JPS6361427A - Optical recording and reproducing device - Google Patents

Optical recording and reproducing device

Info

Publication number
JPS6361427A
JPS6361427A JP20617586A JP20617586A JPS6361427A JP S6361427 A JPS6361427 A JP S6361427A JP 20617586 A JP20617586 A JP 20617586A JP 20617586 A JP20617586 A JP 20617586A JP S6361427 A JPS6361427 A JP S6361427A
Authority
JP
Japan
Prior art keywords
signal
amplifier
light
series
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20617586A
Other languages
Japanese (ja)
Inventor
Seiji Yoshikawa
省二 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP20617586A priority Critical patent/JPS6361427A/en
Publication of JPS6361427A publication Critical patent/JPS6361427A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To read out a bit of recording information without saturating a signal detecting amplifier, by connecting in series a pair of photodetectors having photoelectric conversion functions in the direction of same polarity, and taking out a signal current equivalent to the difference of incident light quantities. CONSTITUTION:A magneto-optical pickup 13 is arranged oppositely to a magneto-optical disk 12 to be rotary-driven. A laser diode 15 is contained in the pickup 13, and an emitted laser beam is projected on the recording film 12a of the disk 12 through an objective lens 19. Reflected light is received at photodiodes (PD) 32A and 32B which form a signal detection circuit 31 passing through beam splitters 18 and 21, and analyzers 27A and 27B. The PDs 32A and 32B are connected in series in the direction of the same polarity, and the signal current equivalent to the difference of the incident light quantity from a connecting point connected in series, is taken out, and is inputted to an amplifier 33. The amplifier 33 converts and outputs the signal current to a voltage. Thus, it is possible to read out the bit of recording information without saturating the signal detecting amplifier.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はバイアス電圧の影費を小さくして差動信号の検
出を行う光学式記録再生装置に関する。 〔従来の技術] 近年、コンピュータ簀情報に関連する産業の進展が目ざ
ましく、取扱われる情?iI吊が飛躍的に拡大化する状
況にある。 このため、従来の磁気ヘッドに代ってレーザ光を用いて
円盤状記録媒体(以下ディスクと記づ。)に情報を光学
的に高密度に記録したり、高速度で再生したりりること
ができる光学式の記録再生装置が注f1される状況にあ
る。 ところで記録情報を自由に書き換えて記録することので
きる光磁気方式の記録再生装置は今後広く用いられる状
況にある。 上記光磁気方式の記録再生装置にd3いでは、(1)号
を検出し、電気信号に変換する信号検出系どしては差動
り式によるh法が主流になりつつある。 これは、ディスク基板による複屈折性に幅性の翔音が差
動方式を用いることによって低減化゛Cきるためである
。 光磁気ディスクでは媒体に黒用されlcレーリ”光が、
媒体の磁化方向で偏光を受けるVtk気的カー効果にに
って、“1゛′、“O″の組合わUで]−磁化した情報
を検出するようにしているが、だのカー回転角は非常に
微小角なため、できろだCプ検出系の紺7等を低くする
必要がある。 従来例では第5図に示す様に差動増幅器1を用いている
。 即ち、図示しないディスクからの戻り光は、ビンフォト
ダイオードD1.D2の受光素子で受光される。これら
ビンフォトダイオードD+ 、D2のhソードは電源端
モ■にぞれぞれ接続され、各アノードはn荷抵抗R,R
を介して接地されると共に、差動増幅器1の入力端に印
加される。しかしてダイオードDI 、D2で受光され
る元旦に応じた光電流によって、アノード電位が変化す
るため、これら7ノ一ド電位の差動弁が増幅されて差動
増幅器1の出力端2に現われる。 ところで上記従来例では、例えばダイオードD1に読出
し光が入射された場合、読出し光tdに応じて光電流が
流れ、差動増幅器1の入力端の入力13号は第6図に示
す如くになる。 光磁気現象による信号成分Sは、バイアス成分VBに比
べて小さい。これはダイオードD+ 、 D2に入QJ
される戻り先組における光磁気現象による信号成分はそ
の数10分の1程度の割合であるためである。従って負
荷抵抗Rに現われる信号成分を十分に引出そうとづると
、負荷抵抗Rを人さく、且つ電圧VBを大きくして、わ
ずかの光電流にスJL、信8電圧成分Sの変化が大きく
なるようにりることが必要になる。このにうに信号成分
Sを十分に引出そうとすると、直流バイアス成分VBし
増加りる。この直流バイアス成分V[3が加すつだ状態
I′差動増幅器1に入力されるため、差動弁のみを増幅
しようとしてし、直流バイアス成分V 13 ’b j
曽幅される。 [発明が解決しようとJ“る問題点1 このため、上記従来例では増幅器として非常にダイナミ
ックレンジを広くづる事が必要になる1゜又、再生(読
出し)モード時から四込み(記録)[−ドに切り換えら
れた場合、記録時にお(〕る振幅変調された発光強度の
大きいレー奮ア光が出射されるため、第7図(l〕)に
示づように差動増幅器1の各入力端に入力される振幅す
人さくなり、差動増幅器1を飽和させでしまう。差動増
幅器1が飽和すると、第7図(b)に示づ゛ように通人
入力が除去された後にも、しばらくは正常な増幅ができ
ないプツトタイムTdが生じる。このデッドタイムTd
が生じると、記録領域に引き続く情報領域のアドレスマ
ークを読み取ることができなくなる等の欠点があった。 又、第8図に示Jように、ダイオードDi 、 D2の
アノード側に電流−電圧変換増幅器3A、3Bを配、ツ
し各ダイオードD+ 、D2の光電’flZを電圧に変
換して11幅した(身、差動増幅jS 1に入力さける
従来例もあるが、増幅した後、差動増幅器1に入力さけ
る従来例もある。尚、各増幅器3△。 3Bの反転入力端及び出力端の間には帰)°=抵抗rf
’、rfをそれぞれ接続しである。この従来例にJ3い
ても同様の欠点を右する。 本発明は上述し点にかんがみてなされた乙ので、信号検
出用増幅器が飽和することなく、差動信号成分のみを効
果的に取り出すことのできる光学式記録再生装置を提供
することを目的とする。 [問題点を解決する手段及び作用] 本発明では1対の光検出素子を同一1唄性方向に直列に
接続して、同相成分を相殺し、1つ差動信3成分のみが
出力される信号検出手段を形成づることによって、バイ
アス電圧等の同相成分の影響を排除して差動信号成分の
みを有効に検出できるようにしている。 [実施例] 以下、図面を参照して本発明を具体的に説明する。 第1図及び第2図は本発明の第1実施例に係り、第1図
は第1実施例を形成J゛る信号検出回路の回路構成を示
し、第2図は光磁気方式の記録再生光パi系を承り。 第2図に承りように第1実施例を備えた光[4気力式の
記録再牛装「111はスピンドルU−タヱ・回転駆動さ
れる光磁気ディスク12に対向して、光磁気ピックアッ
プ13を配置し、この(光…気)ピックアップ13はキ
11リッジ14に取付
[Industrial Field of Application] The present invention relates to an optical recording/reproducing device that detects differential signals by reducing the cost of bias voltage. [Prior Art] In recent years, the industry related to computerized information has made remarkable progress, and the information handled has changed dramatically. We are in a situation where the iI suspension is rapidly expanding. For this reason, it is now possible to optically record information at high density on a disc-shaped recording medium (hereinafter referred to as a disk) and to reproduce information at high speed by using laser light instead of conventional magnetic heads. The situation is such that optical recording and reproducing devices that can perform By the way, magneto-optical recording and reproducing devices that can freely rewrite and record recorded information are expected to be widely used in the future. In the above-mentioned magneto-optical recording and reproducing apparatus d3, the h method using a differential type is becoming mainstream as a signal detection system for detecting item (1) and converting it into an electric signal. This is because the noise caused by the birefringence caused by the disk substrate can be reduced by using the differential method. In magneto-optical disks, the medium is black and the LC Rayleigh light is
Based on the Vtk magnetic Kerr effect that receives polarized light in the direction of magnetization of the medium, the combination of "1" and "O" is used to detect magnetized information, but the Kerr rotation angle Since it is a very small angle, it is necessary to lower the angle 7 of the Cp detection system.In the conventional example, a differential amplifier 1 is used as shown in Fig. 5.In other words, from a disk (not shown) The returned light is received by the light-receiving elements of the bin photodiodes D1 and D2.The h-sodes of these bin photodiodes D+ and D2 are connected to the power supply terminal MO, respectively, and each anode is connected to an n-load resistor R, R
The signal is grounded through the terminal and applied to the input terminal of the differential amplifier 1. Since the anode potential changes due to the photocurrent corresponding to New Year's Day received by the diodes DI and D2, the differential valve of these seven node potentials is amplified and appears at the output terminal 2 of the differential amplifier 1. In the conventional example, for example, when a readout light is incident on the diode D1, a photocurrent flows in accordance with the readout light td, and the input No. 13 at the input end of the differential amplifier 1 becomes as shown in FIG. The signal component S due to the magneto-optical phenomenon is smaller than the bias component VB. This is the diode D+, which goes into D2 QJ
This is because the signal component due to the magneto-optical phenomenon in the return destination set is about one-tenth of that. Therefore, in order to fully extract the signal component appearing in the load resistor R, by making the load resistor R smaller and increasing the voltage VB, the change in the voltage component S of the small photocurrent becomes large. It becomes necessary to do so. If an attempt is made to sufficiently extract the signal component S in this manner, the DC bias component VB will increase. Since this DC bias component V[3 is input to the added state I' differential amplifier 1, only the differential valve is attempted to be amplified, and the DC bias component V 13 'b j
It is widened. [Problem to be solved by the invention 1] Therefore, in the conventional example described above, it is necessary to have an extremely wide dynamic range as an amplifier. - mode, during recording, amplitude-modulated laser light with high emission intensity is emitted, so that each of the differential amplifiers 1 as shown in FIG. 7(l) The amplitude input to the input terminal becomes small, causing the differential amplifier 1 to become saturated.When the differential amplifier 1 is saturated, as shown in FIG. 7(b), after the normal input is removed, However, a dead time Td occurs during which normal amplification cannot be performed for a while.
When this occurs, there are drawbacks such as the inability to read the address mark in the information area following the recording area. In addition, as shown in FIG. 8, current-voltage conversion amplifiers 3A and 3B are arranged on the anode side of the diodes Di and D2 to convert the photoelectric current 'flZ of each of the diodes D+ and D2 into a voltage with a width of 11. (There is a conventional example in which the input is input to the differential amplifier jS 1, but there is also a conventional example in which the input is input to the differential amplifier 1 after amplification. Furthermore, between the inverting input terminal and the output terminal of each amplifier 3Δ. ) ° = resistance rf
', rf are connected respectively. The conventional example J3 also suffers from the same drawbacks. The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide an optical recording/reproducing device that can effectively extract only differential signal components without saturating the signal detection amplifier. . [Means and effects for solving the problem] In the present invention, a pair of photodetecting elements are connected in series in the same direction, canceling the in-phase component and outputting only one differential signal three components. By forming the signal detection means, it is possible to eliminate the influence of common mode components such as bias voltage and to effectively detect only differential signal components. [Example] The present invention will be specifically described below with reference to the drawings. 1 and 2 relate to a first embodiment of the present invention, FIG. 1 shows the circuit configuration of a signal detection circuit forming the first embodiment, and FIG. 2 shows a magneto-optical recording and reproducing circuit. Accepts Hikari Pai series. As shown in FIG. 2, a magneto-optical pickup 13 111 is a spindle U-type which faces a magneto-optical disk 12 which is rotationally driven. This (optical) pickup 13 is attached to the key 11 ridge 14.

【」られ、(光磁気)ディスク1
2の半径方向(第2図で(31紙面垂直方向)に移動で
きるようにしである。このディスク12にJ3けるピッ
クアップ13ど反対側の面に対向してバイアス磁界印加
用の界磁コイル14が配設され、記録時及び消去時には
互いに逆方向の電流が流され、ディスク12には逆方向
のバイアス磁界が、印加される。 上記ピックアップ13内には、レーザダイオード15が
収納され、このレーザダイオード15で発光された例え
ばP偏光のレーザ光はコリメータレンズ16で平行光束
にされ、整形プリズム17に入射される。この整形プリ
ズム17によって円形の光束にされた復、ビームスプリ
ッタ18に入射され、このビームスプリッタ18を通過
した光束は対物レンズ19によって集光されてディスク
12の記録膜12aに照射される。この記録膜12aで
反射された光は、照射された部分の記録膜12aの磁化
方向、つまりN極又はS極に応じ、(磁気的カー効果に
よって)偏光面が互いに逆方向に微小角度回転する。こ
の記録11012aで反射された光は、ビームスプリッ
タ18で一部が反射され、この反射光はさらにビームス
ブリック21で反射光と透過光とに分けられ、る。しか
して反射光は臨界角プリズム22に入射され、臨界角プ
リズム22の斜面で反射された光は制御用4分割)“1
1検出器23で受光される。 この4分割光検出器23にJ3けろ第2図で上下り向に
隣接する素子のに初出ノJでフォーカスエラー信号が生
成され、第2図で紙面手直方向に隣接りる素子の差動出
力で[・ラックエラー信号が生成される。 一方、」−記ビームスプリツタ21を透過した光1よ、
例えば1/2波長板25で漏光方向が例え(、K45°
回転された後、50%を透過し、残りの50%を反射り
°るビームスプリッタ26に入%1され、透過光と反射
光に分けられる。しかして、透過光及び反Q4光はそれ
ぞれ検光子27△、27Bを通って第1実施例の主要部
となる信8検出回路31を形成するビンフォトダイオー
ド32△、32[3で受光される。 上記検光子27Δ、27Bは、Hいに直交ザる偏光方向
の光、又はカー効果で回転された角面方向に偏光した光
を通す様に設定してあり、これら検光子27△、28Δ
を通った光をそれぞれ信シ〕検出用ディテクタ素子とし
てのビンフォトダイオード32A、32Bで受光してい
る。 しかして、第1図に承り回路構成の信Σ)検出回路31
を適寸ことによって記録情報の読出しを行えるよ−)に
している。 信号検出用(ピン)フォトダイオード32Δ。 32Bは同一極性方向に直列に接続され、この直列に1
1:c続した接続点は抵抗R1’を介して信号検出回路
31の出力端に接続されると共に、電流−電圧変換用増
幅器33の反転入力端に接続される。 又、直列に接続されたフォトダイオード32A。 32Bにおける一方のフォトダイオード32Aのカソー
ド及びフォトダイオード32Bのアノードは、直列に接
続されてバイアス電源Vt+ 】、 Vb2にお(プる
一方のバイアス電源Vb1の正電極及び他すのバイアス
電源vb2の負電極に接続されている。これら両バイア
ス電源vb、、Vb21.11等しい電圧を有し、直列
に接続されたフォトダイオード32Δ、32Bに、それ
ぞれ等しい電圧(Vbと覆る)で、(逆方向に)バイア
スしている。これら両バイアス電源Vb+、Vb2の接
続点はアナ[1グ信8系のグラウンド端子とされ、この
端子は増幅器33の非反転入力端が接続される。 尚、上記抵抗R「は増幅器33の反・IIλ入力端と出
力端局とに接続され負帰還している。 このにうに構成された第1実流例にJ3ける信シー〕検
出回″1831の動f’F−を以下に説明する。 今、両フAトダイΔ−ド32△、3213に雪しい光が
入射したとし、ノ第1・ダイA−ド32△を通ってlj
4輻器33の反転入力※i:に7L流■トが流れ、Hつ
反転式ノJ(=:から)A1−ダイΔ−ド32I3を通
−)【電流1b−が流れると7る。 両フAI−ダイΔ−ド32Δ、32Bの1h性が、I7
しいと、両名による電流Ib+、Ib−の絶対1+aが
等しく、極性が反対になるため、反転入力端:に出入り
づる電流はH1殺されて零になる。つ、1り両ノA1−
グイA−ド32Δ、32Bの仁8の差動弁が反転入力端
に人力され、従来例にJ3けるバイアス電圧の影響を殆
/υど受けない。 一方、カー効果にJ、る光【「)分だけ両フ第1−ダイ
オ“−ド32△、32Bに入射される光量に差がある場
合には、反転入ツノ端にはΔIb = Ib−−1b−
の電流が流れる。しかして増幅器33は、非反転入力端
に対し反転入力端の電位が(非反転入ツノ端の電位と等
しくなるように、つまり)零になるように動さ、結果的
に出力※んにはVO=ΔIb −Rrの出力゛電圧が得
られる。 換言づれば、差動弁の電流のみが増幅器33に入力され
、この増幅器33によって電圧に変換されて出力される
ことになる。 従って、従来例におけるバイアス電圧が増幅器の入力端
に入力されるため、十分に信号を増幅さけることができ
ないという欠点を解消Cさる。 又、差動弁のみが増幅器33に入力されるため、再生モ
ードから記録モードに切換えられた場合にJ、iける強
度の大きいレー+f発光時において6増幅器33が飽和
することを防止できる。従って、従来例におけるデッド
タイムが生じることを防止できる。 このため、第1実施例によれば、高い電圧源を用いない
でム信号検出系として、十分に広いグイノミツクレンジ
をイjづることになる。 第3図は本発明の第2実施例に(υ(プる信号検出回路
41を示iJ’ この信号検出回路/11は、第1図に示づ゛増幅;:(
:33を用いないで、両]J1−ダイオード32△′。 32B′の接続点に負他抵抗1)r′ の一端を接続し
て検出信8の出力端にし℃いる。又、この抵抗r<r’
ノ他端は、両バイアス電源vb1′、■b2′の接続点
と接続しCある。 この実施例はjM幅器33を省略して、第1実施例と)
まば同様の着用効果を19でいる。 尚、この第2実施例では増幅器33を省略できるが、条
伺どして差分の電流にJ、つC,抵抗Rf′に発生する
電圧が、両バイアス電源Vl11’ 、 Vb2’ に
J3けるバイアス゛電圧(Vb’ とり°る)に比較し
て十分小さいという事が必要となる。さbないと、各フ
ォトダイA−ド32ΔI 、 32 @ r に印加さ
れる逆バ、イアスが低下し、周波数特性が劣1ヒ 覆 
る 。 第4図tよ本発明の第3実施例にJ3ける信号検出回路
51を示す。 この信号検出回路51ではトラッキング特性の良好な定
′心圧回路52を用いて2つのバイアス電圧vb 、−
vbを(qて、バイアス電圧の変動が信弓成分に彩りで
するのを防止している。 即ら、整流・平滑回路を通した正及び負の電圧←vi 
、−Viに対し、例えば一方の電圧+Viは三端子定電
圧IC53等で正のバイアス電圧Vbを1″iでいる。 しかしで、このIC53の出力端と増動アンプ54の出
力(・:汗との間に抵抗値及び渇j1笠にスJして特性
の11′Aつた抵抗R1,R1を接続し、この接続点の
電圧は差動アンプ55の反転入力端に印加され、他方の
入力端に印加される接地電位と比較される。この比較に
よって、差動アンプ55の出力%::Lま、定電圧IC
53による正゛七圧bと連動してrlの定電If−V 
bに保持される。 尚、正及び負の出力端とアース間にはコンデンリC1,
CIが介装され−Cいる。 第11図に示す信号検出回路51は、第1図において、
バイアス′市源Vb1. Vb2を定電圧回路52で置
換した以外、第1図と同(工である。 上記各信号検出回路31,41.51は光(d気力式に
J3 Gノる記録情報を読出づのに適応が限定されるし
のでなく、光学式記録再生装置にJ3ける差1’JJ信
8の検出系に広く適用できる。例えば、1〜7/ツー1
ングサーボ系とかフA−カシングサーボ系′;qの制御
系にJ3いて乙差動方式の信g検出を行う場合には同様
に適用C,l!′る。 尚、トラッ1ング1ノーボ系どかフA−カシングリ゛−
ボ系のにうにアノ“1コグ信号に対り”る差動方式のイ
エg検出を行う場合、本発明に、υGJるイエg検出T
−段を適几jりるど、フォーカスエラー(ΔSシあるい
はトラックエラー(i弓を飽和することなく広いダぞノ
ミツクレンジを右りる如くに増幅′Cきるので、高粘度
のトラツー1:ングリーボ及びフA−カシングリーボを
行うことがでさる。 [発明の効果] 以上述べたように本発明によれば光電2換d能を右りる
1対の光検出素子を直接に接続し、その接続点から両光
検出素子に入口・1される光量の差分に相当する信号電
流取出す信号検出手段を形成しであるので、バイアス電
圧による飽和が生じることなく、差動信号を取り出せる
['', (magneto-optical) disk 1
A field coil 14 for applying a bias magnetic field is arranged on the opposite side of the disk 12 from the pickup 13 in J3. Currents in opposite directions are passed during recording and erasing, and a bias magnetic field in the opposite direction is applied to the disk 12. A laser diode 15 is housed in the pickup 13, and the laser diode For example, the P-polarized laser beam emitted by the collimator lens 16 is made into a parallel beam by the collimator lens 16, and then enters the shaping prism 17.The shaping prism 17 converts the laser beam into a circular beam, which then enters the beam splitter 18. The light flux that has passed through the beam splitter 18 is focused by the objective lens 19 and irradiated onto the recording film 12a of the disk 12.The light reflected by the recording film 12a is directed in the direction of magnetization of the irradiated portion of the recording film 12a; In other words, depending on the N pole or the S pole, the plane of polarization rotates by a small angle in opposite directions (due to the magnetic Kerr effect).The light reflected by this recording 11012a is partially reflected by the beam splitter 18, and this reflected light is The light is further divided into reflected light and transmitted light by the beam brick 21.The reflected light is then incident on the critical angle prism 22, and the light reflected on the slope of the critical angle prism 22 is divided into four parts for control purposes. 1
1 detector 23 receives the light. A focus error signal is generated in this 4-split photodetector 23 in the vertically adjacent elements in Figure 2, and a focus error signal is generated in the vertically adjacent elements in Figure 2. A rack error signal is generated at the output. On the other hand, the light 1 transmitted through the beam splitter 21,
For example, if the light leakage direction is 1/2 wavelength plate 25 (K45°
After being rotated, the light enters a beam splitter 26 that transmits 50% of the light and reflects the remaining 50%, where it is divided into transmitted light and reflected light. Therefore, the transmitted light and the anti-Q4 light pass through the analyzers 27Δ, 27B, respectively, and are received by the bin photodiodes 32Δ, 32[3, which form the signal 8 detection circuit 31, which is the main part of the first embodiment. . The analyzers 27Δ, 27B are set so as to pass the light in the orthogonal polarization direction, or the light polarized in the angular direction rotated by the Kerr effect, and these analyzers 27Δ, 28Δ
The light that has passed therethrough is received by bin photodiodes 32A and 32B, which serve as detector elements for detection. Therefore, according to FIG. 1, the circuit configuration is reliable.
The recorded information can be read by adjusting the size of the disc to an appropriate size. Signal detection (pin) photodiode 32Δ. 32B are connected in series in the same polarity direction, and 1
The 1:c connected connection point is connected to the output terminal of the signal detection circuit 31 via the resistor R1', and is also connected to the inverting input terminal of the current-voltage conversion amplifier 33. Also, a photodiode 32A is connected in series. The cathode of one photodiode 32A and the anode of photodiode 32B in 32B are connected in series to bias power supply Vt+] and Vb2 (the positive electrode of one bias power supply Vb1 and the negative electrode of the other bias power supply Vb2). Both bias power supplies Vb, , Vb21.11 have equal voltages and are connected to the photodiodes 32Δ and 32B connected in series with equal voltages (overlapping with Vb), respectively (in the opposite direction). The connection point between these two bias power supplies Vb+ and Vb2 is the ground terminal of the analog signal 8 system, and the non-inverting input terminal of the amplifier 33 is connected to this terminal. is connected to the anti-IIλ input terminal and output terminal of the amplifier 33 for negative feedback. In the first actual flow example configured in this way, the dynamic f'F- will be explained below. Now, suppose that a snowy light is incident on both A-to-die A-dodes 32△ and 3213, and it passes through the first A-dode A-dore 32△ to lj
7L current flows into the inverting input *i: of the 4-radiator 33, and 7L current flows through the H inverting formula No. I7
If so, the absolute 1+a of the currents Ib+ and Ib- due to both are equal and the polarities are opposite, so the current flowing in and out of the inverting input terminal is killed by H1 and becomes zero. A1-
The differential valves 8 of guides 32Δ and 32B are manually operated at the inverting input terminals, and are hardly affected by the bias voltage at J3 in the conventional example. On the other hand, if there is a difference in the amount of light incident on the first diode 32, 32B by the amount of light J due to the Kerr effect, ΔIb = Ib- at the inversion horn end. -1b-
current flows. Therefore, the amplifier 33 is operated so that the potential at the inverting input terminal becomes zero (equal to the potential at the non-inverting input terminal, that is) with respect to the non-inverting input terminal, and as a result, the output An output voltage of VO=ΔIb−Rr is obtained. In other words, only the current of the differential valve is input to the amplifier 33, which converts it into a voltage and outputs it. Therefore, the drawback of the prior art in that the bias voltage is input to the input terminal of the amplifier and the signal cannot be sufficiently amplified is eliminated. Furthermore, since only the differential valve is input to the amplifier 33, it is possible to prevent the amplifier 33 from becoming saturated when the high-intensity ray+f is emitted when switching from the reproduction mode to the recording mode. Therefore, it is possible to prevent dead time from occurring in the conventional example. Therefore, according to the first embodiment, a sufficiently wide signal detection system can be used as a signal detection system without using a high voltage source. FIG. 3 shows a signal detecting circuit 41 in accordance with the second embodiment of the present invention (υ(iJ').
:33 is not used, both ]J1-diode 32Δ'. One end of the other negative resistor 1) r' is connected to the connection point of 32B' to form the output end of the detection signal 8. Also, this resistance r<r'
The other end is connected to the connection point of both bias power supplies vb1' and b2'. This embodiment is the same as the first embodiment by omitting the jM width transducer 33)
It has a similar wearing effect at 19. Incidentally, although the amplifier 33 can be omitted in this second embodiment, the voltage generated in the differential current J, C, and resistor Rf' between the two bias power supplies Vl11' and Vb2' is the bias voltage at J3. It is necessary that it is sufficiently small compared to the voltage (Vb'). Otherwise, the reverse bias and bias applied to each photodiode 32ΔI, 32@r will decrease, resulting in poor frequency characteristics.
Ru. FIG. 4t shows a signal detection circuit 51 in J3 according to a third embodiment of the present invention. This signal detection circuit 51 uses a constant cardiac pressure circuit 52 with good tracking characteristics to detect two bias voltages vb, -
vb(q) prevents bias voltage fluctuations from coloring the signal component. In other words, positive and negative voltages ←vi through the rectifier/smoothing circuit.
, -Vi, for example, one voltage +Vi is a three-terminal constant voltage IC53, etc., and the positive bias voltage Vb is 1"i. However, the output terminal of this IC53 and the output of the increase amplifier 54 (... A resistor R1, R1 with a characteristic of 11'A is connected between the two and the resistance value is 11'A. It is compared with the ground potential applied to the terminal.By this comparison, the output of the differential amplifier 55 is %::L, and the constant voltage IC
Constant current If-V of rl in conjunction with positive voltage b due to 53
b. In addition, there is a condenser C1 between the positive and negative output terminals and the ground.
CI is interposed and -C is present. In FIG. 1, the signal detection circuit 51 shown in FIG.
Bias 'Ichigen Vb1. The construction is the same as in FIG. 1 except that Vb2 is replaced with a constant voltage circuit 52. It is not limited to this, but can be widely applied to the detection system of optical recording and reproducing devices with a difference of 1' JJ signal 8. For example, 1 to 7/2 1
The same applies when detecting the signal g using the differential method using J3 in the control system of a pumping servo system or a fusing servo system';q. 'ru. In addition, tracking 1 Nobo system Dokafu A-Casing green-
When performing differential g detection for one cog signal in the bo system, the present invention uses υGJ g detection T
- If you go through the stages properly, you can amplify the focus error (ΔS) or track error (I) without saturating the bow, so it is possible to amplify the focus error (ΔS) or track error (I) without saturating the bow. [Effects of the Invention] As described above, according to the present invention, a pair of photodetecting elements that determine the photoelectric conversion capability are directly connected, and the connection point is Since a signal detecting means is formed to extract a signal current corresponding to the difference in the amount of light entering and entering both photodetecting elements, a differential signal can be extracted without saturation due to bias voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の第1実施例に係り、第1図
は第1実施例における信号検出回路を示1回路図、第2
図は第1実滴例の光学系を示す構成図、第3図tユ木発
明の第2実施例にJ3tJる信号検出回路を承り回路図
、第4図は本発明の第3実施例における信号検出回路を
示づ回路図、≠≠割母4;=ブ呑=#す二C〕二mべ3
−4大神4市14列μ ’−’−−”−13−本14↓
’JAL@;1i==d−−5F路4図二第5図は従来
例の信号検出回路を示1”回路図、第6図は第5図の従
来例における入力端に印加される信号を示υ説明図、第
7図tよ従来例にJ3いては記録時には振幅の大きな信
号が入力されることによって増幅器が飽和Jる様子を示
J説明図、第8図は他の従来例の信号検出回路を承り回
路図である。 11・・・記録再生装置 12・・・(光(姓気)γイスク 13・・・ピックアップ 15・・・シー1fグイA−ド 1つ・・・対物レンズ 26・・・ビームスブリック 27△、27B・・・検光子 31・・・イΩ号検出回路 32△、3213・・・フA1−ダイΔ−ド33・・・
増幅器 第1図 第2図 第7図 第8図 +V 第3図 第5図 第4図 第6図
1 and 2 relate to a first embodiment of the present invention, and FIG. 1 shows a signal detection circuit in the first embodiment.
The figure is a configuration diagram showing the optical system of the first actual droplet example, Figure 3 is a circuit diagram of the signal detection circuit included in the second embodiment of the invention, and Figure 4 is a circuit diagram of the signal detection circuit in the third embodiment of the invention. Circuit diagram showing the signal detection circuit, ≠≠Divider 4;=B=#S2C]2mBe3
-4 Ogami 4 cities 14 rows μ '-'--”-13-book 14↓
'JAL@;1i==d--5F path 4 Figure 2 Figure 5 shows the signal detection circuit of the conventional example 1'' circuit diagram, Figure 6 shows the signal applied to the input terminal in the conventional example of Figure 5 Figure 7 is an explanatory diagram showing how the amplifier becomes saturated when a large amplitude signal is input during recording in the conventional example J3, and Figure 8 is an explanatory diagram of another conventional example. This is a circuit diagram of the signal detection circuit. 11...Recording/reproducing device 12...(light) γ disk 13...Pickup 15...Sea 1f Gui A-do 1...Objective Lens 26... Beam bricks 27△, 27B... Analyzer 31... IΩ detection circuit 32△, 3213... Fold A1-Die Δ-D33...
Amplifier Fig. 1 Fig. 2 Fig. 7 Fig. 8 +V Fig. 3 Fig. 5 Fig. 4 Fig. 6

Claims (1)

【特許請求の範囲】  差動光学系を用いて記録情報の読出しを行う光学式記
録再生装置において、 光電変換機能を有する1対の光検出素子を同一極性方向
に直列に接続し、この接続点から両光検出素子に入射さ
れる光量の差分に相当する信号電流を取り出す手段を形
成したことを特徴とする光学式記録再生装置。
[Claims] In an optical recording and reproducing device that reads recorded information using a differential optical system, a pair of photodetecting elements having a photoelectric conversion function are connected in series in the same polarity direction, and the connection point What is claimed is: 1. An optical recording/reproducing device comprising means for extracting a signal current corresponding to the difference in the amount of light incident on both photodetecting elements from the light detecting element.
JP20617586A 1986-09-01 1986-09-01 Optical recording and reproducing device Pending JPS6361427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20617586A JPS6361427A (en) 1986-09-01 1986-09-01 Optical recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20617586A JPS6361427A (en) 1986-09-01 1986-09-01 Optical recording and reproducing device

Publications (1)

Publication Number Publication Date
JPS6361427A true JPS6361427A (en) 1988-03-17

Family

ID=16519052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20617586A Pending JPS6361427A (en) 1986-09-01 1986-09-01 Optical recording and reproducing device

Country Status (1)

Country Link
JP (1) JPS6361427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189525A (en) * 1989-12-11 1991-08-19 Internatl Business Mach Corp <Ibm> Apparatus and method for detecting ray of modulated light
US9663911B2 (en) 2012-04-12 2017-05-30 Mtd Products Inc Snow thrower

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189525A (en) * 1989-12-11 1991-08-19 Internatl Business Mach Corp <Ibm> Apparatus and method for detecting ray of modulated light
US9663911B2 (en) 2012-04-12 2017-05-30 Mtd Products Inc Snow thrower
US11401671B2 (en) 2012-04-12 2022-08-02 Mtd Products Inc Three-stage snow thrower

Similar Documents

Publication Publication Date Title
JPS6282525A (en) Optical head
JPH0684176A (en) Differential amplifier for photodetector in optical data memory system
CA1277767C (en) Optical recording apparatus
JPS63298734A (en) Magneto-optical disk reproducing device
JPS6215936B2 (en)
JPH04195938A (en) Recording and reproducing device for optical information
JPS6361427A (en) Optical recording and reproducing device
JPS62236152A (en) Optical pick-up
JPS5829155A (en) Information reproducer by photomagnetic system
US5475671A (en) Optical information detection circuit and detecting photoelectrically converted signal from light receiving means comprising at least two light receiving elements
JP2751899B2 (en) Optical pickup device
JPS62167628A (en) Tracking error detector in optical recording and reproduction device
JPS63138533A (en) Reproducing system for magneto-optical disk
JPH0327978B2 (en)
JP2574915B2 (en) Optical device for reproducing magneto-optical recording media
NL8602304A (en) Optical detector system for magneto-optical recording disc - detects polarisation rotation changes in light reflected from data-carrying track
JPS60157745A (en) Photomagnetic recorder
JP2795271B2 (en) Optical disk drive
JPH0935310A (en) Light receiving/emitting device and optical pickup
JPS5938935A (en) Optical disk device
JPS61198430A (en) Optical information recording device
JPH03241552A (en) Reproduction signal detection circuit for magneto-optical disk device
JPH02206048A (en) Magneto-optical signal detection circuit
JPH02192053A (en) Magneto-optical disk device
JPH05274684A (en) Optical information recording and reproducing device