JPS6361307A - Optimum adjustable-speed device - Google Patents

Optimum adjustable-speed device

Info

Publication number
JPS6361307A
JPS6361307A JP20629486A JP20629486A JPS6361307A JP S6361307 A JPS6361307 A JP S6361307A JP 20629486 A JP20629486 A JP 20629486A JP 20629486 A JP20629486 A JP 20629486A JP S6361307 A JPS6361307 A JP S6361307A
Authority
JP
Japan
Prior art keywords
speed
adjustable
curve
time
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20629486A
Other languages
Japanese (ja)
Inventor
Masahiko Oda
小田 昌彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP20629486A priority Critical patent/JPS6361307A/en
Publication of JPS6361307A publication Critical patent/JPS6361307A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize an optimum control by obtaining an adjustable-speed pattern based on the point sequence of a time and a speed as a spline interpolation curve and executing the adjustable-speed with this. CONSTITUTION:Several points on an optimum adjustable-speed curve to be realized by an optimum adjustable-speed device such as an NC device are inputted to a point sequence input means 1 and interpolation curves St and Sv are obtained from these point sequences and stored into a spline interpolation curve table 2. The point sequence comes to be a speed V at a time T. Next, when acceleration is to be realized which is the figure similar to the adjustable-speed curve and comes to be a speed Vi at a time Ti, the interpolation curve Sv of a prescribed time is obtained by an interpolation curve counting means 3 while the spline interpolation curve table 2 is referred to. Vi/V is multiplied to the curve Sv and the speed of a sampling time point is counted. By the speed, the moving quantity of the sampling period is counted and this is inputted to a servo system as an adjustable-speed command (position command).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、NC装置等の自動機械において、ステップ的
に与えられた速度指令に対して、点列を滑らかな曲線軌
道で補間する手段を有する最適加減速装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides means for interpolating a series of points along a smooth curved trajectory in response to a speed command given in steps in an automatic machine such as an NC device. The present invention relates to an optimum acceleration/deceleration device having the following characteristics.

〔従来の技術〕[Conventional technology]

NG工作機械、産業用ロボットなどの自動機械に速度指
令を与えるとき、通常はその指令はステップ関数として
そのコントローラに入力される。
When a speed command is given to an automatic machine such as an NG machine tool or an industrial robot, the command is usually input to its controller as a step function.

すなわち、速度指令が第3図に示すようなステップ関数
で入力されたとき、実際の速度のオーバーシュート等の
好ましくない過渡現象を避けるため、従来においては、
第4図のように直線的に速度を変化させるか、第5図の
ように指数関数的に速度を変化させるか、またはこの組
み合わせで加減速を実現していた。
That is, when a speed command is input as a step function as shown in FIG. 3, in order to avoid undesirable transient phenomena such as overshoot of the actual speed, conventionally,
Acceleration/deceleration has been achieved by changing the speed linearly as shown in FIG. 4, by changing the speed exponentially as shown in FIG. 5, or by a combination of these.

この場合、入力するパラメータは、第4図の場合は直線
の傾き、第5図の場合は時定数ちである。
In this case, the parameters to be input are the slope of the straight line in the case of FIG. 4, and the time constant in the case of FIG.

しかし、このような直線加減速や指数加減速では、各機
械や負荷について直線の傾きや時定数が異なるため、個
々の機械や負荷に応じた任意の加減速を行うことはでき
ない。
However, in such linear acceleration/deceleration or exponential acceleration/deceleration, the slope and time constant of the straight line differ for each machine or load, so it is not possible to perform arbitrary acceleration/deceleration depending on each machine or load.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、従来においては、直線加減速や指数加減速
のようなy=f(x)型の数理関数によって一意的に加
減速を実現してきたが、R接糸が複雑になるにつれてこ
のような一意的な加減速ではなく、そのa接与に最適な
任意の速度、加速度制御が必要となっている。
In this way, in the past, acceleration/deceleration has been uniquely realized by mathematical functions of the y=f(x) type, such as linear acceleration/deceleration or exponential acceleration/deceleration, but as R tangents become more complex, such Rather than a unique acceleration/deceleration, arbitrary speed and acceleration control that is optimal for the given a factor is required.

本発明は、このような要請に基づいてなされたものであ
り、使用する機械系に最適の加減速パターンを基にして
、任意の速度、加速度制御を可能にすることを目的とす
る。
The present invention was made based on such a request, and an object of the present invention is to enable arbitrary speed and acceleration control based on an acceleration/deceleration pattern that is optimal for the mechanical system in use.

C問題点を解決するための手段〕 この目的を達成するため、本発明の最適加減速装置は、
時間と速度の複数の点列の入力手段と、これらの点列を
滑らかに接続する予め設定したスプライン補間曲線テー
ブルと、該スプライン補間曲線テーブルを参照して、指
令された速度に対して加減速信号の補間曲線を求める補
間曲線算出手段とを備えたことを特徴とする。
Means for Solving Problem C] To achieve this objective, the optimal acceleration/deceleration device of the present invention has the following features:
A means for inputting multiple point sequences of time and speed, a preset spline interpolation curve table that smoothly connects these point sequences, and acceleration/deceleration relative to the commanded speed by referring to the spline interpolation curve table. The present invention is characterized by comprising an interpolation curve calculation means for determining an interpolation curve of a signal.

〔作用〕[Effect]

対象となる制御系において、ある時間における速度を、
第1表に例示するように〔時間、速度〕の点列として入
力したとき、これらの点列を滑らかに、すなわち−次微
分係数、二次微分係数とも連続に接続するスプライン補
間曲線を求めることができる(第2図参照)。
In the target control system, the speed at a certain time is
As exemplified in Table 1, when input as a point sequence of [time, velocity], find a spline interpolation curve that smoothly connects these point sequences, that is, continuously connects both the -th order differential coefficient and the second order derivative coefficient. (See Figure 2).

第  1  表 入力された点列をPa(To、 Vo)+’P+ (T
+、 V+) ・・・”・・P、(T、、V、)・−・
P、(T、、、V、)  とすると、区間へP7.1の
補間曲線S、は以下のようになる。
Table 1 The input point sequence is Pa(To, Vo)+'P+(T
+, V+) ・・・”・・P, (T,,V,)・−・
Assuming that P, (T, ,,V,), the interpolation curve S of P7.1 to the interval is as follows.

ta(ql= ((Tll−1+T□+)/2  T1
1)q”+ (Tm++  Tn−+)/2・Q”Tm
v、(Ql = ((Va−++シlI−+)/2  
Vsl Q”+(v、−+  V+++−+)/2・Q
”Vatll、++1l11= ((T@+T□2) 
/2− T□+l (q  1)”+(T□z  T−
)/2・(q〜1)”Tn、+us、+(q)= ((
Va+V**z)/2−V=、+l (q−1)”+(
ν、t  V−)/2・(q−1) +VMや。
ta(ql= ((Tll-1+T□+)/2 T1
1) q”+ (Tm++ Tn-+)/2・Q”Tm
v, (Ql = ((Va-++Sil-+)/2
Vsl Q"+(v, -+ V+++-+)/2・Q
”Vatll, ++1l11= ((T@+T□2)
/2− T□+l (q 1)”+(T□z T−
)/2・(q~1)”Tn,+us,+(q)=((
Va+V**z)/2-V=,+l (q-1)"+(
ν, t V-)/2・(q-1) +VM.

S ta(Q) TaatII(QI (+A+ ’A
cos tc q)+ts−+(Ql(%−’Acos
rtq)S v+a[ql ”’ v、(Ql (’A
 ” ’A cos πq)+v、−+(Ql(%−’
Acosttq)(0≦q≦1.1≦m≦n−2) このとき、時間は等間隔で、すなわちT、−↑、−1=
T、、、−T、で入力するものとすれば、t 、(Ql
は直線になる。よって、補間曲線St、S、に前記の数
値qを代入することにより、任意の点の速度を求めるこ
とができる。
S ta(Q) TaatII(QI (+A+ 'A
cos tc q)+ts-+(Ql(%-'Acos
rtq) S v+a[ql ”' v, (Ql ('A
” 'A cos πq)+v,-+(Ql(%-'
Acosttq) (0≦q≦1.1≦m≦n-2) At this time, the time is at equal intervals, that is, T, -↑, -1=
If the input is T, , -T, then t, (Ql
becomes a straight line. Therefore, by substituting the above numerical value q into the interpolation curves St, S, the velocity at any point can be determined.

〔実施例〕〔Example〕

以下、第1図に示す実施例に基づいて本発明を具体的に
説明する。まず、実現したい最適加減速曲線上の数点を
点列入力手段1に人力し、これらの点列から前記St、
Svを求め、スプライン補間曲線テーブル2に記憶させ
ておく。この点列は、時間Tで速度Vになる。
The present invention will be specifically described below based on the embodiment shown in FIG. First, manually input several points on the optimum acceleration/deceleration curve to be achieved into the point sequence input means 1, and from these point sequences, the above-mentioned St,
Sv is determined and stored in the spline interpolation curve table 2. This point sequence has a velocity V at time T.

次に、この加減速曲線と相似形で、時間T1でV、にな
るような加速度を実現したい場合、以下のように実現す
ることができる。
Next, if it is desired to realize an acceleration that is similar to this acceleration/deceleration curve and becomes V at time T1, it can be realized as follows.

すなわち、ソフトウェアでΔを毎にサンプリングして、
nΔtから(n+1)Δtまでの速度を算出してやれば
よいから、第1図に示す補間曲線算出手段3によって、
t=nΔtXT、/TのときのSvを、スプライン補間
曲線テーブル1 (第1表)を参照して求める。このs
vにV、/VをがけたSw・V、/Vが求めるそのサン
プリング周期の速度である。このように、すべてのサン
プリンタ時点における速度を算出し、この速度によりそ
のサンプリング周期の移動量を算出し、それを加減速指
令、すなわち位置指令としてサーボ系に人力すればよい
In other words, the software samples Δ every time,
Since it is sufficient to calculate the speed from nΔt to (n+1)Δt, the interpolation curve calculation means 3 shown in FIG.
Sv when t=nΔtXT, /T is determined with reference to spline interpolation curve table 1 (Table 1). This s
Sw·V, /V, which is obtained by multiplying v by V, /V, is the speed of the sampling period sought. In this way, it is sufficient to calculate the speeds at all the sampler points, calculate the movement amount of the sampling period based on the speeds, and manually input it to the servo system as an acceleration/deceleration command, that is, a position command.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、機械系に最
適の加減速パターンを、時間と速度の点列に基づいてス
プライン補間曲線として求め、これを基にして加減速を
行うようにしている。これにより、オペレータは任意の
速度、加減速パターンをa接糸に人力でき、したがって
、個々の機械や負荷状況に応じた最適な制御を実現する
ことができる。
As explained above, in the present invention, the optimum acceleration/deceleration pattern for a mechanical system is determined as a spline interpolation curve based on a sequence of time and velocity points, and acceleration/deceleration is performed based on this. . As a result, the operator can manually set arbitrary speeds and acceleration/deceleration patterns to the a welding yarn, and therefore, it is possible to realize optimal control according to the individual machine and load situation.

【図面の簡単な説明】[Brief explanation of drawings]

第1回は本発明の実施例を示すブロック図、第2図は本
発明による補間を行った速度指令の波形図、第3図はス
テップ的に変化する速度指令の波形図、第4図は直線で
補間を行う場合の速度指令の波形図、第5図は指数関数
で補間を行う場合の速度指令の波形図である。
The first part is a block diagram showing an embodiment of the present invention, Figure 2 is a waveform diagram of a speed command interpolated according to the present invention, Figure 3 is a waveform diagram of a speed command that changes in steps, and Figure 4 is a waveform diagram of a speed command that changes in steps. FIG. 5 is a waveform diagram of a speed command when linear interpolation is performed, and FIG. 5 is a waveform diagram of a speed command when interpolation is performed using an exponential function.

Claims (1)

【特許請求の範囲】[Claims] 1、時間と速度の複数の点列の入力手段と、これらの点
列を滑らかに接続する予め設定したスプライン補間曲線
テーブルと、該スプライン補間曲線テーブルを参照して
、指令された速度に対して加減速信号の補間曲線を求め
る補間曲線算出手段とを備えたことを特徴とする最適加
減速装置。
1. Input means for multiple point sequences of time and speed, a preset spline interpolation curve table that smoothly connects these point sequences, and a method for inputting the commanded speed by referring to the spline interpolation curve table. An optimal acceleration/deceleration device comprising: interpolation curve calculation means for determining an interpolation curve of acceleration/deceleration signals.
JP20629486A 1986-09-01 1986-09-01 Optimum adjustable-speed device Pending JPS6361307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20629486A JPS6361307A (en) 1986-09-01 1986-09-01 Optimum adjustable-speed device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20629486A JPS6361307A (en) 1986-09-01 1986-09-01 Optimum adjustable-speed device

Publications (1)

Publication Number Publication Date
JPS6361307A true JPS6361307A (en) 1988-03-17

Family

ID=16520918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20629486A Pending JPS6361307A (en) 1986-09-01 1986-09-01 Optimum adjustable-speed device

Country Status (1)

Country Link
JP (1) JPS6361307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507783A (en) * 1999-08-18 2003-02-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus and method for generating drive control target value for drive device
JP2009101451A (en) * 2007-10-22 2009-05-14 Disco Abrasive Syst Ltd Grinding method and grinder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507783A (en) * 1999-08-18 2003-02-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus and method for generating drive control target value for drive device
JP2009101451A (en) * 2007-10-22 2009-05-14 Disco Abrasive Syst Ltd Grinding method and grinder

Similar Documents

Publication Publication Date Title
US4617502A (en) Method and apparatus for controlling a robot hand along a predetermined path
JPS61164481A (en) Speed control system
JPS6116568B2 (en)
JPS6361307A (en) Optimum adjustable-speed device
US5510996A (en) Method for determining auxiliary position-control parameters
JPH11345011A (en) Method for nonlinearly displaying locus curve
JP3049946B2 (en) Load inertia measuring device
JPH02148111A (en) Method and device for controlling robot
JP2703099B2 (en) Conveyor tracking method for industrial robots
JPH0623928B2 (en) Robot hand trajectory correction method
JPH04362710A (en) Optimum acceleration/deceleration control system for servo motor
GB2273177A (en) Actuator position control.
JPH048485A (en) Teaching method of robot system with conveyor
JPS63193213A (en) Speed controller for digital servo system with pulse encoder
JP3266634B2 (en) Moving body positioning control method and apparatus
JPH0283708A (en) Setting method for coordinate original point of traveling object
JPS63162114A (en) Tapping process control device
JP3164512B2 (en) Numerical control unit
JPH0776890B2 (en) Tracking control method between two servo systems
JPH03241574A (en) Track access control system
JPH06309038A (en) Method for planning track of robot
JPH03144711A (en) Function generator
CN111324127A (en) Control method based on frequency converter and control device for walking positioning equipment
JPS63239509A (en) Method for interpolating three-dimensional free curve in nc device
SU1322228A1 (en) Servo system with variable moment of inertia