JPS6361433B2 - - Google Patents

Info

Publication number
JPS6361433B2
JPS6361433B2 JP60215682A JP21568285A JPS6361433B2 JP S6361433 B2 JPS6361433 B2 JP S6361433B2 JP 60215682 A JP60215682 A JP 60215682A JP 21568285 A JP21568285 A JP 21568285A JP S6361433 B2 JPS6361433 B2 JP S6361433B2
Authority
JP
Japan
Prior art keywords
formalin
condensate
adhesive
polyamide
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60215682A
Other languages
Japanese (ja)
Other versions
JPS6278274A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60215682A priority Critical patent/JPS6278274A/en
Publication of JPS6278274A publication Critical patent/JPS6278274A/en
Publication of JPS6361433B2 publication Critical patent/JPS6361433B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、ポリアミド系合成繊維の接着剤処
理法、特にゴム成形物を補強するためのポリアミ
ド系合成繊維をレゾルシン・ホルマリン縮合物か
らなる水溶性接着剤液に浸漬したのち熱処理する
接着剤処理法に関するものである。 (従来の技術) タイヤ、コンベヤベルト、ホースなどのゴム成
形物を補強するポリアミド系繊維は、通常100〜
500本のフイラメントからなる500〜3000デニール
の糸条を加撚または2〜3本撚り合わせてコード
状としたのち、ゴムとの接着性を向上するため
に、レゾルシン・ホルマリン・ラテツクス
(RFL)の水溶液に浸漬し、熱処理する方法が広
く行なわれている。ところがこれらの方法を実施
するに際して、接着剤処理されるコードは、コー
ド内部への接着剤の浸透、固化、熱処理時の張力
による構成フイラメントの充てん密度の増大によ
り硬直化する傾向がある。このような硬さの増加
は局所的な応力の集中の原因となり、強力や耐疲
労性を低下させるのみならず、タイヤ等の成型工
程における作業性に著しく悪い影響を与えてい
る。 上記のような接着剤処理をしたポリアミド系繊
維の柔軟性および強力保持率を改良するために
種々の方法が提案されている。例えばポリアミド
系繊維を、あらかじめ特定のウレタン樹脂溶液に
浸漬、乾熱乾燥し、次いでRFL水溶液に浸漬し
て熱処理する接着剤処理法(特開昭58−81686号
公報参照)や、紡糸冷却されたポリアミド系繊維
の未延伸糸に水系エマルジヨン油剤を付与したの
ち、インタレーサを通ずることにより糸条の表面
に凹凸の筋を発生させデイツプ後の強力利用率を
改善しようとする方法(特開昭54−15052号公報
参照)が提案されている。上記提案の処理法はあ
る程度柔軟性が改善され、あるいは強力保持率が
改良されるけれども未だ満足すべき程度に到達し
ていないのが現状である。 (発明が解決しようとする問題点) 近時タイヤの軽量化および走行寿命の延長が要
望され、さらに工程改善のための太デニール化に
伴つて、グリーンタイヤの成型性の改善が要望さ
れるようになり、タイヤコードとしては処理コー
ドの強力、軟柔性、耐疲労性の改善が特に重要視
されるようになつた。しかるに上記提案の処理法
では工程が複雑となり、また上記性能も十分でな
い。一方、従来ポリアミド系繊維の接着剤処理に
一般的に使用されているレゾルシン・ホルマリン
縮合物をアルカリ触媒下で縮合されるものであ
り、この場合には、縮合反応速度よりメチルロー
ル化速度の方が速くてメチロール化が優先的に進
行した縮合物を形成するため、ポリアミド系繊維
に含浸、熱処理をした際に架橋密度の高い樹脂膜
を形成し、得られた繊維の柔軟性が低く、強力お
よび耐疲労性も前記の要望に沿うものではない。 (問題点を解決するための手段) この発明は、ポリアミド系合成繊維を、レゾル
シン(R)とホルマリン(F)とをモル比(R/F)
が1/0.5〜1/1に配合して酸性縮合した水溶
性非熱硬化性レゾルシン・ホルマリン縮合物と、
該縮合物のレゾルシン成分1モルに対して全ホル
マリン量が0.9〜1.6モルになるように追加された
ホルマリンと、PHを少なくとも7.0とするための
苛性ソーダと、ゴムラテツクスとアンモニアとか
らなる接着剤水溶性に浸漬し、しかるのち熱処理
することを特徴とするポリアミド系合成繊維の接
着剤処理法である。 上記レゾルシン・ホルマリン縮合物(RF縮合
物という)は、レゾルシン(R)とホルマリン(F)
とのモル比(R/F)が1/0.5〜1/1で酸性
縮合されたものであり、このようなRF縮合物は、
例えばR/Fが1/0.6のものとして商品名ペナ
コライトR−2170(コツパース社製)および商品
名スミカノール700(住友化学工業社製)が、また
R/Fが1/1のものとして商品名アドハーRF
(保土谷化学工業社製)が市販されている。ポリ
アミド系合成繊維の処理に従来使用されていた
RFL接着剤に配合されるRF縮合物は、R/Fが
1/1〜1/3で苛性ソーダ等のアルカリ触媒下
で縮合されたものであるが、このRF縮合物では
望ましいコードの柔軟性、強力、耐疲労性が得ら
れない。 上記RF縮合物に追加されるホルマリンは、RF
縮合物のレゾルシン1モルに対して全ホルマリン
量が0.9〜1.6モル、好ましくは1.0〜1.4モルにな
るように配合される。全ホルマリンが0.9モル未
満の場合は、柔軟性が改善され、コード強力は高
くなるが凝集力が低くなつて高い接着力が得られ
ず、これとは逆に1.6モルを越える場合は柔軟性、
耐疲労性が改善されず、強力、耐疲労性も低くな
る。またRF縮合物のR/Fが1/1であつても
ホルマリンを追加しない場合は高い接着剤が得ら
れない。 ラテツクスとしては、天然ゴム、スチレン・ブ
タジエン共重合ゴム、スチレン・ブタジエン・ビ
ニルピリジン共重合物などのラテツクスの1種ま
たは2種以上の混合物である。 苛性ソーダは、RF縮合物の水への溶解性を容
易にするために配合するものである。またアンモ
ニアはRFL接着剤の保存安定性(特にゲル化防
止)を確保するものであり、RFL接着剤のPHが
7.0以上、好ましくは9.9以上、さらに好ましくは
10.0以上に調整される。 RF縮合物とラテツクスとの混合比は1/4〜
1/8が好ましい。RFL接着剤は水溶液として
使用され、その固形分濃度10〜30重量%が好まし
い。 この発明のポリアミド系合成繊維は、ナイロン
6、ナインロン66、ナイロン46などのポリアミド
を溶融紡糸、延伸して得られたフイラメント糸、
または該フイラメント糸を通常に単独または複数
本合撚したものである。このポリアミド系繊維に
は、必要に応じて熱安定剤、酸化防止剤、帯電防
止剤、接着性向上剤などを含有したものでもよ
い。 ポリアミド系合成繊維は、上記RFL接着剤水
溶液に浸漬されたのち熱処理してRFLが付着さ
れる。ポリアミド系コードに付着される個形分付
量は3〜10重量%であることが好ましい。 (作用) この発明で使用されるRF縮合物は硫酸などの
酸を触媒として調整されたものであるから、得ら
れるRF縮合物はメチロール化速度より縮合反応
速度の方が速いため、直線的に縮合した実質的に
熱可塑性の樹脂となる。この樹脂に対して厳密に
規定して追加したホルマリンとラテツクスとを配
合して調製されたRFL接着剤液をポリアミド系
合成繊維に含浸させて熱処理したとき、RFL樹
脂は繊維上で架橋網状化するけれども、追加した
ホルマリンによつて架橋密度が必要最少限度に規
制されるため、柔軟にして凝集力の高い樹脂膜を
形成することになり、処理した繊維は柔軟性に優
れ、強力および耐疲労性が大幅に改善される結果
となる。 (実施例) 下記各実験における%、部は特に断わりのない
限り重量基準で示す。 実験 1 RF縮合物(R/F=1/0.6、75%水溶液、商
品名ペナコライトR−2170)33.8部、37%ホルマ
リンの任意量、20%苛性ソーダ3.47部、水406部
を混合して20℃で6時間熟成したのち、これに41
%スチレン・ブタジエン・ビニルピリジン共重合
ゴムラテツクス(商品名ピラテツクス、住友ノー
ガタツク社製)310.9部、49%スチレン・ブタジ
エン共重合ゴムラテツクス(商品名J9049、住友
ノーガタツク社製)86.8部、28%アンモニア水
17.4部および水を加えてホルマリン追加量の異な
る実施例1〜4および比較例1,2の合計6種類
の固形分20%のRFL接着剤処理液を調整した。
この処理液に、ナイロン6タイヤコード(1890デ
ニール/2本撚り)を浸漬したのち、未処理タイ
ヤコードに対して固形分付量が5%になるように
調製し、次いで120℃で2分間、1.5%の緊張下で
熱風乾燥した。次いで200℃の加熱空気中で60秒
間、8.5%の緊張をしたのち、さらに定長下で200
℃の加熱空気中で60秒間熱処理を施して接着剤処
理コードを得た。 なお、このとき用いた未処理コードの切断強力
は35.8Kgであつた。 実験 2 上記実施例1において、RF縮合物(R/F=
1/1、43%水溶液、商品名アドハーRF)を使
用し、かつホルマリン追加量を変更した以外は、
実施例1と同様にして実施例5〜7および比較例
3,4の合計5種類の接着剤処理コードを得た。 実験 3 レゾルシン18.75部、37%ホルマリン27.65部
(R/F=1/2)、20%苛性ソーダ2.55部、水
404.5部を混合し、20℃、6時間熟成してレゾー
ル型RF初期縮合物を製造し、これに41%スチレ
ン・ビニルピリジン共重合ゴムラテツクス311.0
部、49%スチレン・ブタジエン共重合ゴムラテツ
クス86.7部、28%アンモニア水17.4部および水を
加えて固形分20%のRFL接着剤処理液を調整し、
この処理液を用いて実施例1と同様にナイロン6
タイヤコードを処理して比較例5の接着剤処理コ
ードを得た。 実験 4 実験3においてR/F=1/1.4とした以外は
実験3と同様に処理して比較例6の接着剤処理コ
ードを得た。 上記各実施例、比較例の処理コードの物性を測
定した結果を下表に示す。 なお、物性中、コード柔軟性を表わす曲げ硬さ
メジヤーはガーレ法、すなわちガーレステイツフ
ネステスター(東洋精機社製)を用い、試料の長
さを3.8としたときの振子(荷重25g)の振れ幅
を求めた値である。接着力はHテスト法による値
(Kg/cm)である。耐疲労度は通常のチユーブ疲
労試験機を用い、25本/2.54cmの密度でデイツプ
コードを埋め込んだチユーブ疲労用試験片を作成
し、曲げ角度85度、内圧3.5Kg/cm2、回転数
860rpmで疲労させ、チユーブが破壊するまでの
時間を測定した。
(Industrial Application Field) This invention relates to a method for treating polyamide synthetic fibers with an adhesive, in particular a method for immersing polyamide synthetic fibers for reinforcing rubber molded articles in a water-soluble adhesive solution consisting of a resorcinol/formalin condensate. This relates to an adhesive treatment method that is subsequently heat-treated. (Prior art) Polyamide fibers that reinforce rubber molded products such as tires, conveyor belts, and hoses usually have a
After 500 to 3000 denier yarns consisting of 500 filaments are twisted or twisted together to form a cord, resorcin formalin latex (RFL) is applied to improve adhesion to rubber. A widely used method is immersion in an aqueous solution and heat treatment. However, when these methods are carried out, the adhesive-treated cord tends to become stiff due to penetration of the adhesive into the interior of the cord, solidification, and an increase in the packing density of the constituent filaments due to tension during heat treatment. Such an increase in hardness causes local stress concentration, which not only reduces strength and fatigue resistance, but also has a significant negative impact on workability in the process of molding tires and the like. Various methods have been proposed to improve the flexibility and strength retention of polyamide fibers treated with adhesives as described above. For example, there is an adhesive treatment method in which polyamide fibers are immersed in a specific urethane resin solution, dried under dry heat, and then immersed in an RFL aqueous solution for heat treatment (see Japanese Patent Application Laid-Open No. 1981-81686), and A method of applying a water-based emulsion oil to an undrawn polyamide fiber yarn and then passing it through an interlacer to generate uneven streaks on the surface of the yarn to improve the strength utilization after dipping (Japanese Patent Application Laid-Open No. 1989-1999) (See Publication No. 15052) has been proposed. Although the above-mentioned proposed treatment methods have improved flexibility or strength retention to some extent, the current situation is that they have not yet reached a satisfactory level. (Problems to be solved by the invention) In recent years, there has been a demand for tires to be lighter and have a longer running life, and with the increase in denier for process improvements, there has been a demand for improvements in the formability of green tires. As a result, improvements in the strength, flexibility, and fatigue resistance of treated cords have become particularly important for tire cords. However, the processing method proposed above requires complicated steps, and the performance described above is not sufficient. On the other hand, the resorcinol-formalin condensate, which is commonly used in the adhesive treatment of polyamide fibers, is condensed under an alkali catalyst, and in this case, the rate of methyl roll formation is faster than the rate of condensation reaction. Because it forms a condensate with fast methylolation and preferential methylolization, a resin film with high crosslinking density is formed when polyamide fibers are impregnated and heat treated, resulting in a fiber with low flexibility and strong strength. Also, the fatigue resistance does not meet the above requirements. (Means for Solving the Problems) This invention provides polyamide-based synthetic fibers in which resorcinol (R) and formalin (F) are mixed in a molar ratio (R/F).
A water-soluble non-thermosetting resorcinol/formalin condensate which is acidicly condensed with a ratio of 1/0.5 to 1/1;
A water-soluble adhesive consisting of formalin added so that the total amount of formalin is 0.9 to 1.6 moles per mole of resorcinol component of the condensate, caustic soda to adjust the pH to at least 7.0, rubber latex, and ammonia. This is a method for treating polyamide-based synthetic fibers with an adhesive, which is characterized by immersing them in water and then heat-treating them. The above resorcinol/formalin condensate (referred to as RF condensate) is composed of resorcinol (R) and formalin (F).
The RF condensate is acidic condensed at a molar ratio (R/F) of 1/0.5 to 1/1.
For example, products with an R/F of 1/0.6 are available under the trade name Penacolite R-2170 (manufactured by Cotpers) and Sumikanor 700 (manufactured by Sumitomo Chemical Industries, Ltd.), and products with an R/F of 1/1 are available under the trade name Aadhar. RF
(manufactured by Hodogaya Chemical Industry Co., Ltd.) is commercially available. Traditionally used to process polyamide synthetic fibers
The RF condensate blended into the RFL adhesive has an R/F of 1/1 to 1/3 and is condensed under an alkali catalyst such as caustic soda. Strength and fatigue resistance cannot be obtained. The formalin added to the above RF condensate is RF
The total amount of formalin is blended in such a manner that the total amount of formalin is 0.9 to 1.6 mol, preferably 1.0 to 1.4 mol, per 1 mol of resorcinase condensate. If the total formalin content is less than 0.9 mol, the flexibility will be improved and the cord strength will be high, but the cohesive force will be low and high adhesive strength will not be obtained.
Fatigue resistance is not improved, and strength and fatigue resistance are also lowered. Further, even if the R/F of the RF condensate is 1/1, a high adhesive cannot be obtained unless formalin is added. The latex may be one or a mixture of two or more latexes such as natural rubber, styrene-butadiene copolymer rubber, and styrene-butadiene-vinylpyridine copolymer. Caustic soda is added to facilitate the solubility of the RF condensate in water. In addition, ammonia ensures the storage stability of RFL adhesive (especially prevention of gelation), and the PH of RFL adhesive
7.0 or more, preferably 9.9 or more, more preferably
Adjusted to 10.0 or higher. The mixing ratio of RF condensate and latex is 1/4~
1/8 is preferable. RFL adhesives are used as aqueous solutions, and their solids concentration is preferably 10-30% by weight. The polyamide synthetic fiber of this invention is a filament yarn obtained by melt spinning and drawing polyamide such as nylon 6, nylon 66, and nylon 46.
Alternatively, the filament yarn is usually twisted singly or in a plurality of yarns. The polyamide fiber may contain a heat stabilizer, an antioxidant, an antistatic agent, an adhesion improver, etc., if necessary. The polyamide synthetic fiber is immersed in the RFL adhesive aqueous solution and then heat treated to attach RFL. The amount of solid particles attached to the polyamide cord is preferably 3 to 10% by weight. (Function) Since the RF condensate used in this invention is prepared using an acid such as sulfuric acid as a catalyst, the condensation reaction rate of the resulting RF condensate is faster than the methylolation rate, so it is linearly The result is a condensed, substantially thermoplastic resin. When polyamide-based synthetic fibers are impregnated with an RFL adhesive solution prepared by blending formalin and latex added to this resin in a strictly specified manner and heat-treated, the RFL resin forms a crosslinked network on the fibers. However, the added formalin regulates the crosslinking density to the minimum necessary limit, resulting in the formation of a flexible resin film with high cohesion, resulting in the treated fibers being highly flexible, strong, and fatigue resistant. This results in a significant improvement. (Example) The percentages and parts in the following experiments are expressed on a weight basis unless otherwise specified. Experiment 1 Mix 33.8 parts of RF condensate (R/F=1/0.6, 75% aqueous solution, trade name Penacolite R-2170), an arbitrary amount of 37% formalin, 3.47 parts of 20% caustic soda, and 406 parts of water and heat at 20°C. After aging for 6 hours in
% styrene-butadiene-vinylpyridine copolymer rubber latex (trade name: Piratex, manufactured by Sumitomo Naugatatsu Co., Ltd.) 310.9 parts, 49% styrene-butadiene copolymer rubber latex (trade name: J9049, manufactured by Sumitomo Naugatatsu Co., Ltd.) 86.8 parts, 28% aqueous ammonia
17.4 parts and water were added to prepare a total of six types of RFL adhesive treatment liquids with a solid content of 20%, including Examples 1 to 4 and Comparative Examples 1 and 2, each containing different amounts of formalin added.
After immersing a nylon 6 tire cord (1890 denier/2 strands twisted) in this treatment solution, the solid content was adjusted to 5% compared to the untreated tire cord, and then heated at 120°C for 2 minutes. Hot air dried under 1.5% tension. Next, after 8.5% tension for 60 seconds in heated air at 200℃,
A heat treatment was performed for 60 seconds in heated air at ℃ to obtain an adhesive-treated cord. The cutting strength of the untreated cord used at this time was 35.8 kg. Experiment 2 In Example 1 above, the RF condensate (R/F=
1/1, 43% aqueous solution, product name Aadhaar RF), and the amount of formalin added was changed.
A total of five types of adhesive treated cords, Examples 5 to 7 and Comparative Examples 3 and 4, were obtained in the same manner as in Example 1. Experiment 3 18.75 parts of resorcin, 27.65 parts of 37% formalin (R/F=1/2), 2.55 parts of 20% caustic soda, water
404.5 parts were mixed and aged at 20°C for 6 hours to produce a resol type RF initial condensate, which was then mixed with 41% styrene/vinylpyridine copolymer rubber latex 311.0
1 part, 86.7 parts of 49% styrene-butadiene copolymer rubber latex, 17.4 parts of 28% aqueous ammonia, and water to prepare an RFL adhesive treatment solution with a solid content of 20%.
Using this treatment solution, nylon 6 was treated in the same manner as in Example 1.
The tire cord was treated to obtain an adhesive treated cord of Comparative Example 5. Experiment 4 An adhesive treated cord of Comparative Example 6 was obtained by processing in the same manner as in Experiment 3 except that R/F=1/1.4 in Experiment 3. The results of measuring the physical properties of the treated cords of each of the above Examples and Comparative Examples are shown in the table below. In addition, among the physical properties, the bending hardness measure representing the cord flexibility is determined by the Gurley method, that is, the swing amplitude of a pendulum (load 25 g) when the length of the sample is 3.8 using the Gurley States Funestester (manufactured by Toyo Seiki Co., Ltd.). This is the value obtained. The adhesive strength is a value (Kg/cm) determined by the H test method. Fatigue resistance was determined by using a regular tube fatigue tester to create a tube fatigue test piece with dip cords embedded at a density of 25 cords/2.54 cm, bending angle 85 degrees, internal pressure 3.5 Kg/cm 2 , and rotation speed.
The tube was fatigued at 860 rpm and the time until the tube broke was measured.

【表】【table】

【表】 上記表にみられるように、レゾルシン成分1モ
ルに対する全ホルマリンのモル比が0.9モルより
小さい比較例1は接着力、耐疲労性が劣り、また
全ホルマリンのモル比が1.6より大きい比較例2
および比較例4は曲げ硬さが大きく耐疲労性が劣
る。また全ホルマリンのモル比が0.9モルより大
きくてもホルマリンを追加しない比較例3は接着
力、耐疲労性が劣る。さらにRF縮合物R/Fが
1/2または1/1.4の比較例5,6は曲げ硬さ
が大きく、耐疲労性が著しく劣り、かつ強力も低
い。 (発明の効果) この発明によるポリアミド系合成繊維は、曲げ
硬さが小さくて柔軟性に優れ、強力およびゴムと
の接着力が高く、かつ耐疲労性に優れている。そ
の結果、ゴム成型物の補強材料としてその生産工
程において有利となる。
[Table] As shown in the table above, Comparative Example 1, in which the molar ratio of total formalin to 1 mole of resorcinol component is less than 0.9 mol, has poor adhesive strength and fatigue resistance, and the comparison example, in which the molar ratio of total formalin to 1 mol of resorcinol components is greater than 1.6. Example 2
And Comparative Example 4 has high bending hardness and poor fatigue resistance. Furthermore, even if the molar ratio of total formalin was greater than 0.9 mol, Comparative Example 3 in which formalin was not added had poor adhesive strength and fatigue resistance. Furthermore, Comparative Examples 5 and 6 in which the RF condensate R/F was 1/2 or 1/1.4 had high bending hardness, significantly inferior fatigue resistance, and low strength. (Effects of the Invention) The polyamide synthetic fiber according to the present invention has low bending hardness, excellent flexibility, high strength and adhesive strength with rubber, and excellent fatigue resistance. As a result, it is advantageous in the production process as a reinforcing material for rubber moldings.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリアミド系合成繊維を、レゾルシン(R)
とホルマリン(F)とをモル比(R/F)が1/0.5
〜1/1に配合して酸性縮合した水溶性非熱硬化
性レゾルシン・ホリマリン縮合物と、該縮合物の
レゾルシン成分1モルに対して全ホリマリン量が
0.9〜1.6モルになるように追加されたホリマリン
と、PHを少なくとも7.0とするための苛性ソーダ
と、ゴムラテツクスとアンモニアとからなる接着
剤水溶液に浸漬し、しかるのち熱処理することを
特徴とするポリアミド系合成繊維の接着剤処理
法。
1 Polyamide-based synthetic fibers are treated with resorcinol (R)
and formalin (F) at a molar ratio (R/F) of 1/0.5.
A water-soluble non-thermosetting resorcinol/formalin condensate acidically condensed in a ratio of ~1/1, and the total amount of formalin per mole of the resorcinol component of the condensate.
Polyamide-based synthesis characterized by immersion in an aqueous adhesive solution consisting of Holimarin added to have a concentration of 0.9 to 1.6 mol, caustic soda to adjust the pH to at least 7.0, rubber latex, and ammonia, and then heat-treated. Adhesive treatment method for fibers.
JP60215682A 1985-09-28 1985-09-28 Method for adhesive treatment of polyamide synthetic fiber Granted JPS6278274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60215682A JPS6278274A (en) 1985-09-28 1985-09-28 Method for adhesive treatment of polyamide synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60215682A JPS6278274A (en) 1985-09-28 1985-09-28 Method for adhesive treatment of polyamide synthetic fiber

Publications (2)

Publication Number Publication Date
JPS6278274A JPS6278274A (en) 1987-04-10
JPS6361433B2 true JPS6361433B2 (en) 1988-11-29

Family

ID=16676412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60215682A Granted JPS6278274A (en) 1985-09-28 1985-09-28 Method for adhesive treatment of polyamide synthetic fiber

Country Status (1)

Country Link
JP (1) JPS6278274A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117521A1 (en) 2019-12-09 2021-06-17 株式会社ブリヂストン Adhesive composition, rubber/organic fiber cord composite, and tire
WO2021256149A1 (en) 2020-06-19 2021-12-23 デンカ株式会社 Adhesive composition for organic fiber cord, rubber reinforcing material and method for producing same, and rubber article
WO2022130879A1 (en) 2020-12-15 2022-06-23 株式会社ブリヂストン Adhesive composition, rubber-organic fiber cord composite, and tire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162874A (en) * 1984-01-27 1985-08-24 東レ株式会社 Production of code for reinforcing polyamide rubber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162874A (en) * 1984-01-27 1985-08-24 東レ株式会社 Production of code for reinforcing polyamide rubber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117521A1 (en) 2019-12-09 2021-06-17 株式会社ブリヂストン Adhesive composition, rubber/organic fiber cord composite, and tire
WO2021256149A1 (en) 2020-06-19 2021-12-23 デンカ株式会社 Adhesive composition for organic fiber cord, rubber reinforcing material and method for producing same, and rubber article
WO2022130879A1 (en) 2020-12-15 2022-06-23 株式会社ブリヂストン Adhesive composition, rubber-organic fiber cord composite, and tire

Also Published As

Publication number Publication date
JPS6278274A (en) 1987-04-10

Similar Documents

Publication Publication Date Title
US3956566A (en) Method for bonding polyamides to rubber, adhesive for the same, and adhesive coated polyamide reinforcing elements
US4448813A (en) Preparation of cord for bonding to rubber
JPH08100165A (en) Adhesive composition for rubber/fiber, synthetic fiber for reinforcing rubber and fiber-reinforced rubber structure
KR20010090798A (en) Process for producing an adhesive-treated polyester fiber cord
JPH0530378B2 (en)
RU1838485C (en) Composition for working of polymeric fiber surface
JP2003306872A (en) Method for producing polyester yarn cord for rubber reinforcement
US2211959A (en) Artificial cellulosic material bonded to rubber and method of producing the bond
US3896253A (en) Bonding glass fibers to rubber
US3930095A (en) Composite of rubber bonded to glass fibers
JPS6361433B2 (en)
US4246144A (en) Modified phenolic aldehyde resin to produce an improved adhesive coating and method of making same
US3984366A (en) Bonding glass fibers to rubber
JP2002226812A (en) Adhesion treatment agent for carbon fiber, carbon fiber for rubber reinforcement and method for producing the same
US4238595A (en) Modified phenolic aldehyde resin to produce an improved adhesive coating and method of making same
US4277535A (en) Modified phenolic aldehyde resin to produce an improved adhesive coating and method of making same
JP2752744B2 (en) Treatment agent for fiber for rubber reinforcement
JP3228287B2 (en) Adhesive composition for rubber and fiber, synthetic fiber for reinforcing rubber, and fiber-reinforced rubber structure
CA2479059A1 (en) Ruber-reinforcing glass fiber treatment agent, rubber-reinforcing cord using the fiber treatment agent, and rubber product
JP3657634B2 (en) Rubber / cord composite, method for producing the same, and composition for bonding fibers
US20040078900A1 (en) Impregnating and bonding agent for textiles
JPS63249784A (en) Treatment of polyester fiber for reinforcing rubber
JPH0459640A (en) Glass fiber for reinforcing rubber
JPH05148770A (en) Treatment of polyester fiber for reinforcing rubber
JPS6090223A (en) Method for bonding polyester fiber to rubber