロー水位 10・・・中央制御至 11・・・流量指示計    12・・・制御装置13
・・・流量計 (8733)代理人 弁理士 猪 股 祥 晃(ばか1
名) Tυ 第1図 第2図 第3図 第4図 吐ぬ子(Q) 第5図 第6図
FIG. 1 is a schematic system diagram of one embodiment of the present invention, FIG. 2 is a flowchart showing an example of control according to the present invention, FIG. 3 is a schematic system diagram of another embodiment of the present invention, and FIG. 4 is a conventional system diagram. The schematic system diagrams of the make-up water equipment, FIGS. 5 and 6, do not show part of the performance of the make-up water pump, but are diagrams showing the Q-11 curve. 1... Tank 2... Make-up water pump 3.
...Load 4...Flowmeter 5...Makeup water pump discharge main pipe 6--Pressure detector 7...Tank water level fluctuation range 8...Tank minimum water level 9...Tank overflow water level 10... ...Central control 11...Flow rate indicator 12...Control device 13
...Flowmeter (8733) Agent Patent Attorney Yoshiaki Inomata (Baka 1
Name) Tυ Figure 1 Figure 2 Figure 3 Figure 4 Tunuko (Q) Figure 5 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)複数の補給水ポンプから母管を介して複数の負荷
に給水を行う補給水設備装置において、前記複数の負荷
を複数の群に分けるとともに前記全負荷に流入する給水
流量を計測する流量計と、前記流量計からの出力値に応
じて前記補給水ポンプの運転台数を制御する制御装置を
設けたことを特徴とする補給水設備装置。
(1) In a make-up water equipment device that supplies water from a plurality of make-up water pumps to a plurality of loads via a main pipe, the plurality of loads are divided into a plurality of groups, and the flow rate for measuring the water supply flow rate flowing into all the loads. 1. A make-up water equipment device comprising: a flow meter; and a control device for controlling the number of operated make-up water pumps according to an output value from the flow meter.
(2)全負荷に流入する給水流量は各群毎に設置した流
量計の出力値の合計値である特許請求の範囲第1項記載
の補給水設備装置。
(2) The make-up water equipment device according to claim 1, wherein the flow rate of the water supply flowing into the entire load is the total value of the output values of flow meters installed for each group.
(3)全負荷に流入する給水流量は母管に設置した流量
計の出力値である特許請求の範囲第1項記載の補給水設
備装置。
(3) The make-up water equipment device according to claim 1, wherein the flow rate of the water supply flowing into the full load is an output value of a flow meter installed in the main pipe.
JP61203602A 1986-09-01 1986-09-01 Make-up water facility device Pending JPS6361803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61203602A JPS6361803A (en) 1986-09-01 1986-09-01 Make-up water facility device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61203602A JPS6361803A (en) 1986-09-01 1986-09-01 Make-up water facility device

Publications (1)

Publication Number Publication Date
JPS6361803A true JPS6361803A (en) 1988-03-18

Family

ID=16476766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61203602A Pending JPS6361803A (en) 1986-09-01 1986-09-01 Make-up water facility device

Country Status (1)

Country Link
JP (1) JPS6361803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102394A (en) * 1992-09-18 1994-04-15 Hitachi Ltd Fluid plant and its operating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102394A (en) * 1992-09-18 1994-04-15 Hitachi Ltd Fluid plant and its operating method

Similar Documents

Publication Publication Date Title
US5301743A (en) Cooling abnormality detection system for electronic equipment
JP2005241657A (en) Method and device for monitoring state of reactor
JPS6361803A (en) Make-up water facility device
CN108547760B (en) Frequency follow-up control method for lift pump of water treatment
JP3793885B2 (en) Estimated constant pressure controller for pump
KR870001551B1 (en) Adaptive gain compressor surge control system
JPH09133786A (en) Makeup water facility for nuclear power plant
JP3108487B2 (en) Reactor operating area monitoring device
JP3105060B2 (en) Water level control device
JPH06185493A (en) Operating method of water supply pump
JPH05134772A (en) Composite cooling control system
JPS60213886A (en) Measuring device for flow rate at core
JPH01249978A (en) Rainwater level controller
JP3114026B2 (en) Drainage priority operation method of drainage pump device
JPH01285682A (en) Hydraulic system
JPH04184221A (en) Dam inflow value calculating apparatus
JPS6322279B2 (en)
JPH10311280A (en) Pump controller
JPS5946895A (en) Reactor feedwater control device
JPH11131535A (en) Water distribution control method considering water levels of clean water reservoir and water distribution reservoir
JPH0640753B2 (en) Minimum Flow Operating State Detection Method for Rotating Load Machine Driven by Variable Speed
JPS62103496A (en) Revolutional speed controller of condenser booster pump
JPS6256354B2 (en)
JPS6226506A (en) Pump operation control device
JPS62157598A (en) Controller for water level of nuclear reactor