JPS6361565B2 - - Google Patents

Info

Publication number
JPS6361565B2
JPS6361565B2 JP3081979A JP3081979A JPS6361565B2 JP S6361565 B2 JPS6361565 B2 JP S6361565B2 JP 3081979 A JP3081979 A JP 3081979A JP 3081979 A JP3081979 A JP 3081979A JP S6361565 B2 JPS6361565 B2 JP S6361565B2
Authority
JP
Japan
Prior art keywords
amount
fuel
gaseous
gaseous fuel
supply amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3081979A
Other languages
Japanese (ja)
Other versions
JPS55123917A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3081979A priority Critical patent/JPS55123917A/en
Publication of JPS55123917A publication Critical patent/JPS55123917A/en
Publication of JPS6361565B2 publication Critical patent/JPS6361565B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、燃焼特性が異なり且つ供給可能量が
変動する複数の気体燃料を混合して、燃焼特性を
一定にした混合気体燃料として供給する方法に関
するものである。 燃焼設備に於ける綿密な燃焼管理は、省エネル
ギー推進上の重要な留意点である。しかし、燃焼
特性が異なり且つ供給可能量が変動する複数の気
体燃料を混合して、多種類の燃焼設備で使用する
大規模な事業所における合理的な燃料供給技術の
水準は、その重要性にもかかわらず他の省エネル
ギー技術に比して遅れているのが現状である。 例えば一貫製鉄所においては、燃焼特性が異な
り且つ供給可能量が変動する気体燃料例えば高炉
ガス(以下BFGと略称する)。コークス炉ガス
(以下COGと略称する。)、精製コークス炉ガス
(以下RGと略称する)、転炉ガス(以下LDGと略
称する)、の3〜4種を、混合気体燃料の1Nm3
りの発熱量が一定となるように混合して複数の加
熱炉、均熱炉等の燃焼設備で使用している。 例えば、加熱炉系統については、COG,BFG,
LDG,RGが混合され、均熱炉系統については、
COG,BFG,LDGが混合される。上記RGは余
剰分を使用するものであり、余剰発生量(供給可
能量)が大巾に変動する。 上記LDGは間欠的に発生し、かつその発生量
(供給可能量)も変動する。即ち供給可能量が大
巾に変動する。 BFG,COGは炉の稼動率等によりその発生量
が変動するものの、LDGに比較して変動巾は小
さい。 従つて従来LDG,RG又は、LDGを過不足なく
混入して混合気体燃料の発熱量(カロリー)を一
定に保つために、LDG,RG又はLDGの供給可能
量に応じて、COG,BFG,LDG,RG又はCOG,
BFG,LDGの混合比率を逐次(例えば、1時間
毎に)調節している。これによりLDG,RG又は
LDGを過不足なく混入して混合気体燃料の発熱
量を一定に制御できるが混合される各気体燃料の
混合比率が変わり、混合される各気体燃料の性状
が異なるため、混合気体燃料の理論空気量(以下
Aoと略称する)及び密度(以下ρと略称する)
が変化し、Aoを√で補正したAo/√が変化
する。 表1、表2は発熱量が一定でも混合比率によつ
てAo/√が変化することを例示したものであ
る。 詳しくはBFG,COG,LDGを混合して、発熱
量1700Kcal/Nm3の混合気体燃料(ケース1)
を供給していた際に、LDGの供給可能量(発生
量)が増大したので、LDGの多量使用に変更し
た時の混合気体燃料(ケース2)の性状を示す。
The present invention relates to a method of mixing a plurality of gaseous fuels with different combustion characteristics and varying amounts of which can be supplied, and supplying the mixture as a mixed gaseous fuel with constant combustion characteristics. Careful combustion management in combustion equipment is an important point to keep in mind when promoting energy conservation. However, the level of rational fuel supply technology in large-scale business establishments that mix multiple gaseous fuels with different combustion characteristics and fluctuating supply quantities and use them in various types of combustion equipment is becoming increasingly important. However, the current situation is that it lags behind other energy-saving technologies. For example, in an integrated steelworks, gaseous fuels such as blast furnace gas (hereinafter abbreviated as BFG) have different combustion characteristics and can be supplied in varying amounts. Three to four types of coke oven gas (hereinafter abbreviated as COG), refined coke oven gas (hereinafter abbreviated as RG), and converter gas (hereinafter abbreviated as LDG) are used at a rate per 1Nm3 of the mixed gas fuel. They are mixed to maintain a constant calorific value and used in multiple heating furnaces, soaking furnaces, and other combustion equipment. For example, for heating furnace systems, COG, BFG,
For a soaking furnace system where LDG and RG are mixed,
COG, BFG, and LDG are mixed. The above-mentioned RG uses the surplus, and the surplus generation amount (supplyable amount) fluctuates widely. The above-mentioned LDG is generated intermittently, and its generation amount (supplyable amount) also fluctuates. In other words, the amount that can be supplied fluctuates widely. Although the amount of BFG and COG generated fluctuates depending on factors such as the operating rate of the furnace, the range of fluctuation is smaller than that of LDG. Therefore, conventionally, in order to keep the calorific value (calorie) of the mixed gas fuel constant by mixing just the right amount of LDG, RG, or LDG, COG, BFG, and LDG are mixed according to the amount of LDG, RG, or LDG that can be supplied. ,RG or COG,
The mixing ratio of BFG and LDG is adjusted sequentially (for example, every hour). This allows LDG, RG or
Although it is possible to control the calorific value of the mixed gaseous fuel at a constant level by mixing just enough LDG, the mixing ratio of each gaseous fuel to be mixed changes and the properties of each gaseous fuel to be mixed are different. Amount (less than or equal to
Ao) and density (hereinafter abbreviated as ρ)
changes, and Ao/√, which is Ao corrected by √, changes. Tables 1 and 2 illustrate that even if the calorific value is constant, Ao/√ changes depending on the mixing ratio. For details, see Mixed gas fuel with a calorific value of 1700 Kcal/Nm 3 by mixing BFG, COG, and LDG (Case 1)
The following shows the properties of the mixed gas fuel (Case 2) when a large amount of LDG was used, as the amount of LDG that could be supplied (generated amount) increased.

【表】【table】

【表】 この様に、混合気体燃料のAo/√が変化す
ると、第2図に示す如き、一般的な炉温制御系を
有する加熱炉、又は均熱炉(以下燃焼炉と略称す
る)における燃焼効率が低下する。 この欠点について詳しく述べる。 第2図に示した一般的な燃焼炉では、炉10a
に於いて外乱により炉温が変化し、温度計11a
により検知された炉温変化量は信号ケーブル16
aを介して温度制御器15aにより流量制御量に
変換され信号ケーブル17aを介して、流量制御
器12aにより、弁閉度制御量に変換され混合気
体燃料の流量制御弁5aが制御され適正に炉温が
保たれる。 尚、混合気体燃料のAo/√が変化しても炉
温は適正に保たれる。しかし混合気体燃料の
Ao/√の変化に対しては、燃焼効率が低下す
る。 即ち、一般的に混合気体燃料の流量は(1)式で表
わされ、 ただし Qfは混合気体燃料の流量 〔Nm3/H〕 Δpは混合気体燃料のオリフイスで検出された
差圧 〔Kg/cm2〕 ρは混合気体燃料の密度 〔Kg/Nm3〕 kはオリフイス設計時に決まる定数 〔(Nm3)1/2cm/H〕 適正な燃焼に必要な空気量は、(2)式で表わされ
るから QA=m・Ao・Qf (2) ただし QAは燃焼用空気量 〔Nm3/H〕 mは適正燃焼に必要な余裕率
(以下空気比と称する) Aoは混合気体燃料1m3の燃焼に必要な理論空
気量 〔Nm3/Nm3〕 (1)式と(2)式から次の(3)式の関係が成立する。 ここで、燃焼用空気量QAについては、第2図
の炉温制御系の燃焼制御系において、オリフイス
7aで検出された混合気体燃料の差圧Δpの平方
根が、設定器14aであらかじめ設定されたmに
より乗じられ流量制御器13aにより制御が行わ
れる。 即ち(3)式の中で、kは定数、mは設定値で固定
であるから、Ao/√が変化した時には、空気
量を変化させる必要があるにもかかわらず、空気
量は混合気体燃料の差圧Δpのみにより変化し、
Ao/√の変化では制御されないから、空気過
不足になり燃焼効率の低下を招く。たとえこれを
避けるため、空気過不足を燃焼ガスの酸素濃度で
検出し、空気量を調節する特別な制御機構いわゆ
る排ガスO2制御機構を配設することも考えられ
るが各燃焼炉毎あるいは各燃焼バーナー毎に、こ
の排ガスO2制御機構が必要となり、設備投資が
膨大になる。 本発明は燃焼特性が異なりかつ供給可能量が変
動するn種(n≧3)の気体燃料を混合するに際
して、上記気体燃料の内、供給可能量が大巾に変
動する(n−2)種の気体燃料を過不足なく混入
して、種々の燃焼設備にて使用する大規模な事業
所において、Ao/√が一定、即ち、空燃比一
定の混合気体燃料を燃焼設備へ供給して、燃焼設
備での燃焼効率を向上せんとするものである。 本発明の要旨は次の通りである。 燃焼特性が異なりかつ供給可能量が変動するn
種(n≧3)の気体燃料を混合し、かつ上記気体
燃料の内、供給可能量が大巾に変動する(n−
2)種の気体燃料を過不足なく混入するに際し
て、 上記供給可能量が大巾に変動する(n−2)種
の気体燃料については、供給可能量に応じて逐次
目標供給量を設定して、気体燃料の供給量を設定
供給量に一致させるべく流量制御すると共に、そ
の他の2種の気体燃料については混合後の気体燃
料の理論空気量と密度の平方根との比の値が、予
じめ設定した目標値に等しくなるような各気体燃
料の目標供給量を求め、該各気体燃料の供給量を
該目標供給量に一致させるべく流量制御すること
を特徴とする空燃比を一定にした混合気体燃料を
供給する方法。 次にn=3、即ちBFG,LDG,COGの3種類
の気体燃料を混合して燃焼設備へ供給する第1図
の装置例にもとづき本発明法を説明する。 第1図中、1,2及び3は燃焼特性が異なり、
且つ供給可能量が変動するLDG,BFG及びCOG
(以下気体燃料A,B及びCという)の発生設備
である。特に気体燃料Aは発生周期が短期でかつ
その発生量(供給可能量)が変動する。一方気体
燃料B,Cについては炉の休風、炉の一部補修等
により発生量が変動するものの長期間にわたつて
ほぼ安定して発生する。 このように気体燃料Aは供給可能量が大巾に変
動する気体燃料であつて、これを過不足なく混入
するため、供給可能量に応じて、逐次、目標供給
量を計算機21に設定する気体燃料である。 かかる各気体燃料A,B及びCは各輸送管路
4,5及び6を通り、各貯留設備7,8及び9に
輸送され、次に各流量調節弁10,11及び12
により流量調節されて後、絞り機構を有する各流
量計13,14及び15で流量を測定され、混合
装置16により混合されて混合気体燃料となり、
輸送管路17を経て、燃焼設備18,19,20
にて燃焼される。 計算機21は、気体燃料Aの供給可能量に応じ
て、気体燃料Aの目標供給量が設定変更される毎
に、気体燃料B,Cについて、混合気体燃料の
Ao/√が設定した目標値に等しくなる目標供
給量を演算し、計算機22へそれらの目標供給量
を与える。 詳しくは気体燃料Aの目標供給量が設定変更さ
れた時、信号伝達用ケーブル24,25,26を
介して入力した気体燃料A,B,Cの流量と、入
力設定された気体燃料Aの目標供給量と、予じめ
入力されている各気体燃料A,B,CのAo値及
びρ値と混合気体燃料のAo/√目標値とを用
いて、目標供給量が設定されたAの気体燃料を除
く未知のB及びCの気体燃料について目標供給量
fB,fCを下記の(4)式及び(5)式の連立方程式を解い
て求める。 f′n=f′A+f′B+f′C (5) ここで AoA=気体燃料Aの理論空気量(Ao)値
(既 知) AoB= 〃 Bの 〃 ( 〃 ) AoC= 〃 Cの 〃 ( 〃 ) Aon/√n =混合気体燃料のAo/√目標値
( 〃 ) ρA=気体燃料Aの密度(ρ)値 ( 〃 ) ρB= 〃 B 〃 ( 〃 ) ρC= 〃 C 〃 ( 〃 ) fA=気体燃料Aの設定供給量 (既 知) fB= 〃 Bの目標供給量 (未 知) fC= 〃 Cの 〃 (未 知) f′n=混合気体燃料の現在流量 (既 知) f′A=気体燃料Aの現在流量 ( 〃 ) f′B= 〃 B 〃 ( 〃 ) f′C= 〃 C 〃 ( 〃 ) そして計算機21は、設定されたA及び連立方
程式により求められたB,Cの気体燃料の目標供
給量fA及びfB,fCを計算機22へ入力する。 同計算機22は、流量計13,14及び15で
測定され、信号伝達ケーブル24,25及び26
を介して入力された各気体燃料の流量が、該目標
供給量に一致するよう信号ケーブル29,30及
び31を介して流量調節弁10,11及び12を
制御し、各気体燃料の流量がそれぞれ該目標供給
量fA,fB,fCに制御する。 尚、装置の起動時には、混合気体燃料の流量を
fnとして下記(6),(7)式の連立方程式を解いてfB
fCを求める。 fn=fA+fB+fC (7) 更に、前記(4),(5)式におけるAoA,AoB,AoC
及びρA,ρB,ρCは、混合装置の上流側に、各々ガ
ス組成分析計を設けて、それら実測値を計算機2
1にとりこんでfB,fCを演算しても良い。 第1図の如き構成の装置において、 LDG供給可能量の変動に対応してLDGの流量
を平均1.2時間毎に逐次設定変更してBFG,COG
の流量を、その都度演算制御して混合気体燃料
(以下MGと略称する)のAo/√を一定に制御
したMGを使用した加熱炉のエネルギー原単位を
第3表に示す。
[Table] As shown in Fig. 2, when Ao/√ of the mixed gas fuel changes, it is possible to Combustion efficiency decreases. This shortcoming will be discussed in detail. In the general combustion furnace shown in FIG. 2, the furnace 10a
When the furnace temperature changes due to disturbance, the thermometer 11a
The amount of change in furnace temperature detected by the signal cable 16
a, the temperature controller 15a converts it into a flow rate control amount, and the signal cable 17a converts it into a valve closing degree control amount by the flow rate controller 12a, which controls the mixed gas fuel flow rate control valve 5a to properly control the furnace. Keeps you warm. Note that even if Ao/√ of the mixed gas fuel changes, the furnace temperature is maintained at an appropriate level. However, the mixed gas fuel
Combustion efficiency decreases as Ao/√ changes. That is, in general, the flow rate of mixed gas fuel is expressed by equation (1), However, Q f is the flow rate of the mixed gas fuel [Nm 3 /H] Δp is the differential pressure detected at the orifice of the mixed gas fuel [Kg/cm 2 ] ρ is the density of the mixed gas fuel [Kg/Nm 3 ] k is the orifice Constant determined at the time of design [(Nm 3 ) 1/2 cm/H] The amount of air required for proper combustion is expressed by equation (2), so Q A = m・Ao・Q f (2) where Q A is the combustion Amount of air used [Nm 3 /H] m is the margin necessary for proper combustion
(Hereinafter referred to as air ratio) Ao is the theoretical amount of air required to burn 1 m 3 of mixed gaseous fuel [Nm 3 /Nm 3 ] From equations (1) and (2), the following equation (3) is established. . Here, regarding the amount of combustion air Q A , in the combustion control system of the furnace temperature control system shown in FIG. It is multiplied by m and controlled by the flow rate controller 13a. In other words, in equation (3), k is a constant and m is fixed at a set value, so when Ao/√ changes, even though the air amount needs to be changed, the air amount changes from the mixed gas fuel It changes only by the differential pressure Δp of
Since it is not controlled by changes in Ao/√, there will be excess or insufficient air, leading to a decrease in combustion efficiency. In order to avoid this, it may be possible to install a special control mechanism, so-called exhaust gas O 2 control mechanism, that detects the excess or deficiency of air based on the oxygen concentration of the combustion gas and adjusts the amount of air. This exhaust gas O 2 control mechanism is required for each burner, which requires a huge amount of equipment investment. When mixing n types (n≧3) of gaseous fuels with different combustion characteristics and fluctuating supplyable amounts, the present invention provides (n-2) types of gaseous fuels with widely varying supplyable amounts. In large-scale business establishments where gaseous fuel is mixed in just the right amount and used in various combustion equipment, a mixed gaseous fuel with a constant Ao/√, that is, a constant air-fuel ratio, is supplied to the combustion equipment to perform combustion. The aim is to improve the combustion efficiency of equipment. The gist of the invention is as follows. The combustion characteristics are different and the amount that can be supplied varies.
species (n≧3) of gaseous fuels are mixed, and the supplyable amount of the gaseous fuels varies widely (n−
2) When mixing the types of gaseous fuels in just the right amount, for the type of gaseous fuel (n-2) whose supplyable amount fluctuates widely, the target supply amount is set sequentially according to the supplyable amount. , the flow rate is controlled to match the supply amount of gaseous fuel with the set supply amount, and for the other two types of gaseous fuels, the value of the ratio between the theoretical air amount and the square root of the density of the gaseous fuel after mixing is adjusted in advance. The air-fuel ratio is kept constant by determining a target supply amount of each gaseous fuel so as to be equal to a set target value, and controlling the flow rate so that the supply amount of each gaseous fuel matches the target supply amount. Method of supplying mixed gas fuel. Next, the method of the present invention will be explained based on the example of the apparatus shown in FIG. 1 where n=3, that is, three types of gaseous fuels, BFG, LDG, and COG, are mixed and supplied to the combustion equipment. In Figure 1, 1, 2 and 3 have different combustion characteristics,
LDG, BFG and COG whose supply capacity fluctuates
(hereinafter referred to as gaseous fuels A, B, and C) generation equipment. In particular, gaseous fuel A has a short generation period and its generation amount (supplyable amount) fluctuates. On the other hand, gaseous fuels B and C are generated almost stably over a long period of time, although the amount generated fluctuates due to wind shutdown of the furnace, partial repair of the furnace, etc. In this way, the gaseous fuel A is a gaseous fuel whose supplyable amount fluctuates widely, and in order to mix it in just the right amount, the target supply amount is successively set in the computer 21 according to the supplyable amount. It's fuel. Each of the gaseous fuels A, B, and C passes through each transport pipe 4, 5, and 6, and is transported to each storage facility 7, 8, and 9, and then each flow rate control valve 10, 11, and 12.
After adjusting the flow rate, the flow rate is measured by each flow meter 13, 14, and 15 having a throttle mechanism, and mixed by a mixing device 16 to become a mixed gas fuel,
Via transport pipe 17, combustion equipment 18, 19, 20
It is burned at The computer 21 calculates the amount of mixed gas fuel for gaseous fuels B and C every time the target supply amount of gaseous fuel A is changed according to the supplyable amount of gaseous fuel A.
A target supply amount that makes Ao/√ equal to the set target value is calculated, and these target supply amounts are provided to the calculator 22. Specifically, when the target supply amount of gaseous fuel A is changed, the flow rates of gaseous fuels A, B, and C input via the signal transmission cables 24, 25, and 26 and the input target of gaseous fuel A are changed. The target supply amount of gas A is set using the supply amount, the Ao value and ρ value of each gaseous fuel A, B, and C that have been input in advance, and the Ao/√ target value of the mixed gas fuel. Target supply amount of unknown B and C gaseous fuels excluding fuel
Find f B and f C by solving the following simultaneous equations (4) and (5). f′ n =f′ A +f′ B +f′ C (5) where Ao A = theoretical air amount (Ao) value of gaseous fuel A
(Known) Ao B = B's ( ) Ao C = C's ( ) Ao n /√ n = Ao /√ target value of mixed gas fuel
( 〃 ) ρ A = Density (ρ) value of gaseous fuel A ( 〃 ) ρ B = 〃 B 〃 ( 〃 ) ρ C = 〃 C 〃 ( 〃 ) f A = Set supply amount of gaseous fuel A (known) f B = Target supply amount of B (unknown) f C = C (unknown) f′ n = Current flow rate of mixed gaseous fuel (known) f′ A = Current flow rate of gaseous fuel A ( ) f′ B = 〃 B 〃 ( 〃 ) f′ C = 〃 C 〃 ( 〃 ) Then, the calculator 21 calculates the target supply amount f A and the gaseous fuel of B and C obtained by the set A and the simultaneous equations. Input f B and f C to the calculator 22. The computer 22 measures flow meters 13, 14 and 15, and uses signal transmission cables 24, 25 and 26.
The flow rate control valves 10, 11, and 12 are controlled via the signal cables 29, 30, and 31 so that the flow rate of each gaseous fuel inputted via the target supply amount matches the target supply amount, and the flow rate of each gaseous fuel is adjusted to match the target supply amount. The target supply amounts f A , f B , and f C are controlled. In addition, when starting up the device, the flow rate of the mixed gas fuel is
Solving the simultaneous equations of equations (6) and (7) below with f n as f B ,
Find f C. f n = f A + f B + f C (7) Furthermore, Ao A , Ao B , Ao C in equations (4) and (5) above
For ρ A , ρ B , and ρ C , a gas composition analyzer is installed on the upstream side of the mixing device, and the actual measured values are calculated using a computer 2.
1 and calculate f B and f C. In a device configured as shown in Figure 1, the LDG flow rate is sequentially changed every 1.2 hours on average in response to fluctuations in the amount of LDG that can be supplied.
Table 3 shows the energy consumption unit of a heating furnace using an MG in which the flow rate of the mixed gas fuel (hereinafter abbreviated as MG) is controlled to be constant by calculating and controlling the Ao/√ of the mixed gas fuel (hereinafter abbreviated as MG).

【表】 尚第3表にはLDG供給可能量の変動に対応し
てLDG,BFG,COGの3種の混合比率を設定変
更してカロリーを一定に制御した時の結果も併記
している。 この第3表より本発明法が従来法に比べ、経済
的に燃焼効率の向上を図り省エネルギー効果を得
ることができることが明らかである。 以上はBFG,COG,LDGを混合する例につい
て述べたが、例えばBFG,COG,LDG,RGを
混合する場合には、供給可能量が大巾に変動する
LDG,RGについては供給可能量に応じて逐次目
標供給量を設定して流量制御すると共にBFG,
COGについてはMGのAo/√が目標値となる
目標供給量を求めて流量制御することにより
LDG,RGを過不足なく混入したAo/√一定
のMGを得ることができる。 以上詳述した様に、本発明法によれば、 燃焼特性が異なりかつ供給可能量が変動するn
種(n≧3)の気体燃料を混合するに際して、上
記気体燃料の内、供給可能量が大巾に変動する
(n−2)種の気体燃料を過不足なく混入し、
Ao/√値が一定、即ち空燃比一定の混合気体
燃料が供給でき、その経済的効果は非常に大き
い。
[Table] Table 3 also shows the results when the calorie was controlled at a constant level by changing the mixing ratio of the three types of LDG, BFG, and COG in response to fluctuations in the amount of LDG that could be supplied. From Table 3, it is clear that the method of the present invention can economically improve combustion efficiency and achieve energy saving effects compared to the conventional method. The above is an example of mixing BFG, COG, and LDG, but when mixing BFG, COG, LDG, and RG, the amount that can be supplied varies widely.
For LDG and RG, the target supply amount is set sequentially according to the available supply amount to control the flow rate, and BFG,
For COG, by determining the target supply amount where MG's Ao/√ is the target value and controlling the flow rate.
A constant MG of Ao/√ can be obtained by mixing LDG and RG in just the right amount. As detailed above, according to the method of the present invention, n
When mixing the types (n≧3) of gaseous fuels, among the above gaseous fuels, (n-2) types of gaseous fuels whose supply amount varies widely are mixed in just the right amount,
A mixed gas fuel having a constant Ao/√ value, that is, a constant air-fuel ratio, can be supplied, and the economic effect is very large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明法の説明図で、第2図は、一
般的な燃焼炉の構成を示す説明図である。 1…気体燃料Aの発生設備、2…気体燃料Bの
発生設備、3…気体燃料Cの発生設備、4…気体
燃料Aの輸送管路、5…気体燃料Bの輸送管路、
6…気体燃料Cの輸送管路、7…気体燃料Aの貯
留設備、8…気体燃料Bの貯留設備、9…気体燃
料Cの貯留設備、10…気体燃料Aの流量調節
弁、11…気体燃料Bの流量調節弁、12…気体
燃料Cの流量調節弁、13…気体燃料Aの流量
計、14…気体燃料Bの流量計、15…気体燃料
Cの流量計、16…混合装置、17…輸送管路、
18,19,20…燃焼設備、21…計算機、2
2…計算機、23,24,25,26,27,2
8,29,30,31…信号伝達用ケーブル、1
a…混合気体燃料のブロワー、2a…空気のブロ
ワー、3a…混合気体燃料の輸送管路、4a…空
気の輸送管路、5a…混合気体燃料の制御弁、6
a…空気の制御弁、7a…混合気体燃料のオリフ
イス流量計、9a…燃焼用バーナー、10a…燃
焼炉、11a…温度計、12a…混合気体燃料の
流量制御装置、13a…空気の流量制御装置、1
4a…空気比設定器、15a…温度制御装置、1
6a,17a,18a,19a,20a,21
a,22a,23a…信号ケーブル。
FIG. 1 is an explanatory diagram of the method of the present invention, and FIG. 2 is an explanatory diagram showing the configuration of a general combustion furnace. 1... Gaseous fuel A generation equipment, 2... Gaseous fuel B generation equipment, 3... Gaseous fuel C generation equipment, 4... Gaseous fuel A transport pipe, 5... Gaseous fuel B transport pipe,
6... Gaseous fuel C transport pipe, 7... Gaseous fuel A storage facility, 8... Gaseous fuel B storage facility, 9... Gaseous fuel C storage facility, 10... Gaseous fuel A flow rate control valve, 11... Gas Fuel B flow rate control valve, 12... Gaseous fuel C flow rate control valve, 13... Gaseous fuel A flow meter, 14... Gaseous fuel B flow meter, 15... Gaseous fuel C flow meter, 16... Mixing device, 17 ...transport pipeline,
18, 19, 20... Combustion equipment, 21... Computer, 2
2... Calculator, 23, 24, 25, 26, 27, 2
8, 29, 30, 31...signal transmission cable, 1
a...Mixed gas fuel blower, 2a...Air blower, 3a...Mixed gas fuel transport pipe line, 4a...Air transport pipe line, 5a...Mixed gas fuel control valve, 6
a...Air control valve, 7a...Mixed gas fuel orifice flow meter, 9a...Combustion burner, 10a...Combustion furnace, 11a...Thermometer, 12a...Mixed gas fuel flow rate control device, 13a...Air flow rate control device ,1
4a...Air ratio setting device, 15a...Temperature control device, 1
6a, 17a, 18a, 19a, 20a, 21
a, 22a, 23a...signal cable.

Claims (1)

【特許請求の範囲】 1 燃焼特性が異なりかつ供給可能量が変動する
n種(n≧3)の気体燃料を混合し、かつ上記気
体燃料の内、供給可能量が大巾に変動する(n−
2)種の気体燃料を過不足なく混入するに際し
て、 上記供給可能量が大巾に変動する(n−2)種
の気体燃料については、供給可能量に応じて逐次
目標供給量を設定して、気体燃料の供給量を設定
供給量に一致させるべく流量制御すると共に、そ
の他の2種の気体燃料については混合後の気体燃
料の理論空気量と密度の平方根との比の値が、予
じめ設定した目標値に等しくなるような各気体燃
料の目標供給量を求め、該各気体燃料の供給量を
該目標供給量に一致させるべく流量制御すること
を特徴とする空燃比を一定にした混合気体燃料を
供給する方法。
[Scope of Claims] 1 A mixture of n types (n≧3) of gaseous fuels with different combustion characteristics and varying supplyable amounts, and among the gaseous fuels, the supplyable quantities vary widely (n −
2) When mixing the types of gaseous fuels in just the right amount, for the type of gaseous fuel (n-2) whose supplyable amount fluctuates widely, the target supply amount is set sequentially according to the supplyable amount. , the flow rate is controlled to match the supply amount of gaseous fuel with the set supply amount, and for the other two types of gaseous fuels, the value of the ratio between the theoretical air amount and the square root of the density of the gaseous fuel after mixing is adjusted in advance. The air-fuel ratio is kept constant by determining a target supply amount of each gaseous fuel so as to be equal to a set target value, and controlling the flow rate so that the supply amount of each gaseous fuel matches the target supply amount. Method of supplying mixed gas fuel.
JP3081979A 1979-03-16 1979-03-16 Supplying method for mixed gas fuel, whose air fuel ratio is made fixed Granted JPS55123917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3081979A JPS55123917A (en) 1979-03-16 1979-03-16 Supplying method for mixed gas fuel, whose air fuel ratio is made fixed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3081979A JPS55123917A (en) 1979-03-16 1979-03-16 Supplying method for mixed gas fuel, whose air fuel ratio is made fixed

Publications (2)

Publication Number Publication Date
JPS55123917A JPS55123917A (en) 1980-09-24
JPS6361565B2 true JPS6361565B2 (en) 1988-11-29

Family

ID=12314305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3081979A Granted JPS55123917A (en) 1979-03-16 1979-03-16 Supplying method for mixed gas fuel, whose air fuel ratio is made fixed

Country Status (1)

Country Link
JP (1) JPS55123917A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533545B2 (en) * 2001-02-21 2010-09-01 新日鉄エンジニアリング株式会社 Heating furnace temperature control method

Also Published As

Publication number Publication date
JPS55123917A (en) 1980-09-24

Similar Documents

Publication Publication Date Title
CN1026119C (en) Method for reducting content of nitrogen oxide from waste gas during heating of core over with rich gas or combination thermal oven and combination ovens in application of them
CN108458486B (en) Automatic combustion control system and control method for hot blast stove
CN101684944B (en) Self-optimizing combustion control method of blast-furnace hot blast stove
CN102224380B (en) Oxygen trim controller tuning during combustion system commissioning
US20120036863A1 (en) Method, apparatus and system for delivery of wide range of turbine fuels for combustion
CN108087126A (en) For determining the system and method for the fuel composition of the fuel used in gas turbine
CN106439858B (en) A kind of dangerous waste incineration flue gas Xun Huan and the complicated feed forward control method of chilling
JP2010159742A5 (en)
CN110243174B (en) Roller kiln atmosphere control method and device and storage medium
CN109307437A (en) A kind of the optimization combustion control system and its method of heat accumulating type industrial heating furnace
CN211902376U (en) Gas output system with stable heat value
US4531905A (en) Optimizing combustion air flow
JPS6361565B2 (en)
RU77649U1 (en) DEVICE FOR PRODUCING A GAS-AIR MIXTURE OF A UNIFIED COMBUSTION HEAT
CN108870997A (en) A kind of quantitative heat supply method
CN104755867B (en) The oxygen blast combustion control device of heating furnace
KR100804233B1 (en) Oxygen concentration control method in case of firing multiple fuels
EP0075369A1 (en) Method and device for keeping the heat load on gas-fired equipment constant
JP2701617B2 (en) Combustion control method for mixed gas
TWI849761B (en) Method for controlling wind pressure at outlet of windmill
CN113915639B (en) Secondary air flow determination method and secondary air baffle opening determination method and system for secondary air burner in furnace
JPS58205019A (en) Combustion controller for coal
TWI424134B (en) Method of controlling the oxygen content of combustion furnace over / under - oxygen combustion state and combustion exhaust gas
JPS59157420A (en) Combustion controlling method utilizing mixed gas fuel
JPS6056968B2 (en) Low oxygen combustion method for gaseous fuel