JPS6361200A - X-ray condensing multilayer film spectroscopic element - Google Patents

X-ray condensing multilayer film spectroscopic element

Info

Publication number
JPS6361200A
JPS6361200A JP20388386A JP20388386A JPS6361200A JP S6361200 A JPS6361200 A JP S6361200A JP 20388386 A JP20388386 A JP 20388386A JP 20388386 A JP20388386 A JP 20388386A JP S6361200 A JPS6361200 A JP S6361200A
Authority
JP
Japan
Prior art keywords
spectroscopic element
multilayer film
ray
white
monochromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20388386A
Other languages
Japanese (ja)
Inventor
智 前山
芳一 石井
久貴 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20388386A priority Critical patent/JPS6361200A/en
Publication of JPS6361200A publication Critical patent/JPS6361200A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、X線回折、X線光電子分光、蛍光X線強度測
定などの方法により微小領域の結晶構造、化学状態、化
学組成、不純物濃度を高感度に分析するための装置に必
要な集光化した強力な単色X線を得るための分光素子に
関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is capable of determining the crystal structure, chemical state, chemical composition, and impurity concentration of minute regions by methods such as X-ray diffraction, X-ray photoelectron spectroscopy, and fluorescence X-ray intensity measurement. The present invention relates to a spectroscopic element for obtaining focused, powerful monochromatic X-rays necessary for a device for highly sensitive analysis.

〈従来の技術〉 単色X線を集光するための従来の技術としては大別すれ
ば以下に述べる2通りの方法が用いられている。第1は
x4g用集光ミラーを分光素子と共に用いる方法である
。この方法では白色X線を平板結晶分光素子で回折させ
ることにより単色化し、その後で単色X線を集光ミラー
を用いて集光させるのである。X線を全反射させるため
には、1°以下の斜入射で用いなければならないので、
この方法では分光素子以外に大型のX線集光ミラーを用
意せねばならず光学系が複雑になる欠点がある。第2は
湾曲させた結晶分光素子を用いる方法である。この方法
では、白色X線を結晶分光素子で回折させることにより
単色化と集光化が同時に行われ、第1の方法に比べ光学
系は簡単になる。しかし、湾曲結晶の作製が難しいとい
う欠点がある。単色化されたX4sを水平、垂直方向に
集光化するためには平板結晶を縦方向と横方向について
所定の形状に曲げなければならないが、両方向について
正確に結晶を曲げることは困難である。平板結晶が薄け
れば曲がり易いが割れ易く、厚ければ曲げることが難し
い。また、湾曲結晶に入射するX線が、白色Xiビーム
ならば、ビームの垂直方向では M晶へのビームの入射
角がわずかに変化するため、ブラッグ回折によって単色
化されたX線の波長は垂直方向でわずかに変化している
。つまり、単色X線は完全に単色化されておらず、その
結果、集光化された単色X線の波長分解能が悪くなると
いう欠点がある。
<Prior Art> As conventional techniques for condensing monochromatic X-rays, the following two methods are used. The first method is to use an x4g condensing mirror together with a spectroscopic element. In this method, white X-rays are made monochromatic by being diffracted by a flat crystal spectroscopic element, and then the monochromatic X-rays are focused using a focusing mirror. In order to completely reflect the X-rays, it must be used at an oblique incidence of 1° or less, so
This method has the disadvantage that a large X-ray condensing mirror must be prepared in addition to the spectroscopic element, making the optical system complicated. The second method is to use a curved crystal spectroscopic element. In this method, white X-rays are diffracted by a crystal spectroscopic element, thereby simultaneously monochromating and condensing the light, and the optical system is simpler than in the first method. However, it has the disadvantage that it is difficult to produce curved crystals. In order to focus monochromatic X4s in the horizontal and vertical directions, the flat crystal must be bent into a predetermined shape in the vertical and horizontal directions, but it is difficult to bend the crystal accurately in both directions. If the flat crystal is thin, it is easy to bend, but it is also easy to break, and if it is thick, it is difficult to bend. In addition, if the X-ray incident on the curved crystal is a white Xi beam, the angle of incidence of the beam on the M crystal changes slightly in the vertical direction of the beam, so the wavelength of the X-ray monochromated by Bragg diffraction is vertical. There is a slight change in direction. In other words, the monochromatic X-rays are not completely monochromatic, and as a result, the wavelength resolution of the focused monochromatic X-rays is poor.

このように従来では所定の形状に湾曲変形させることが
困難で結晶面間隔を制御できない自然結晶分光素子を用
いるため、単一波長のX線を完全に議光できないという
問題点があったのである。
In this way, conventional devices use natural crystal spectroscopic elements that are difficult to bend into a predetermined shape and cannot control the crystal plane spacing, which poses the problem of not being able to fully emit X-rays of a single wavelength. .

本発明は上述した従来技術の不都合を解消することので
きるX線集光多層膜分光素子を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an X-ray condensing multilayer film spectroscopic element that can overcome the disadvantages of the prior art described above.

く問題点を解決するための手段及び作用〉斯かる目的を
達成するため、本発明では回転放物面状に表面研磨した
基板を用いている。
Means and operation for solving the above problems In order to achieve the above object, the present invention uses a substrate whose surface is polished into a paraboloid of revolution shape.

ここで、回転放物面とは放物線曲線(例えばy2= a
 x、但しaは任意)を軸(X軸)を中心として回転さ
せたときに軌跡としてできる面のことである。この回転
放物面は表面研磨により形成されるもので、従来の自然
結晶分光素子と異なり、曲げなどによるものではない。
Here, a paraboloid of revolution is a parabolic curve (for example, y2=a
x, where a is arbitrary) is a surface formed as a locus when rotated around an axis (X-axis). This paraboloid of revolution is formed by surface polishing, and unlike conventional natural crystal spectroscopic elements, it is not formed by bending or the like.

この回転放物面の曲率は、当該分光素子に入射する白色
X線ビームの入射角と、この白色X線ビームを集光させ
る点までの距離から決定される。この回転放物面に結晶
と同等なブラッグ回折効果を有する人工多層膜を堆積さ
せると、この人工多層膜は回転放物面に倣った形状とな
る。従って、人工多層膜に対して白色X@ビームを入射
させると(上記例の場合は、X軸と平行に入射させると
)、所定の距離において水平及び垂直方向に関し、即ち
一点に集光することとなると同時にブラッグ回折を起こ
す。しかし、基板が回転放物面となっているため、白色
X線ビームの垂直方向(第1図及び第2図中矢印A方向
参照)については入射角がわずかずつ変化する。このた
め、面間隔の一定な自然結晶を用いる場合には、完全に
単色化されないこととなる。
The curvature of this paraboloid of revolution is determined from the angle of incidence of the white X-ray beam that enters the spectroscopic element and the distance to the point where the white X-ray beam is focused. If an artificial multilayer film having a Bragg diffraction effect equivalent to that of a crystal is deposited on this paraboloid of revolution, this artificial multilayer film will have a shape that follows the paraboloid of revolution. Therefore, when a white X@ beam is made incident on the artificial multilayer film (in the above example, made parallel to the At the same time, Bragg diffraction occurs. However, since the substrate is a paraboloid of revolution, the angle of incidence changes little by little in the vertical direction of the white X-ray beam (see the direction of arrow A in FIGS. 1 and 2). Therefore, when a natural crystal with a constant lattice spacing is used, it will not be completely monochromatic.

そこで、本発明では、入射角の変化に対応して補正する
よう、結晶の面間隔に相当する2層膜の周期長さを、垂
直方向について連続的に変化させており、このため、−
点に集光する白色X線ビームが完全に単色化することと
なる。
Therefore, in the present invention, the periodic length of the two-layer film, which corresponds to the interplanar spacing of the crystal, is continuously changed in the vertical direction so as to be corrected in accordance with the change in the incident angle.
The white X-ray beam focused on a point becomes completely monochromatic.

く実 施 例〉 第1図は本発明の詳細な説明する図であって、1は白色
X線ビーム、2は本発明のX線集光多層膜分光素子、3
は集光化された単色X線である。第2図は本分光素子の
白色X線ビームの垂直方向Aについての断面構造と本分
光素子に入射する白色x1sの入射角との関係を示す図
であって、4は本分光素子の基板5は本分光素子の人工
多層膜、d−は本分光素子上辺の多層膜周期長、doは
本分光素子中央の多N!I膜周期長、d+は本分光素子
下辺の多層膜周期長、θやは本分光素子上辺の白色X線
ビームの入射角、θ。は本分光素子中央への白色X線ビ
ームの入射角、θ−は本分光素子下辺への白色X線ビー
ムの入射角である。
Embodiments> FIG. 1 is a diagram for explaining the present invention in detail, in which 1 is a white X-ray beam, 2 is an X-ray condensing multilayer film spectroscopic element of the present invention, and 3 is a diagram for explaining the present invention in detail.
is a focused monochromatic X-ray. FIG. 2 is a diagram showing the relationship between the cross-sectional structure of the white X-ray beam of the present spectroscopic element in the vertical direction A and the incident angle of the white light x1s incident on the present spectroscopic element, and 4 is the substrate 5 of the present spectroscopic element. is the artificial multilayer film of this spectroscopic element, d- is the periodic length of the multilayer film on the upper side of this spectroscopic element, and do is the polyN! at the center of this spectroscopic element. I film periodic length, d+ is the multilayer film periodic length on the lower side of the spectroscopic element, and θ is the incident angle of the white X-ray beam on the upper side of the spectroscopic element, θ. is the incident angle of the white X-ray beam to the center of the present spectroscopic element, and θ- is the incident angle of the white X-ray beam to the lower side of the present spectroscopic element.

白色X線ビームの入射角θ。と、分光素子2から単色X
線を集光させる地点までの距離りから基本となる放物曲
線の式は一義的に決まり、例えばθ。=10度、L=5
00センチメートルとすると、y2= 60.3073
8 xの放物曲線となり、この放物曲線をX軸に関して
回転することにより回転放物面が形成される。基板4上
の人工多層膜5は同様の回転放物面状をなす各層を有し
ブラッグ回折された光をLの距離に集光させる。本分光
素子2の大きさを一辺8センチメートルとすればy2=
60.30738xの放物曲線では白色x綿平行ビーム
の入射角は白色xRの垂直方向Aについてθ−=0.9
96θ。
Incident angle θ of white X-ray beam. and monochromatic X from spectroscopic element 2
The basic equation of the parabolic curve is uniquely determined by the distance to the point where the line is focused, for example θ. =10 degrees, L=5
00 cm, y2 = 60.3073
8 x, and by rotating this parabolic curve about the X axis, a paraboloid of rotation is formed. The artificial multilayer film 5 on the substrate 4 has each layer having a similar paraboloid of revolution shape, and focuses the Bragg diffracted light at a distance of L. If the size of this spectroscopic element 2 is 8 cm on a side, y2=
60. In the parabolic curve of 30738x, the angle of incidence of the white x cotton parallel beam is θ-=0.9 with respect to the vertical direction A of the white xR.
96θ.

からθや=1.0040゜にほぼ直線的に変化し、dや
一〜=d〜ならば集光される単色X線の波長はλ=2d
o幽θ。に対し、±0.4パーセントの分布を持つこと
になるが、入射角の変化に対応して多層膜の周期長をd
−= 0.996 doからd+= 1.004 do
に変化させているので、集光された単色X線は完全な単
一波長となる。この結果から明らかなように従来の技術
に比べ、集光特性とX線の単色性が改善される。
changes almost linearly from to θ = 1.0040°, and if d = d ~, then the wavelength of the focused monochromatic X-ray is λ = 2d
o Yuu θ. However, depending on the change in the incident angle, the periodic length of the multilayer film is changed to d.
-= 0.996 do to d+= 1.004 do
The focused monochromatic X-rays have a completely single wavelength. As is clear from these results, the light focusing characteristics and X-ray monochromaticity are improved compared to the conventional technology.

〈発明の効果〉 z上説明したように、本分光素子を用いれば白色X線平
行ビームを完全に単色化して集光できるので、物体の微
小領域に高精度な単色X線を照射できるという利点があ
り、微小領域をX線を用いて高感度かつ高精度に分析で
きる。
<Effects of the Invention> As explained above, by using this spectroscopic element, it is possible to completely monochromate and focus the parallel white X-ray beam, so it has the advantage of being able to irradiate a minute region of an object with highly accurate monochromatic X-rays. This allows microscopic areas to be analyzed with high sensitivity and precision using X-rays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例に係り、第1図は
使用方法の説明図、第2図は白色x櫟ビームの入射角と
、白色X線ビームの垂直方向ZこついてのX線集光多石
膜分光素子の断面を示す説明図である。 図 面 中、 1は白色X線ビーム、 2、よX線簗光多7J膜分光素子、 3は集光された単色X線、 4は基板、 5ば人工多層膜、 d−、do、 d+(よ人工多層膜周期長、θ−1θ。 、θやは入射角である。 特  許  出  願  人 日本電信電話株式会社 代    理     人 弁珂士光石士部 (他1名)
Figures 1 and 2 relate to an embodiment of the present invention. Figure 1 is an explanatory diagram of how to use it, and Figure 2 is an illustration of the incident angle of the white x-ray beam and the vertical direction Z of the white x-ray beam. FIG. 2 is an explanatory diagram showing a cross section of an X-ray condensing polylithic film spectroscopic element. In the figure, 1 is a white X-ray beam, 2 is an X-ray filter 7J film spectroscopic element, 3 is a focused monochromatic X-ray, 4 is a substrate, 5 is an artificial multilayer film, d-, do, d+ (The periodic length of the artificial multilayer film, θ-1θ. θ is the angle of incidence. Patent applicant: Nippon Telegraph and Telephone Corporation, attorney, Shibe Mitsuishi (and one other person)

Claims (1)

【特許請求の範囲】[Claims] 回転放物面状に表面研磨した基板上に、結晶と同等なブ
ラッグ回折効果を有する人工多層膜を堆積させると共に
結晶の面間隔に相当する2層の周期長さを、当該素子に
入射する白色X線ビームの垂直方向について連続的に変
化させることにより、所定の距離において水平及び垂直
方向に関し集光する白色X線ビームを単色化することを
特徴とするX線集光多層膜分光素子。
An artificial multilayer film having a Bragg diffraction effect equivalent to that of a crystal is deposited on a substrate whose surface has been polished into a paraboloid of revolution. An X-ray condensing multilayer film spectroscopic element characterized in that a white X-ray beam condensed in the horizontal and vertical directions at a predetermined distance is made monochromatic by continuously changing the vertical direction of the X-ray beam.
JP20388386A 1986-09-01 1986-09-01 X-ray condensing multilayer film spectroscopic element Pending JPS6361200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20388386A JPS6361200A (en) 1986-09-01 1986-09-01 X-ray condensing multilayer film spectroscopic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20388386A JPS6361200A (en) 1986-09-01 1986-09-01 X-ray condensing multilayer film spectroscopic element

Publications (1)

Publication Number Publication Date
JPS6361200A true JPS6361200A (en) 1988-03-17

Family

ID=16481300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20388386A Pending JPS6361200A (en) 1986-09-01 1986-09-01 X-ray condensing multilayer film spectroscopic element

Country Status (1)

Country Link
JP (1) JPS6361200A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111799A (en) * 1989-09-26 1991-05-13 Olympus Optical Co Ltd Multi-layer film reflection mirror
JPH03202802A (en) * 1989-12-28 1991-09-04 Canon Inc Optical device for magnified illuminator for radiant light
US5182763A (en) * 1989-12-28 1993-01-26 Canon Kabushiki Kaisha Reflection device
JP2007011403A (en) * 1999-11-29 2007-01-18 X-Ray Optical Systems Inc Doubly curved optical device with graded atomic plane
JP2013508683A (en) * 2009-10-14 2013-03-07 リガク イノベイティブ テクノロジーズ インコーポレイテッド Multiple arrangement X-ray optical device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111799A (en) * 1989-09-26 1991-05-13 Olympus Optical Co Ltd Multi-layer film reflection mirror
JPH03202802A (en) * 1989-12-28 1991-09-04 Canon Inc Optical device for magnified illuminator for radiant light
US5182763A (en) * 1989-12-28 1993-01-26 Canon Kabushiki Kaisha Reflection device
JP2007011403A (en) * 1999-11-29 2007-01-18 X-Ray Optical Systems Inc Doubly curved optical device with graded atomic plane
JP2013508683A (en) * 2009-10-14 2013-03-07 リガク イノベイティブ テクノロジーズ インコーポレイテッド Multiple arrangement X-ray optical device
JP2016028239A (en) * 2009-10-14 2016-02-25 リガク イノベイティブ テクノロジーズ インコーポレイテッド Multiple arrangement x-ray optical device

Similar Documents

Publication Publication Date Title
Jellison et al. Crystallographic orientation of uniaxial calcite and dolomite determined using reflection generalized ellipsometry
US6529578B1 (en) X-ray condenser and x-ray apparatus
JP2002357543A (en) Analyzing element and method for analyzing sample using the same
JPS6361200A (en) X-ray condensing multilayer film spectroscopic element
JP5173435B2 (en) X-ray monochromator or neutron monochromator
JPH07190962A (en) X-ray irradiation device
WO2004061428A1 (en) Equipment for measuring distribution of void or particle size
JP3520379B2 (en) Optical constant measuring method and device
Stokes The theory of X-ray fibre diagrams
Pereira et al. On evaluating x-ray imaging crystals with synchrotron radiation
JPH0682398A (en) X-ray diffraction analyser
JP2002286660A (en) Method and apparatus for observing crystal by using x-ray diffraction
JP2715999B2 (en) Evaluation method for polycrystalline materials
JP2675737B2 (en) Total reflection X-ray fluorescence analysis method and analyzer
JP3220550B2 (en) Multi-element type pyroelectric detector
JPH1048158A (en) Method for measuring x-ray stress of single crystal sample or the like
JPH01250905A (en) Polarization optical element and device using said element
JPS59171810A (en) Measuring device for warpage of single-crystal wafer
Voroshilov et al. Method for orientation of uniaxial nonlinear single crystals
Sinclair et al. Light scattering from Sol-gel processed lead zirconate titanate thin films
JPH076929B2 (en) Total reflection fluorescent EXAFS device
SU1682950A1 (en) Reflection-interference light filter
JPH06194498A (en) Micro x-ray diffraction system
Gani Double crystal x-ray and gamma ray diffractometry
JPH02217801A (en) Optical element consisting of multilayered films of curved type