JPS6361062B2 - - Google Patents

Info

Publication number
JPS6361062B2
JPS6361062B2 JP58022894A JP2289483A JPS6361062B2 JP S6361062 B2 JPS6361062 B2 JP S6361062B2 JP 58022894 A JP58022894 A JP 58022894A JP 2289483 A JP2289483 A JP 2289483A JP S6361062 B2 JPS6361062 B2 JP S6361062B2
Authority
JP
Japan
Prior art keywords
backwash
ion exchange
exchange resin
water
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58022894A
Other languages
Japanese (ja)
Other versions
JPS59150546A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58022894A priority Critical patent/JPS59150546A/en
Publication of JPS59150546A publication Critical patent/JPS59150546A/en
Publication of JPS6361062B2 publication Critical patent/JPS6361062B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はイオン交換樹脂の逆洗展開率の制御方
法に関し、特に温度、配管抵抗の変化があつても
常に所定の逆洗展開率を得ることができ、安定し
た陰・陽イオン交換樹脂の分離及びスクラビング
のクラツドの分離を行い得る方法に関する。 イオン交換樹脂を用いて水を浄化する方法に
は、混床法、複床法があり、またこれらを互いに
組合せる方法等さまざまな方法があるが、なかで
も混床法は単一の処理塔によつて水を高度に浄化
できるので普遍的に実施されている。この混床法
にも粒状イオン交換樹脂を用いイオン交換樹脂を
くり返し再生して利用する方法と、粉状イオン交
換樹脂の混床を形成し混床のイオン交換能力が限
界に達したら全ての粉末イオン交換樹脂を廃棄す
る方法とがあり、樹脂の有効利用という点からす
れば前者の方が後者より優れているものであつ
た。しかしながらイオン交換樹脂を再生利用する
と言う前者即ち粒状イオン交換樹脂による混床法
においても、次第に高純度の水質が要求され、そ
れに伴い使用するイオン交換樹脂の粒径も次第に
小さくなる傾向にある。 ところで、陰・陽イオン交換樹脂が互いに混合
している混床法において、これらの樹脂を再生す
ると云うことは、混合した陰・陽イオン交換樹脂
を互いに分離する手段がなければならない。従前
の方法にあつては陰・陽イオン交換樹脂の比重差
に起因する終末速度の差を利用し、混床の下方か
ら通水し、終末速度の小なる樹脂4通常は陰イオ
ン交換樹脂)を上方へ且つ終末速度の大なる樹脂
(通常は陽イオン交換樹脂)を下方へ分離し、こ
の分離した状態のまま、或いは上方側の樹脂を他
の容器へ移送して、各々薬液によつて再生処理す
るものであつた。 しかし、この混床法においてイオン交換樹脂の
粒径を小さくすれば樹脂の水中における終末速度
が低下し、水流の僅かの変動によつても、陰・陽
イオン交換樹脂の分離が困難となり、この陰・陽
イオン交換樹脂の分離が可能か否かによつて混床
法に使用できる樹脂の粒径が定められてしまう。
このことを第1図を参照して詳述すると、第1図
は第1表に示すイオン交換樹脂〜の30℃の水
中における終末速度の分布を示したものであり、
イオン交換樹脂の粒径分布は対数正規分布となつ
ているものである。
The present invention relates to a method for controlling the backwash development rate of ion exchange resins, and in particular, it is possible to always obtain a predetermined backwash development rate even when there are changes in temperature and piping resistance, and to achieve stable separation of anion and cation exchange resins. and a method by which the separation of scrubbing cruds may be carried out. There are various methods for purifying water using ion exchange resins, such as the mixed bed method and the multi-bed method, as well as methods that combine these methods with each other. Water can be purified to a high degree by this method, so it is widely practiced. In this mixed bed method, there are two methods: using granular ion exchange resin and regenerating the ion exchange resin repeatedly, and forming a mixed bed of powdered ion exchange resin, and when the ion exchange capacity of the mixed bed reaches its limit, all the powder is removed. There are methods for disposing of ion exchange resins, and the former method is better than the latter from the point of view of effective use of the resin. However, even in the former method of recycling ion exchange resins, that is, the mixed bed method using granular ion exchange resins, increasingly high purity water quality is required, and the particle size of the ion exchange resins used accordingly tends to become smaller. By the way, in the mixed bed method in which anion and cation exchange resins are mixed together, in order to regenerate these resins, there must be a means for separating the mixed anion and cation exchange resins from each other. In the conventional method, water is passed from below the mixed bed by utilizing the difference in terminal velocity caused by the difference in specific gravity between anion and cation exchange resins (usually an anion exchange resin). The resin (usually a cation exchange resin) with a high terminal velocity is separated upward and the resin with a high terminal velocity (usually a cation exchange resin) is separated downward, or the resin on the upper side is transferred to another container and each is treated with a chemical solution. It was to be recycled. However, in this mixed bed method, if the particle size of the ion exchange resin is reduced, the terminal velocity of the resin in water decreases, and even slight fluctuations in water flow make it difficult to separate the anion and cation exchange resins. The particle size of the resin that can be used in the mixed bed method is determined by whether or not it is possible to separate the anion and cation exchange resins.
To explain this in detail with reference to Figure 1, Figure 1 shows the terminal velocity distribution of the ion exchange resins shown in Table 1 in water at 30°C.
The particle size distribution of the ion exchange resin is a lognormal distribution.

【表】 従来の混床法でもつとも普遍的に用いられてい
るのが及びの陰・陽イオン交換樹脂であつ
て、その粒径はモード値で760μmである。この
粒径をさらに小さくし、それぞれの樹脂のモード
値を550μmとしたのが及びの陰・陽イオン
交換樹脂であつて、第1図中及びの曲線は
及びの曲線をそのまま左方へ平行移動させたも
のとなつている。しかし第1図の横軸は終末速度
(cm/秒)を対数目盛としているので逆洗・分離
時の水流の変動が同一であるとすれば及びの
陰・陽イオン交換樹脂の分離はより困難なものと
なる。 さらに水中におけるイオン交換樹脂の逆洗展開
率は樹脂の粒径、密度以外に水の温度によつても
変化し、例えば温度が低くなるほど粘性を増す水
についてみれば低温である程逆洗展開率は増加す
ることとなる。このことを図示したものが第2図
であつて、同一流速で展開したとしても温度の変
化によつて逆洗展開率が大幅に変化することが解
る。 混床法において、樹脂層の逆洗展開率を常に適
正な値に維持すること、特に塔の上部にある逆洗
水出口近傍まで樹脂層を確実に展開することは、
陰・陽イオン交換樹脂を再生する際の相互の分離
の度合を高めることとなり、またイオン交換樹脂
に吸着されている懸濁固形分(クラツドと称す)
をスクラビング(空気の供給操作)によつてイオ
ン交換樹脂から物理的に離脱させ、さらに逆洗水
によつてイオン交換樹脂層の上方へ流出させる操
作をより確実なものとするので極めて重要なこと
であるが、従来の方法にあつては水の温度変化に
よつて逆洗展開率が変動するのでその余裕を見込
んだ逆洗水量を設定せざるを得ないものであつ
た。本発明の目的は、イオン交換樹脂を逆洗水に
よつて展開する際に水温が変化しても常に一定の
逆洗展開率を維持する方法を提供することにあ
る。 本発明の逆洗展開率の制御方法は、イオン交換
樹脂層の下部から逆洗水を供給し、該イオン交換
樹脂層の上方から逆洗水を抜出す逆洗作業の逆洗
展開率の制御方法において逆洗水の流入管路の流
量と温度とを計測し、前記温度に基づいて予め設
定された展開率となるように設定流量値を補正
し、逆洗水の流量が補正された設定流量となるよ
う制御弁により操作するようになつている。 本発明によれば、逆洗時の流量を温度によつて
補正しているので、常に所望の逆洗展開率が得ら
れることとなり、陰・陽イオン交換樹脂の分離或
いはスクラビング後のクラツドの除去操作が最適
の条件のもとに実施することができる。本発明に
ついて第3図に基づいてさらに説明する。 第3図はBWR型(沸騰水型)原子力発電所の
複水脱塩塔からのイオン交換樹脂の再生塔の要部
を図示したものであり、再生塔1内には陰イオン
交換樹脂と陽イオン交換樹脂3とが収容され、再
生塔1の下部には逆洗水供給管が、又その上部に
は逆洗水を上方より抜出すオーバーフロー管5が
それぞれ設けられている。さらに逆洗に供する水
は逆洗水のヘツダ6から逆洗水の流入管路7を介
して逆洗水供給管4へ導かれ、又流入管路7には
温度計8、流量計9、制御弁10及び自動オン9
オフ弁11が設けられている。 他方逆洗水の抜出し側についてみると、オーバ
ーフロー管5から流出した逆洗水は抜出し管路1
2を経由して廃液貯槽13へ流入するものであ
る。図中14は自動オン・オフ弁である。さらに
このシステムにおける流量制御につい説明する
と、温度計8からの水温の信号は調節器15へ送
信され、調節器15ではその温度における予め設
定されたイオン交換樹脂層の逆洗展開率となる流
量を演算をし、(若しくはテーブルから求める)、
他方流量計9から流量信号と比較し、その差を制
御弁10を調節して補正し、零とするようになつ
ている。従つて再生塔1内における樹脂の展開率
は水温がどのよう変化しても常に一定にすること
ができる。また一般にこの再生塔1からラドウエ
ストを称される廃液貯槽までの間は100m以上に
もなる管路であるため、その間における配管抵抗
の経時変化は大きいものであるが、本発明の方法
によれば常に所望の逆洗展開率となるように流量
が調節されているので、あらゆる外乱をも排除
し、安定した操業を行い得るものである。 本発明において温度計、流量計及び制御弁を逆
洗水の流入管路に設けているのは操作の安定性を
増すためのものであつて、それが再生塔1の下流
側に相当する抜出管路12側であつては逆洗開始
の初期における運転が安定しないこととなり、さ
らには温度計、流量計、制御弁等重要な機能をも
つ機器類が余計に汚染されることにもなるので望
ましいこととは言えない。 本発明に基づいて再生塔1内のイオン交換樹脂
を展開する場合には、その逆洗展開率は展開した
イオン交換樹脂の上面が逆洗水の抜出口の近傍ま
で達するものと設定するのが望ましい。このよう
にすれば陰・陽イオン交換樹脂を分離する場合で
あつてもこの展開層が装置が許容する最大限の層
高となり、分離がより容易なものとなる。またス
クラビングによつて離脱したクラツドをイオン交
換樹脂から分離除去する場合であつてもイオン交
換樹脂の上面が抜出口の下方で且つその近傍にま
で到達していればイオン交換樹脂の終末速度より
も僅かに小さな終末速度のクラツドであつても抜
出口から系外へ排出されることになり効率のよい
逆洗が行なえるからである。
[Table] The anion/cation exchange resin widely used in the conventional mixed bed method has a particle size of 760 μm in mode value. This anion/cation exchange resin is made by further reducing this particle size and setting the mode value of each resin to 550 μm. It has become something that has been made possible. However, the horizontal axis in Figure 1 is on a logarithmic scale with terminal velocity (cm/sec), so if the fluctuations in water flow during backwashing and separation are the same, it will be more difficult to separate the anion and cation exchange resins. Become something. Furthermore, the backwash development rate of ion exchange resin in water varies depending on not only the particle size and density of the resin but also the temperature of the water.For example, the lower the temperature, the more viscous the water becomes. will increase. This is illustrated in FIG. 2, and it can be seen that even if the flow rate is the same, the backwashing development rate changes significantly due to changes in temperature. In the mixed bed method, it is important to always maintain the backwash development rate of the resin layer at an appropriate value, especially to ensure that the resin layer is developed to the vicinity of the backwash water outlet at the top of the tower.
This increases the degree of mutual separation during regeneration of anion and cation exchange resins, and also reduces the amount of suspended solids (referred to as cladding) adsorbed on the ion exchange resin.
This is extremely important because it physically separates the ion exchange resin from the ion exchange resin by scrubbing (air supply operation) and further ensures that the ion exchange resin flows out above the ion exchange resin layer using backwash water. However, in the conventional method, the backwash expansion rate fluctuates depending on the temperature change of the water, so it was necessary to set the amount of backwash water taking into account this margin. An object of the present invention is to provide a method that always maintains a constant backwash development rate even when the water temperature changes when developing an ion exchange resin with backwash water. The method for controlling the backwash expansion rate of the present invention is to control the backwash expansion rate in a backwash operation in which backwash water is supplied from the lower part of the ion exchange resin layer and backwash water is extracted from above the ion exchange resin layer. In the method, the flow rate and temperature of the inflow pipe of backwash water are measured, and the set flow rate value is corrected so as to have a preset expansion rate based on the temperature, and the flow rate of backwash water is set to be corrected. A control valve is used to control the flow rate. According to the present invention, since the flow rate during backwashing is corrected depending on the temperature, the desired backwashing development rate can always be obtained, and the separation of anion and cation exchange resins or the removal of crud after scrubbing can be easily achieved. The operation can be carried out under optimal conditions. The present invention will be further explained based on FIG. Figure 3 shows the main parts of a regeneration tower for ion exchange resin from a double water desalination tower in a BWR type (boiling water type) nuclear power plant. A backwash water supply pipe is provided at the bottom of the regeneration tower 1, and an overflow pipe 5 is provided at the top for extracting backwash water from above. Further, the water for backwashing is led from the backwash water header 6 to the backwash water supply pipe 4 via the backwash water inflow pipe 7, and the inflow pipe 7 includes a thermometer 8, a flow meter 9, Control valve 10 and auto-on 9
An off valve 11 is provided. On the other hand, regarding the backwash water extraction side, the backwash water flowing out from the overflow pipe 5 is transferred to the extraction pipe 1.
2 and flows into the waste liquid storage tank 13. In the figure, 14 is an automatic on/off valve. Further explaining the flow rate control in this system, the water temperature signal from the thermometer 8 is sent to the regulator 15, and the regulator 15 adjusts the flow rate to achieve a preset backwash development rate of the ion exchange resin layer at that temperature. Perform calculations (or find from a table),
On the other hand, it is compared with the flow rate signal from the flow meter 9, and the difference is corrected by adjusting the control valve 10 to make it zero. Therefore, the expansion rate of the resin in the regeneration tower 1 can be kept constant no matter how the water temperature changes. In addition, since the length of the pipe from the regeneration tower 1 to the waste liquid storage tank called RadWest is generally more than 100 m, the pipe resistance changes greatly over time, but the method of the present invention Since the flow rate is always adjusted to achieve the desired backwash expansion rate, all disturbances can be eliminated and stable operation can be performed. In the present invention, a thermometer, a flow meter, and a control valve are provided in the backwash water inflow pipe to increase operational stability. On the outlet pipe 12 side, the operation will not be stable at the beginning of backwashing, and furthermore, equipment with important functions such as thermometers, flow meters, control valves, etc. will be further contaminated. Therefore, this cannot be said to be desirable. When the ion exchange resin in the regeneration tower 1 is developed based on the present invention, the backwash development rate is set such that the top surface of the developed ion exchange resin reaches the vicinity of the backwash water outlet. desirable. In this way, even when anion and cation exchange resins are to be separated, the spread layer has the maximum layer height that the apparatus allows, making separation easier. Furthermore, even when separating and removing the detached crud from the ion exchange resin by scrubbing, if the upper surface of the ion exchange resin reaches below and near the extraction port, the terminal velocity of the ion exchange resin is lower than the final velocity of the ion exchange resin. This is because even if the crud has a slightly small terminal velocity, it will be discharged from the extraction port to the outside of the system, allowing efficient backwashing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はイオン交換樹脂の逆洗時の終末速度と
粒径分布との関係を示すグラフ、第2図は温度を
パラメータとした流速と逆洗展開率の関係を示す
グラフ、第3図は本発明を実施する装置を示すブ
ロツク図である。 1……再生塔、8……温度計、9……流量計、
10……制御弁、11……自動オンオフ弁、15
……調節器。
Figure 1 is a graph showing the relationship between terminal velocity and particle size distribution during backwashing of ion exchange resin, Figure 2 is a graph showing the relationship between flow rate and backwash expansion rate with temperature as a parameter, and Figure 3 is a graph showing the relationship between flow rate and backwash expansion rate with temperature as a parameter. 1 is a block diagram showing an apparatus for implementing the present invention. FIG. 1... Regeneration tower, 8... Thermometer, 9... Flow meter,
10...Control valve, 11...Automatic on/off valve, 15
...Adjuster.

Claims (1)

【特許請求の範囲】[Claims] 1 イオン交換樹脂の下部から逆洗水を供給し、
イオン交換樹脂層の上方から逆洗水を抜出す逆洗
作業の逆洗展開率の制御方法において、逆洗水の
流入管路の温度と流量とを計測し、前記温度に基
づいて予め設定された逆洗展開率となる流量を求
め、前記計測した流量が前記温度補正された所望
の流量となるように制御弁によつて調節すること
を特徴とするイオン交換樹脂の逆洗展開率の制御
方法。
1 Supply backwash water from the bottom of the ion exchange resin,
In a method for controlling the backwash expansion rate in a backwash operation in which backwash water is extracted from above an ion exchange resin layer, the temperature and flow rate of the backwash water inflow pipe are measured, and the flow rate is set in advance based on the temperature. Control of the backwash expansion rate of ion exchange resin, characterized in that the flow rate that gives the backwash expansion rate is determined, and the measured flow rate is adjusted by a control valve so as to become the desired temperature-corrected flow rate. Method.
JP58022894A 1983-02-16 1983-02-16 Method for controlling backwashing development ratio of ion exchange resin Granted JPS59150546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58022894A JPS59150546A (en) 1983-02-16 1983-02-16 Method for controlling backwashing development ratio of ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58022894A JPS59150546A (en) 1983-02-16 1983-02-16 Method for controlling backwashing development ratio of ion exchange resin

Publications (2)

Publication Number Publication Date
JPS59150546A JPS59150546A (en) 1984-08-28
JPS6361062B2 true JPS6361062B2 (en) 1988-11-28

Family

ID=12095357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58022894A Granted JPS59150546A (en) 1983-02-16 1983-02-16 Method for controlling backwashing development ratio of ion exchange resin

Country Status (1)

Country Link
JP (1) JPS59150546A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050961A (en) * 2010-12-03 2011-03-17 Miura Co Ltd Water softener

Also Published As

Publication number Publication date
JPS59150546A (en) 1984-08-28

Similar Documents

Publication Publication Date Title
CA1114530A (en) Isotope separation
US3520805A (en) Method of disposal of radioactive solids
CA1079227A (en) Separation of mixed ion exchange resins
US3595385A (en) Method and apparatus for controlling levels in an ion exchange resin separator
JPS6361062B2 (en)
JPS63258649A (en) Separation and transfer method for ion exchange resin
JP4278211B2 (en) Pre-coating method for pre-coating filtration desalination equipment
CA2191358A1 (en) Ion exchange resin particle separation system
US5126052A (en) Condensate polishing system incorporating a membrane filter
US3660282A (en) Method and apparatus for regenerating mixed beds of ion exchange resins
CA1105158A (en) Removal of silica from mixed bed demineralizer
JPS5815016B2 (en) How to clean ion exchange resin
JPS59150545A (en) Method and apparatus for regenerating ion exchange resin
JPH01174998A (en) Removal of suspended impurities with mixing floor type filter/desalter
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JPH0363439B2 (en)
JPH0445231B2 (en)
US3432429A (en) Method for maintaining the transfer amount of solid particles in a continuous solid-liquid contact apparatus at a constant level and apparatus therefor
JP2708201B2 (en) Adjustment method of resin separation interface for separation and regeneration tower
JPH0445230B2 (en)
JPS6034746A (en) Detection system of resin boundary surface
JPH02131189A (en) Removal process for suspended impurities by mixed bed type filter desalting device
JPS61138589A (en) Method for packing ion-exchange resin into condensate desalting tower
JPH0230314B2 (en)
JPH0329897A (en) Method of removing radioactive substances from radioactive solid waste storage pool