JPS6360818B2 - - Google Patents

Info

Publication number
JPS6360818B2
JPS6360818B2 JP58133249A JP13324983A JPS6360818B2 JP S6360818 B2 JPS6360818 B2 JP S6360818B2 JP 58133249 A JP58133249 A JP 58133249A JP 13324983 A JP13324983 A JP 13324983A JP S6360818 B2 JPS6360818 B2 JP S6360818B2
Authority
JP
Japan
Prior art keywords
zirconium
raw material
melting
oxygen
fuel cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58133249A
Other languages
Japanese (ja)
Other versions
JPS6024494A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58133249A priority Critical patent/JPS6024494A/en
Publication of JPS6024494A publication Critical patent/JPS6024494A/en
Publication of JPS6360818B2 publication Critical patent/JPS6360818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は核燃料ペレツトを被覆するジルコニウ
ム合金からなる被覆管の内面にライニングされる
金属ジルコニウムの製造方法に関する。 〔発明の背景〕 現在、原子炉の核燃料を収容する燃料被覆管
は、原子炉内で使用されるため、(1)耐食性が優れ
ていること、(2)非反応性でかつ熱伝導性が良好な
こと、(3)靭性及び延性が高いこと、(4)中性子吸収
断面積が小さいことなどが要求される。 ジルコニウム合金は、上記特性を満足すること
から燃料被覆管として広く使用されている。 しかし、ジルコニウム合金から成る燃料被覆管
は、定常条件下では優秀な燃料被覆管であるが、
原子炉の負荷変動が大きい場合、核燃料から放出
されるヨウ素ガスによる腐食と、燃料ペレツトの
膨張によつて生ずる応力の作用によつて応力腐食
割れが発生し、破損するおそれがある。 燃料被覆管の応力腐食割れを防止する方法とし
て、核燃料ペレツトと被覆管との間に各種の金属
障壁が設けられる。ジルコニウム合金を使用する
被覆管の場合、金属障壁として純ジルコニウムを
内張した複合型被覆管が使用されている(特開昭
54−59600号公報)。その理由は、純ジルコニウム
はジルコニウム合金に比べて中性子照射中軟らか
さを維持し、ジルコニウム合金の被覆管に発生し
た局部ひずみを減じ、応力腐食割れを防止する効
果を有するためである。 しかし、発明者らの実験によれば、上記純ジル
コニウム層(以下、ジルコニウムライナと呼ぶ)
は、照射中軟らかさを維持するためには極めて高
純度なことが必要であることが判明した。特に高
燃焼条件におけるジルコニウムライナは、その効
果を発揮するためにクリスタルバージルコニウム
級の純度が必要である。スポンジジルコニウム級
の純度の場合は、照射硬化の度合が大きく、ライ
ナとしての効果は十分期待できない。 クリスタルバージルコニウムの従来の製造方法
は第1図に示すようにスポンジZrを沃化、化学
蒸着してジルコニウム結晶棒を作るものである。
しかし、この方法においては反応速度が極めて遅
く量産的でなく、このため得られるZrは極めて
高価なものとなる。 また従来より、ジルコニウムの精製法として
は、Mgなどの活性金属によりジルコニウムの塩
化物を還元し、真空アーク溶解により加工が可能
な鋳塊とする方法が知られている。この方法の場
合、真空アーク溶解においても脱酸素は不可能で
あり、還元時に存在した酸素はそのまま製品中に
継続されるため、低酸素のジルコニウムを製造す
ることは不可能であつた。 〔発明の目的〕 本発明の目的は、クリスタルバージルコニウム
級の酸素濃度を有する照射硬化の度合の少ない複
合型燃料被覆管用金属ジルコニウムを量産的に製
造できる方法を提供することにある。 〔発明の概要〕 本発明者らは、ジルコニウムライナ材において
照射硬化を誘因するのは金属ジルコニウム中の不
純物元素の中の酸素であつて、その他の不純物元
素、例えばAl,C,Cr,Hf,Feなどは通常のス
ポンジジルコニウムに含まれる範囲においては照
射硬化への影響はほとんどないことに着目した。
したがつてジルコニウムライナ材は酸素以外の不
純物元素をクリスタルバージルコニウム水準まで
敢えて低減させる必要はなく、スポンジジルコニ
ウム水準でも十分である。 本発明は、このような知見から酸素濃度のみを
クリスタルバージルコニウムと同等レベルとする
ことができるジルコニウムの製造方法につき鋭意
検討した結果、達成されたものである。 すなわち、本発明は、ジルコニウム原料又はそ
の溶解材原料をハースのハースモールド内に入
れ、真空雰囲気中でエネルギー密度50W/mm2以上
の熱源を前記原料表面に照射してその照射点下の
前記原料は表面から底部まで溶融させると共に、
前記照射点を前記ハースモールド内の原料表面全
体にわたつて相対的に走査させる工程を1回以上
繰り返し、原料中の酸素量を低めるものである。
得られる鋳塊を真空雰囲気中又は不活性ガス中で
再溶解し、加工可能な鋳塊とすることを特徴とす
る複合型燃料被覆管用金属ジルコニウムの製造方
法である。特に、250W/mm2以上が好ましい。 〔発明の実施例〕 第2図は本発明の一実施例を示すフロー図であ
つて、Zrスポンジを原料とし、例えば電子ビー
ムを熱源とする溶解炉を用いハースモールド内に
原料を挿入し、ハースを移動させながらZrスポ
ンジを一部分ずつ融解する操作を少なくとも1回
以上繰り返す。そして溶解後の棒状鋳塊を真空雰
囲気中又は不活性ガス雰囲気中で再溶解し、加工
が可能な低酸素濃度の鋳塊とする。 次いで従来の製造方法同様、Zr合金(ジルカ
ロイ)と本発明で製造した低酸素濃度のZr鋳塊
とを用いて複合被覆ビレツトを形成し、熱間押
出、管縮小加工により所定の複合型燃料被覆管が
作製される。 原料として、酸素濃度400ppm以上、酸素以外
の不純物量は合計で1000〜5000ppmのZrスポン
ジ又はその溶解材が用いられる。 電子ビームを用いる真空溶解では、Zrスポン
ジに固溶している400〜1500ppm程度の酸素を
300ppm以下に低下させることができる。一般的
には、ジルコニウム酸化物(ZrO2)の解離圧は
非常に小さく、10-18torr程度(1800℃)の真空
度にしなければジルコニウムと酸素に解離しない
ことが知られている。しかし、ジルコニウム中の
酸素濃度が400〜1500ppm以下程度の範囲の濃度
であれば低級酸化物(ZrO)の形で蒸発除去でき
ることが明らかになつた。すなわち、ジルコニウ
ムの場合、ジルコニウム自体の蒸気圧とジルコニ
ウムの低級酸化物の蒸気圧を比較すると後者のほ
うが大きい(蒸気圧比ZrO/Zr=102)。したがつ
て、電子ビームを用いて真空溶解を効率的に行な
えば低酸素化が可能である。 そのためには、電子ビームのエネルギ密度が最
も重要であることが分つた。この理由は、エネル
ギ密度を高めると、溶融プール表面が極めて高温
になり、酸素がZrOの形で蒸発、除去されるため
である。第3図にジルコニウム中の酸素量と溶解
時のエネルギ密度との関係を示す。低酸素化効果
は、エネルギ密度50W/mm2以上で得られる。 真空度は高いほど好ましいが、ジルコニウムの
蒸気圧は4×10-5torr(溶解温度2200Kにおいて)
であり、あまり真空度を高くするとジルコニウム
の蒸発損失が大きくなり好ましくない。真空度は
10-4〜10-6torrが好ましい。 溶解回数は、多いほど酸素は低下するが、これ
は溶融プールを真空中にさらす時間に相当する。
したがつて、溶解回数はハース移動速度を遅くす
るほど少なくてすむ。 電子ビームによるハース溶解法は、第4図に示
す方法で行うことができる。第4図において、1
はフイラメント、2はカソード、3はアノード、
4,5は集束コイルであり点線は電子線を示して
いる。ジルコニウム原料6を図中、矢印でAで示
す方向に徐々に移動させ、この原料表面に電子線
を照射して一部ずつ溶融させる。図において、7
は溶融部、8は凝固部である。前記溶融部7はハ
ース9のハースモールド10の底部まで至る。す
なわち、電子ビームの照射点下の原料6は、その
表面から底部まで溶融されるようになつている。
そして、ハース9を前記の如く矢印A方向に走査
させることによつて、前記照射点が原料6の表面
全体にわたつて移動するようになつている。 本発明は、溶解原料が粉末状でも棒状でも溶解
容器(例えば水冷銅ハース)中に適当に配列する
ことにより同様の効果が得られる。また、本発明
のもう一つの重要なプロセスは、ハースの形状の
鋳塊をロツド溶解し、以降の複合被覆管加工を施
すことである。 本発明において、スポンジジルコニウム又はそ
の溶解材を真空雰囲気中で溶解する工程、低酸素
鋳塊の溶解方法は、電子ビーム溶解の他、低酸素
鋳塊を再溶解できる方法であれば、真空アーク溶
解、プラズマアーク溶解でも可能である。 このような方法によつて得られるジルコニウム
として、例えば重量でAl100ppm、以下、
C500ppm以下、Cr300ppm以下、Hf200ppm以
下、Fe1000ppm以下、Pb200ppm以下、
Nb200ppm以下、Ni100ppm以下、Si200ppm以
下、Ta200ppm以下、Sn100ppm以下、
W100ppm以下、N80ppm以下、O400ppm以下、
その他の不純物を含めて総量1000〜5000ppm、残
部Zrからなるものが得られる。 この金属ジルコニウムは燃料被覆の内面にライ
ニングされるが、核燃料ペレツトを被覆するジル
コニウム合金としては、重量でSn1.20〜1.70%,
Fe0.07〜0.20%,Cr0.05〜0.15%,Ni0.03〜0.08
%,Fe,Cr,Ni合計が0.18〜0.38%、残部Zr及
び不純物からなるジルコニウム合金、あるいは重
量でSn1.20〜1.70%,Fe0.18〜0.24%,Cr0.07〜
0.13%,Fe,Cr,Ni合計が0.28〜0.37%、残部Zr
及び不純物からなるジルコニウム合金が望まし
い。 第1表に本発明の一工程である電子ビームによ
るハース溶解条件を示す。第2表に試験に用いた
ジルコニウム原料の不純物元素量の分析結果を示
す。実施例1〜3の原料は、ASTM・B―351―
79グレードR60001のスポンジジルコニウムで、
8mmφ棒状である。実施例4のそれは、reactor
gradeジルコニウムで、スポンジ状である。
[Field of Application of the Invention] The present invention relates to a method for producing metallic zirconium that is lined on the inner surface of a cladding tube made of a zirconium alloy that coats nuclear fuel pellets. [Background of the Invention] At present, fuel cladding tubes that house nuclear fuel in nuclear reactors are used in nuclear reactors, so they must (1) have excellent corrosion resistance, (2) be non-reactive and have good thermal conductivity. (3) high toughness and ductility; and (4) small neutron absorption cross section. Zirconium alloys are widely used as fuel cladding tubes because they satisfy the above characteristics. However, although fuel cladding made of zirconium alloy is an excellent fuel cladding under steady conditions,
When load fluctuations in a nuclear reactor are large, stress corrosion cracking may occur due to corrosion caused by iodine gas released from nuclear fuel and stress caused by expansion of fuel pellets, and there is a risk of damage. As a method of preventing stress corrosion cracking of fuel cladding, various metal barriers are provided between nuclear fuel pellets and cladding. In the case of cladding tubes using zirconium alloys, composite cladding tubes lined with pure zirconium as a metal barrier are used (Japanese Patent Laid-Open No.
54-59600). The reason for this is that pure zirconium maintains its softness during neutron irradiation compared to zirconium alloy, reduces local strain generated in the zirconium alloy cladding, and has the effect of preventing stress corrosion cracking. However, according to the inventors' experiments, the pure zirconium layer (hereinafter referred to as zirconium liner)
It was found that extremely high purity is required to maintain softness during irradiation. Especially in high combustion conditions, zirconium liners require purity levels of crystal bar zirconium to be effective. When the purity is on the sponge zirconium level, the degree of radiation hardening is large and it cannot be expected to be sufficiently effective as a liner. The conventional manufacturing method for crystal bar zirconium is to produce a zirconium crystal bar by iodizing sponge Zr and chemical vapor deposition, as shown in FIG.
However, this method has an extremely slow reaction rate and cannot be mass-produced, so the Zr obtained is extremely expensive. Conventionally, as a method for refining zirconium, a method is known in which chloride of zirconium is reduced with an active metal such as Mg to produce an ingot that can be processed by vacuum arc melting. In the case of this method, deoxidation is not possible even in vacuum arc melting, and the oxygen present during reduction continues in the product as it is, making it impossible to produce low-oxygen zirconium. [Object of the Invention] An object of the present invention is to provide a method for mass-producing zirconium metal for composite fuel cladding tubes, which has an oxygen concentration on the order of crystal verzirconium and has a low degree of irradiation hardening. [Summary of the Invention] The present inventors have discovered that it is oxygen among the impurity elements in metallic zirconium that induces radiation hardening in the zirconium liner material, and that other impurity elements such as Al, C, Cr, Hf, We focused on the fact that Fe and other elements contained in ordinary sponge zirconium have almost no effect on radiation hardening.
Therefore, it is not necessary for the zirconium liner material to intentionally reduce the impurity elements other than oxygen to the crystal bar zirconium level, and a sponge zirconium level is sufficient. The present invention was achieved based on this knowledge and as a result of extensive research into a method for producing zirconium that can bring only the oxygen concentration to the same level as crystal verzirconium. That is, in the present invention, a zirconium raw material or a molten raw material thereof is placed in a hearth mold, and a heat source with an energy density of 50 W/mm 2 or more is irradiated onto the surface of the raw material in a vacuum atmosphere to remove the raw material below the irradiation point. is melted from the surface to the bottom,
The process of relatively scanning the irradiation point over the entire surface of the raw material in the hearth mold is repeated one or more times to reduce the amount of oxygen in the raw material.
This is a method for producing metal zirconium for composite fuel cladding tubes, which is characterized in that the obtained ingot is remelted in a vacuum atmosphere or in an inert gas to obtain a processable ingot. In particular, 250 W/mm 2 or more is preferable. [Embodiment of the Invention] Fig. 2 is a flow diagram showing an embodiment of the present invention, in which Zr sponge is used as a raw material, and the raw material is inserted into a hearth mold using a melting furnace using, for example, an electron beam as a heat source. Repeat the operation of melting the Zr sponge one part at a time while moving the hearth at least once. The rod-shaped ingot after melting is then remelted in a vacuum atmosphere or an inert gas atmosphere to produce an ingot with a low oxygen concentration that can be processed. Next, as in the conventional manufacturing method, a composite cladding billet is formed using Zr alloy (Zircaloy) and the low oxygen concentration Zr ingot manufactured by the present invention, and a predetermined composite fuel cladding is formed by hot extrusion and tube reduction processing. A tube is created. As a raw material, Zr sponge or its dissolved material is used, which has an oxygen concentration of 400 ppm or more and a total amount of impurities other than oxygen of 1000 to 5000 ppm. In vacuum melting using an electron beam, approximately 400 to 1500 ppm of oxygen dissolved in Zr sponge is dissolved.
It can be lowered to 300ppm or less. Generally, it is known that the dissociation pressure of zirconium oxide (ZrO 2 ) is very low, and that it will not dissociate into zirconium and oxygen unless the vacuum level is about 10 -18 torr (1800°C). However, it has become clear that if the oxygen concentration in zirconium is in the range of 400 to 1500 ppm or less, it can be removed by evaporation in the form of lower oxides (ZrO). That is, in the case of zirconium, when comparing the vapor pressure of zirconium itself and the vapor pressure of a lower oxide of zirconium, the latter is larger (vapor pressure ratio ZrO/Zr=10 2 ). Therefore, if vacuum melting is efficiently performed using an electron beam, it is possible to reduce the oxygen content. For this purpose, it was found that the energy density of the electron beam is most important. The reason for this is that when the energy density is increased, the surface of the melt pool becomes extremely hot, and oxygen is evaporated and removed in the form of ZrO. FIG. 3 shows the relationship between the amount of oxygen in zirconium and the energy density during dissolution. The oxygen reduction effect can be obtained at an energy density of 50 W/mm 2 or more. The higher the degree of vacuum, the better, but the vapor pressure of zirconium is 4×10 -5 torr (at a melting temperature of 2200K)
Therefore, if the degree of vacuum is too high, the evaporation loss of zirconium will increase, which is not preferable. The degree of vacuum is
10 −4 to 10 −6 torr is preferred. The higher the number of melts, the lower the oxygen content, which corresponds to the time the melt pool is exposed to vacuum.
Therefore, the number of times of melting can be reduced as the hearth movement speed is made slower. The Haas melting method using an electron beam can be performed by the method shown in FIG. In Figure 4, 1
is the filament, 2 is the cathode, 3 is the anode,
4 and 5 are focusing coils, and dotted lines indicate electron beams. The zirconium raw material 6 is gradually moved in the direction indicated by the arrow A in the figure, and the surface of the raw material is irradiated with an electron beam to melt it one part at a time. In the figure, 7
8 is a melting part and 8 is a solidification part. The melted portion 7 reaches the bottom of the hearth mold 10 of the hearth 9. That is, the raw material 6 below the irradiation point of the electron beam is melted from its surface to its bottom.
By scanning the hearth 9 in the direction of the arrow A as described above, the irradiation point is moved over the entire surface of the raw material 6. In the present invention, the same effect can be obtained by appropriately arranging the melting raw materials in a melting container (for example, a water-cooled copper hearth) whether the melting raw materials are in the form of a powder or a rod. Another important process of the present invention is to melt the hearth-shaped ingot into a rod and then process it into a composite cladding tube. In the present invention, the process of melting sponge zirconium or its melting material in a vacuum atmosphere, the melting method of low-oxygen ingots, and the method of melting low-oxygen ingots include vacuum arc melting, as long as it is a method that can re-melt the low-oxygen ingots. , plasma arc melting is also possible. As zirconium obtained by such a method, for example, Al100ppm by weight, hereinafter,
C500ppm or less, Cr300ppm or less, Hf200ppm or less, Fe1000ppm or less, Pb200ppm or less,
Nb 200ppm or less, Ni 100ppm or less, Si 200ppm or less, Ta 200ppm or less, Sn 100ppm or less,
W100ppm or less, N80ppm or less, O400ppm or less,
The total amount including other impurities is 1000 to 5000 ppm, and the remainder is Zr. This metallic zirconium is lined on the inner surface of the fuel cladding, and the zirconium alloy that coats nuclear fuel pellets has a Sn content of 1.20 to 1.70% by weight.
Fe0.07~0.20%, Cr0.05~0.15%, Ni0.03~0.08
%, Fe, Cr, Ni total 0.18~0.38%, balance Zr and impurities Zirconium alloy, or by weight Sn1.20~1.70%, Fe0.18~0.24%, Cr0.07~
0.13%, Fe, Cr, Ni total 0.28-0.37%, balance Zr
A zirconium alloy consisting of impurities and impurities is desirable. Table 1 shows the hearth melting conditions using an electron beam, which is one step of the present invention. Table 2 shows the analysis results of the amount of impurity elements in the zirconium raw material used in the test. The raw materials for Examples 1 to 3 are ASTM B-351-
Made of 79 grade R60001 sponge zirconium,
It is a rod shape with a diameter of 8 mm. In Example 4, the reactor
It is made of grade zirconium and has a spongy shape.

【表】【table】

【表】 第3表は、電子ビームによるハース溶解とロツ
ド溶解の酸素量、窒素量及び水素量を比較したも
のである。
[Table] Table 3 compares the amounts of oxygen, nitrogen, and hydrogen between hearth melting using an electron beam and rod melting.

【表】 第3表から明らかなように電子ビームロツド溶
解に比べて電子ビームハース溶解はスポンジジル
コニウム中の酸素量を低減させる効果が極めて大
きい。電子ビームハース溶解では、一回の溶解回
数で300ppm以下の酸素濃度のジルコニウムの鋳
塊が得られる。 第5図に実施例2及び実施例4について溶解回
数と酸素量の関係を示す。1は実施例4、2は実
施例2の曲線である。両者とも溶解回数とともに
酸素量は低下するが、実施例4のほうがその度合
は数段大きい。溶解回数が5回以上になると実施
例4の酸素量は100ppmを下まわる。エネルギ密
度が高いほど酸素量が低下する。 第6図は実施例4について溶解回数と硬さの関
係を示す。酸素量低下とともに硬さも低くなり、
溶解回数3回以上でビツカース硬さが100(Hv)
以下となり、クリスタルバーZrとほぼ同等の硬
さを有する。 第7図は実施例1〜4について電子ビームのエ
ネルギ密度と溶解回数の関係を示す。図中、白ぬ
き〇はジルコニウム中の酸素量が300ppm以下、
黒マルは酸素量300ppm以上である。図中斜線で
示した領域が本発明の最適な出力密度と溶解回数
の組合せである。 次に実施例4に示すハースインゴツトを多数本
製造して、引続き電子ビーム溶解炉で56mmφ、長
さ約300mmの大型鋳塊状に溶製した。溶製後の鋳
塊中の酸素量は、ハースインゴツトと同等の
200ppm前後であつた。 以下の複合型燃料被覆管製造方法は従来方法と
変わらない。 まず、外筒ビレツトとして、外径79.30mm、内
径34.55mm、長さ250mmのジルコニウム合金(重量
でSn1.52%,Cr0.11%,Fe0.13%,Ni0.05%,残
部Zr)からなる中空管を製作した。内筒ビレツ
トは、上述のジルコニウムインゴツトを加工し
て、外径32.55mm、内径21.25mm、長さ253mmの中
空管に製作した。そして外筒ビレツトに内筒ビレ
ツトを挿入して二重管を製作し、以降は通常の被
覆管加工法と同様に熱間押出、冷間圧延及び焼鈍
を施こした。 第4表に最終仕上り管の寸法及びジルコニウム
ライナ厚さの測定結果を示す。
[Table] As is clear from Table 3, electron beam hearth melting is much more effective in reducing the amount of oxygen in sponge zirconium than electron beam rod melting. In electron beam hearth melting, a zirconium ingot with an oxygen concentration of 300 ppm or less can be obtained in one melting cycle. FIG. 5 shows the relationship between the number of times of dissolution and the amount of oxygen for Examples 2 and 4. 1 is the curve of Example 4, and 2 is the curve of Example 2. In both cases, the amount of oxygen decreases with the number of times of dissolution, but the degree of this decrease is several orders of magnitude higher in Example 4. When the number of melting times is 5 or more, the oxygen amount in Example 4 falls below 100 ppm. The higher the energy density, the lower the amount of oxygen. FIG. 6 shows the relationship between the number of times of melting and hardness for Example 4. As the amount of oxygen decreases, the hardness also decreases,
Bitkers hardness is 100 (Hv) after melting 3 times or more
The hardness is approximately the same as that of Crystal Bar Zr. FIG. 7 shows the relationship between the energy density of the electron beam and the number of times of melting for Examples 1 to 4. In the diagram, white circles indicate that the amount of oxygen in zirconium is less than 300 ppm.
Black circles have an oxygen content of 300 ppm or more. The shaded area in the figure is the optimal combination of power density and melting frequency according to the present invention. Next, a large number of hearth ingots as shown in Example 4 were manufactured and subsequently melted into a large ingot having a diameter of 56 mm and a length of about 300 mm in an electron beam melting furnace. The amount of oxygen in the ingot after melting is the same as that in hearth ingots.
It was around 200ppm. The following composite fuel cladding manufacturing method is the same as the conventional method. First, the outer billet is made of a zirconium alloy (Sn1.52%, Cr0.11%, Fe0.13%, Ni0.05%, balance Zr by weight) with an outer diameter of 79.30 mm, an inner diameter of 34.55 mm, and a length of 250 mm. I made a hollow tube. The inner billet was fabricated into a hollow tube with an outer diameter of 32.55 mm, an inner diameter of 21.25 mm, and a length of 253 mm by processing the above-mentioned zirconium ingot. Then, the inner billet was inserted into the outer billet to produce a double tube, and thereafter hot extrusion, cold rolling, and annealing were performed in the same manner as the usual cladding tube processing method. Table 4 shows the dimensions of the final finished pipe and the measurement results of the zirconium liner thickness.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、低酸素濃度のジ
ルコニウム素材を量産的にかつ安価に得られるの
で、照射硬化の極めて少ない高信頼性かつ高性能
な燃料被覆管の製造が容易となる。
As described above, according to the present invention, a zirconium material with a low oxygen concentration can be obtained in mass production at a low cost, making it easy to manufacture highly reliable and high-performance fuel cladding tubes with extremely little irradiation hardening.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のクリスタルバージルコニウム素
材を用いる複合型燃料被覆管の製造工程図、第2
図は本発明の一実施例を示す製造工程図、第3図
はエネルギ密度と酸素量との関係を示す線図、第
4図は電子ビームによるハース溶解法を示す説明
図、第5図は本発明のハース溶解回数とジルコニ
ウム中の酸素量の関係図、第6図はハース溶解回
数とジルコニウムの硬さの関係図、第7図は電子
ビームのエネルギ密度と溶解回数の関係図であ
る。 1…フイラメント、2…カソード、3…アノー
ド、4,5…集束コイル、6…ジルコニウム原
料。
Figure 1 is a manufacturing process diagram of a composite fuel cladding tube using conventional crystal verzirconium material;
The figure is a manufacturing process diagram showing one embodiment of the present invention, Figure 3 is a diagram showing the relationship between energy density and oxygen content, Figure 4 is an explanatory diagram showing the Haas melting method using an electron beam, and Figure 5 is a diagram showing the relationship between energy density and oxygen content. FIG. 6 is a diagram showing the relationship between the number of hearth melts and the amount of oxygen in zirconium according to the present invention, FIG. 6 is a diagram showing the relationship between the number of hearth melts and the hardness of zirconium, and FIG. 7 is a diagram showing the relationship between the energy density of the electron beam and the number of melts. DESCRIPTION OF SYMBOLS 1... Filament, 2... Cathode, 3... Anode, 4, 5... Focusing coil, 6... Zirconium raw material.

Claims (1)

【特許請求の範囲】 1 ジルコニウム原料又はその溶解材原料をハー
スのハースモールド内に入れ、真空雰囲気中でエ
ネルギー密度50W/mm2以上の熱源を前記原料表面
に照射してその照射点下の前記原料は表面から底
部まで溶融させると共に、前記照射点を前記ハー
スモールド内の原料表面全体にわたつて相対的に
走査させる工程を1回以上繰り返し、前記原料中
の酸素含有量を減少させることを特徴とする複合
型燃料被覆管用金属ジルコニウムの製造方法。 2 特許請求の範囲第1項において、前記ジルコ
ニウム原料又はその溶解材は、酸素濃度400ppm
以上、酸素以外の不純物量の合計が1000〜
5000ppmのスポンジジルコニウムである複合型燃
料被覆管用金属ジルコニウムの製造方法。 3 特許請求の範囲第1項において、ジルコニウ
ム原料又はその溶解材の溶融工程は、電子ビーム
による溶融工程である複合型燃料被覆管用金属ジ
ルコニウムの製造方法。 4 特許請求の範囲第1項において、前記溶融に
よつて前記原料中の酸素含有量を400ppm以下に
する複合型燃料被覆管用金属ジルコニウムの製造
方法。
[Scope of Claims] 1. A zirconium raw material or its molten raw material is placed in a hearth mold, and a heat source with an energy density of 50 W/mm 2 or more is irradiated onto the surface of the raw material in a vacuum atmosphere to reduce the temperature below the irradiation point. The raw material is melted from the surface to the bottom, and the process of relatively scanning the irradiation point over the entire surface of the raw material in the hearth mold is repeated one or more times to reduce the oxygen content in the raw material. A method for producing metallic zirconium for composite fuel cladding. 2 In claim 1, the zirconium raw material or its melting material has an oxygen concentration of 400 ppm.
The total amount of impurities other than oxygen is 1000~
A method for manufacturing zirconium metal for composite fuel cladding, which is 5000 ppm sponge zirconium. 3. The method for producing metal zirconium for a composite fuel cladding tube, as set forth in claim 1, wherein the step of melting the zirconium raw material or its melting material is a step of melting with an electron beam. 4. The method for producing metal zirconium for a composite fuel cladding tube, as set forth in claim 1, in which the oxygen content in the raw material is reduced to 400 ppm or less by the melting.
JP58133249A 1983-07-21 1983-07-21 Manufacture of metal zirconium for composite type fuel coated pipe Granted JPS6024494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58133249A JPS6024494A (en) 1983-07-21 1983-07-21 Manufacture of metal zirconium for composite type fuel coated pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58133249A JPS6024494A (en) 1983-07-21 1983-07-21 Manufacture of metal zirconium for composite type fuel coated pipe

Publications (2)

Publication Number Publication Date
JPS6024494A JPS6024494A (en) 1985-02-07
JPS6360818B2 true JPS6360818B2 (en) 1988-11-25

Family

ID=15100190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58133249A Granted JPS6024494A (en) 1983-07-21 1983-07-21 Manufacture of metal zirconium for composite type fuel coated pipe

Country Status (1)

Country Link
JP (1) JPS6024494A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138295A (en) * 1986-12-01 1988-06-10 日本核燃料開発株式会社 Nuclear fuel element
US4849016A (en) * 1987-12-18 1989-07-18 Westinghouse Electric Corp. Combined ultra slow electron beam and vacuum arc melting for barrier tube shell material
JP2582490B2 (en) * 1991-08-22 1997-02-19 コナミ株式会社 Target structure of lightning target hitting amusement machine

Also Published As

Publication number Publication date
JPS6024494A (en) 1985-02-07

Similar Documents

Publication Publication Date Title
US20060225815A1 (en) Zirconium alloy and components for the core of light water-cooled nuclear reactors
US4810461A (en) Zirconium-based alloy with high corrosion resistance
US4718949A (en) Method of producing a cladding tube for reactor fuel
JP4455603B2 (en) Zirconium alloy composition for nuclear power and manufacturing method thereof
KR20080074568A (en) High fe contained zirconium alloy compositions having excellent corrosion resistance and preparation method thereof
US9099205B2 (en) Zirconium alloys for a nuclear fuel cladding having a superior oxidation resistance in a reactor accident condition, zirconium alloy nuclear fuel claddings prepared by using thereof and methods of preparing the same
US6544361B1 (en) Process for manufacturing thin components made of zirconium-based alloy and straps thus produced
US4627148A (en) Method of producing high-purity metal member
US20100108204A1 (en) Zirconium alloy composition for nuclear fuel cladding tube forming protective oxide film, zirconium alloy nuclear fuel cladding tube manufactured using the composition, and method of manufacturing the zirconium alloy nuclear fuel cladding tube
US9202597B2 (en) Zirconium alloys for a nuclear fuel cladding having a superior corrosion resistance by reducing an amount of alloying elements and methods of preparing a zirconium alloy nuclear fuel cladding using thereof
US20120145287A1 (en) Zirconium alloy compositions having excellent corrosion resistance by the control of various metal-oxide and precipitate and preparation method thereof
US5190721A (en) Zirconium-bismuth-niobium alloy for nuclear fuel cladding barrier
JPS6360818B2 (en)
JPS6214085A (en) Manufacture of composite type nuclear fuel coated tube
US9111650B2 (en) Zirconium alloys for a nuclear fuel cladding having a superior oxidation resistance in a severe reactor operation condition and methods of preparing a zirconium alloy nuclear cladding by using thereof
JP3483804B2 (en) Manufacturing method of corrosion resistant zirconium based alloy tube
JP2600057B2 (en) Cladding tube, spacer, and channel box for highly corrosion resistant nuclear fuel, fuel assembly thereof, and method of manufacturing the same
EP0745258B1 (en) A nuclear fuel element for a pressurized water reactor and a method for manufacturing the same
JPH01147028A (en) Production of zirconium alloy for liner of fuel element
KR100835830B1 (en) Preparation method for zirconium alloys for nuclear fuel cladding tubes having excellent corrosion resistance by the control of beta;-nb distribution
JP3501106B2 (en) Fuel assembly for light water reactor, parts and alloys used therefor, and manufacturing method
KR102049430B1 (en) Nuclear fuel cladding tube and manufacturing method of the same
KR100916652B1 (en) High Fe contained zirconium alloy compositions having excellent corrosion resistance and preparation method thereof
KR20240015064A (en) Uranium-based alloys (variants)
JPH1073690A (en) Highly anticorrosive cladding tube for nuclear fuel, spacer, channel box, fuel assembly thereof and method for manufacturing it