JPS6360788B2 - - Google Patents

Info

Publication number
JPS6360788B2
JPS6360788B2 JP3310981A JP3310981A JPS6360788B2 JP S6360788 B2 JPS6360788 B2 JP S6360788B2 JP 3310981 A JP3310981 A JP 3310981A JP 3310981 A JP3310981 A JP 3310981A JP S6360788 B2 JPS6360788 B2 JP S6360788B2
Authority
JP
Japan
Prior art keywords
resin
parts
melamine
melamine resin
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3310981A
Other languages
Japanese (ja)
Other versions
JPS57147542A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3310981A priority Critical patent/JPS57147542A/en
Publication of JPS57147542A publication Critical patent/JPS57147542A/en
Publication of JPS6360788B2 publication Critical patent/JPS6360788B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、自己重合性を有するアルコールとメ
ラミン類、ホルムアルデヒド類より製造したメラ
ミン樹脂とフエノール樹脂及び/又はエポキシ樹
脂とを混合し又は共縮合して得られる熱硬化性樹
脂組成物に関するものである。 メラミン樹脂は、耐熱耐燃性、耐アーク性等に
優れ、各種成形品、積層品、塗料、繊維処理用等
に広く使用され、特に難燃性には特筆すべきもの
があり、最近で安価で、かつ毒性の少ない、難燃
性賦与剤として注目されている。しかし、一般に
含浸性の良い低縮合メラミン樹脂は、貯蔵安定性
に劣り、又各種樹脂、有機溶媒との相溶性が悪い
ため活用が制限されている。そこで従来メラミン
樹脂の安定性及び有機溶剤等に対する相溶性を改
善するためブタノール、メタノール等によりエー
テル化する方法がとられている。しかし、このよ
うにして安定化したメラミン樹脂は、硬化後も樹
脂組成中にアルキルエーテル基が残存するため難
燃性賦与効果が充分でなく、また更に熱処理した
場合、脱アルコール反応によるガス発生のためふ
くれ等が生ずる問題があり、特に後者の問題は、
難燃性賦与の要求の強いプリント配線基材用積層
板の用途においては半田耐熱性の著しい低下につ
ながり、結局この方法によつて満足できる効果が
得られていない。 本発明者らはこれらの状況をふまえ鋭意研究を
進めた結果、メラミン樹脂の製造に際して、自己
重合性を有するアルコールを共存させて反応を行
なえば、メラミン樹脂の安定性、有機溶媒に対す
る相溶性が向上し、既存のフエノール樹脂及びエ
ポキシ樹脂と良好に相溶し、更に、これらの樹脂
組成物が、例えば難燃性、難熱性に優れるばかり
でなく、電気特性、機械特性、半田耐熱性等にも
良好な積層板をもたらすことを見出し、本発明を
完成させるに至つた。 即ち、本発明は、 自己重合性を有するアルコール類、メラミン類
及びホルムアルデヒド類により製造されるメラミ
ン樹脂(A)、フエノール樹脂及び/又はエポキシ樹
脂(B)から成る熱硬化性樹脂組成物に関し、特にそ
の自己重合性を有するアルコールが、フルフリル
アルコール、水酸基を有する(メタ)アクリル酸
エステルであることを特徴とする熱硬化性樹脂組
成物に関する。 本発明は、自己重合性を有するアルコール類
と、メラミン類、ホルムアルデヒド類を用いて製
造したメラミン樹脂とフエノール樹脂及び/又は
エポキシ樹脂を混合し又は共縮合せしめるところ
に特徴があり、メラミン樹脂に自己重合性を有す
るアルコール類を用いることにより、酸性条件下
において従来のブチルエーテル化メラミン樹脂、
メチルエーテル化メラミン樹脂を用いた場合と異
なり、樹脂組成物を用いて積層板等に成形する際
又は熱処理する際にアルコールが自己重合し樹脂
化するため、ガス発生によるふくれ等の問題を全
面的に解決し得るものである。 本発明における自己重合性を有するアルコール
類とは、それ自身が相互に反応してオリゴマー化
ないしはポリマー化するものを称し、例えばβ―
ヒドロキシエチルアクリレート、β―ヒドロキシ
エチルメタクリレート、β―ヒドロキシプロピル
アクリレート、トリメチロールエタンジアクリレ
ート等の水酸基を有するアクリル酸エステル、或
はアリルアルコールのごときラジカル重合性を有
するもの、フルフリルアルコールのごとき酸性下
で縮合反応により重合するもの、グリシドールの
ごとき開環重合するもの等があげられるが、これ
らのうち樹脂組成物の難燃性の点からはフルフリ
ルアルコールが好ましく、又可撓性、電気性能の
点からは、水酸基を有するアクリル酸エステル類
が好ましい。またこれらを二種以上併用してもよ
い。また本発明におけるメラミン類とは、メラミ
ン及びベンゾグアナミン、アセトグアナミン、ビ
ニルグアナミン等のグアナミン類を示し難燃効果
の点から窒素分の多いメラミンが好ましい。 ホルムアルデヒド類としてはホルマリン、パラ
ホルムアルデヒド、トリオキサン、ヘキサメチレ
ンテトラミン等が挙げられる。本発明のメラミン
樹脂は該メラミン類とホルムアルデヒド類及び前
記自己重合性を有するアルコールを用いて製造さ
れるが、この際の原料の配合比、配合する順序等
は特に限定されるものではない。又各種反応触媒
の使用、反応温度、反応時間等の条件も通常のあ
らゆる条件において適用が可能である。一般的な
条件をあげれば、メラミン類に対するホルムアル
デヒド類の量としてはモル比で1.5以上、好まし
くは1.5〜6であり、触媒としては、アルカリ金
属、アルカリ土類金属の水酸化物、炭酸塩、酢酸
塩、アミン類等の塩基性触媒、塩酸、炭酸、シユ
ー酸、ギ酸、リン酸等の酸触媒を用いるのが通常
であるが、特に触媒を用いなくともよいし、反応
温度は通常60℃以上で行なわれる。 自己重合性を有するアルコール類の量は、有機
溶媒に対する相溶性と安定性の点からメラミン類
1モルに対し0.3モル以上、好ましくは0.3〜6モ
ルが適当である。添加時期は、メラミン類とホル
ムアルデヒド類の反応初期、または反応途中に加
え更に反応をすすめる方法が適当である。好まし
くはメラミン類とホルムアルデヒド類を加え昇温
後又は昇温反応後自己重合性アルコール類を反応
させるのがよい。又自己重合性アルコール類を添
加後はPH1〜6又は8〜14で反応させるのが好ま
しく、特に望ましい条件はPH2〜4又は9〜12で
ある。また必要に応じて、反応前後もしくは反応
中に、メタノール、エタノール等のアルコール
類、ジエチレングリコール、ポリエチレングリコ
ール等グリコール類、尿素、チオ尿素、ジシアン
ジアミド等の添加も行なわれる。 本発明で使用されるフエノール樹脂とは、フエ
ノール類とホルムアルデヒド類を付加縮合して製
造するもの一般を示し、他に桐油、芳香族炭化水
素、ポリブタジエン、ポリエーテル、ポリウレタ
ン、ポリエステル等により変性したものも含む。
ここでフエノール類とは例えばフエノール、クレ
ゾール、ノニルフエノール、オクチルフエノー
ル、ハロゲン化フエノール、ビスフエノールA、
ビスフエノールF、ハロゲン化ビスフエノール
A、レゾルシン、カテコール等の1価または多価
のフエノールの総称である。またここで言うホル
ムアルデヒド類としては前記したものが使用され
る又、エポキシ樹脂とは、ポリグリシジルエーテ
ル、ポリグリシジルエステル、ポリグリシジルア
ミン等のエポキシ基を有する化合物の総称であ
る。代表的なものとしては前記フエノール類、ノ
ボラツク型フエノール樹脂、又は水添ビスフエノ
ールA、グリセリンのような多価アルコール、フ
タル酸、テレフタル酸、トリメリツト酸、アジピ
ン酸等のポリカルボン酸、ジアミノジフエニルメ
タン、パラアミノフエノール、アニリン等にエピ
クロルヒドリンを反応させて得られたものがあ
る。 本発明では安定性及び相溶性が改良されたメラ
ミン樹脂によりフエノール樹脂及び/又はエポキ
シ樹脂に難燃性を賦与する。かかるメラミン樹脂
は構造上含有するトリアジン環により少量でも難
燃性賦与に効果を発揮し、メラミン樹脂の配合量
を増すにつれ効果は比例して増大する。従つて配
合量は用途、目的、要求性能等により適宜選択さ
れれば良い。一例をあげれば、紙フエノール積層
板の場合、樹脂組成物固形分に対しメラミン構造
に換算し5重量%以上占める様に本発明のメラミ
ン樹脂を配合するとUL94V―0に合格する難燃
性を有する積層板が得られる。ただし、桐油等の
可燃性の改質剤により改質を行なつた変性フエノ
ール樹脂では、メラミン樹脂をより多く使用する
必要がある。 メラミン樹脂とフエノール樹脂により樹脂組成
物を製造する場合には、両者を混合しても共縮合
してもよい。本発明では、メラミン類とホルムア
ルデヒド及び自己重合性を有するアルコール類の
反応により生成する安定性、相溶性の優れたメラ
ミン樹脂を利用するところに特徴があるためフエ
ノール樹脂と共縮合を行なう場合に特に方法は限
定されない。例えば、フエノール類、メラミン
類、ホルムアルデヒドと自己重合性を有するアル
コール類とを同時に仕込み各樹脂の合成と共縮合
を同時に進行させるような方法も必要に応じて行
なわれる。 エポキシ樹脂とメラミン樹脂により樹脂組成物
を製造する場合、通常はメラミン樹脂をあらかじ
め製造し、これにエポキシ樹脂を配合混合して用
いるのが一般的で、フエノール樹脂の場合と同
様、メラミン樹脂の配合割合に応じて難燃性が賦
与される。又、必要に応じて、メラミン樹脂とフ
エノール樹脂、エポキシ樹脂を併用して樹脂組成
物を製造しても良い。 本発明における樹脂組成物は、従来のメラミン
樹脂を含む組成物と比べ有機溶剤に対する相溶性
が著しく改良されているため、必要に応じて有機
溶剤により希釈したり溶剤置換して使用すること
も可能である。使用しうる溶剤の例をあげれば、
メタノール、エタノール、イソプロピルアルコー
ル等のアルコール類、アセトン、メチルエチルケ
トン等のケトン類、トルエン、キシレン等の芳香
族炭化水素、ジメチルホルムアミド、ジメチルア
セトアミド、N―メチルピロリドン等のアミド
類、酢酸エチル等のエステル類、及びこれらの混
合溶剤がある。 本発明における樹脂組成物は熱処理等により容
易に硬化するが、硬化を促進するため、アミン
類、酸、カルボン酸無水物等の硬化剤や過酸化物
等の重合開始剤、反応性希釈剤、重合禁止剤等を
樹脂組成物製造過程又は製造後に配合することも
必要に応じて行なわれる。 本発明の樹脂組成物は、積層板、成形材料、接
着剤をはじめとした巾広い用途に適用できるが、
特に電気絶縁性積層板に応用した場合、安定性の
良好な樹脂ワニスとして、難燃性、半田耐熱性に
優れ、電気絶縁性、耐薬品性等も良好な積層板が
得られる。 本発明の樹脂組成物はそれ自体優れた難燃性を
有するが、さらに効果をあげるため、ハロゲン化
合物、リン化合物、アンチモン化合物等の他の難
燃剤と併用することも必要に応じて行なわれる。 以下実施例を示すが、以下部及び%は重量基準
による。 実施例 1 メラミン126部、37%ホルマリン243部を加え、
水酸化バリウムでPH=11に調整した。70℃に昇温
後β―ヒドロキシエチルアクリレート260部を加
え、90℃で2時間反応させ、さらに減圧下脱水し
ながら60℃で6時間反応させ炭酸ガスを吹込みPH
7.5とし、過することによりアルカリイオンを
除去して粘度の高い樹脂M―1を得た。M―1は
メタノール、メチルエチルケトン、トルエン、及
びこれらの混合溶媒に可溶で、これらの溶剤で不
揮発分50%に希釈した樹脂液は常温で2ケ月放置
しても変化しなかつた。 一方、フエノール460部、37%ホルマリン460部
及び25%アンモニア水18.4部を混合し80℃で3時
間反応を行なつた。しかる後にメラミン樹脂M―
1100部、エポキシ樹脂(大日本インキ化学工業(株)
製エピクロン850)30部を加え、減圧脱水した後、
メチルエチルケトン750部で希釈して、均一な樹
脂ワニスを製造した。 このワニスを厚さ10ミルのクラフト紙に含浸さ
せ樹脂付着分50%の樹脂含浸積層基材とした。次
いでこの含浸積層基材を所定の枚数を重ね合せ
150℃、80Kg/cm2、1時間の積層条件で加熱圧着
せしめて厚さ1.6mmの積層板を作成した。 実施例 2 メラミン126部と37%ホルマリン180部、フルフ
リルアルコール171部を加え、トリエチルアミン
でPH9.5に調整した。95℃に昇温後、常圧で脱水
しながら95℃で6時間反応させた。この間PHを
9.5〜10.0に保つべくトリエチルアミンを適時追
加した。さらに減圧脱水し水をのぞき粘度の高い
メラミン樹脂M―2を得た。このM―2はメタノ
ール、トルエン、メチルエチルケトン、トルエン
及びこれらの混合溶剤に可溶で、これら溶剤で希
釈した不揮発分50%の樹脂液は常温で2カ月放置
しても変化しなかつた。 一方、メタクレゾール540部、桐油300部、ノニ
ルフエノール240部およびリン酸6部より成る混
合物を120℃で3時間反応させた。これをいつた
ん90℃に冷却した後、37%ホルマリン650部、ア
ンモニア水10部を加えさらに95℃で5時間反応し
た。減圧脱水後、メラミン樹脂M―2300部をメタ
ノール・トルエン混合溶剤1300部に溶解したもの
を加え、均一な樹脂ワニスを得た。 次いでこの変性フエノール樹脂ワニスを用い実
施例1と同様の操作を繰り返して厚さ1.6mmの積
層板を作成した。 実施例 3 メラミン126部、37%ホルマリン300部、フエノ
ール40部、フルフリルアルコール280部を加えリ
ン酸よりPH3に調整し、80℃に昇温し減圧で脱水
しながら80℃で9時間反応させると粘度の高いメ
ラミン樹脂M―3を合成した。このメラミン樹脂
は、メタノール、メチルエチルケトン、トルエン
及びこれらの混合溶剤に可溶で、これら溶剤で希
釈した不揮発分50%の樹脂液は常温で2カ月放置
しても変化しなかつた。 一方、フエノール470部、桐油200部、ブチルフ
エノール450部およびリン酸5部よりなる混合物
を120℃で3時間反応させたのち、90℃に冷却後
37%ホルマリン830部、アンモニア水10部を加え、
さらに90℃で反応した。次に減圧脱水し、メタノ
ール、トルエン混合溶剤1400部を加え桐油変性フ
エノール樹脂P―1を合成した。 この桐油変性フエノール樹脂P―1 100部に、
メラミン樹脂M―3 15部を混合し、均一な変性
フエノール樹脂ワニスを製造した。 次いでこの変性フエノール樹脂ワニスを用い実
施例1と同様の操作を繰返して厚さ1.6mmの積層
板を作成した。 実施例 4 エポキシ樹脂(大日本インキ化学工業株式会社
製品エピクロン1051)450部、ノボラツク型フエ
ノール樹脂(大日本インキ化学工業株式会社製品
バーカムTD2123―60M)170部及び実施例1の
メラミン樹脂M―1 160部をメチルエチルケト
ン640部で溶解混合して、均一なエポキシ樹脂ワ
ニスを製造した。 このエポキシ樹脂ワニスをガラス布基材に含浸
させ樹脂付着分50%の樹脂含浸積層基材とした。
次いでこの含浸積層基材を所定の枚数重ね合せ
150℃、40Kg/cm2及び1時間の積層条件で加熱圧
締せしめて厚さ1.6mmの積層板を作成した。 実施例 5 エポキシ樹脂(大日本インキ化学工業株式会社
製品エピクロン1051)100部、ジシアンジアミド
4部および実施例2のメラミン樹脂M―2 30部
をメチルエチルケトン130部に溶解混合して均一
なエポキシ樹脂ワニスを製造した。 次いで、このエポキシ樹脂ワニスを用い実施例
4と同様の操作を繰り返して厚さ1.6mmの積層板
を作成した。 実施例 6 エポキシ樹脂(大日本インキ化学工業株式会社
製品エピクロン850)180部、ポリビニルフエノー
ル(丸善石油(株)製レジンM)120部及び実施例3
のメラミン樹脂M―3 30部をメチルエチルケト
ン330部で溶解混合して均一なエポキシ樹脂ワニ
スを製造した。 次にこのエポキシ樹脂ワニスを用い実施例4と
同様な操作を繰り返して厚さ1.6mmの積層板を作
成した。 比較例 1 メラミン126部、37%ホルマリン180部を加えト
リエチルアミンでPH=10.5に調整し、95℃に昇温
後トリエチルアミン適時追加し、PHを10〜11に保
ちながら95℃で8時間反応させて均一なメラミン
樹脂水溶液M―4を製造した。 このメラミン樹脂M―4は、常温で6日後に沈
澱が生じ、樹脂液又は、その脱水物にメタノー
ル、メチルエチルケトン、トルエン及びこの混合
溶剤を加えても均一な溶液にはならず脱水濃縮後
メチルエチルケトン、メタノールを加えエポキシ
樹脂との混合を試みたが均一な樹脂液とはなら
ず、ガラス、紙基材への含浸性が悪く、積層板化
を断念せざるを得なかつた。 比較例 2 メラミン126部、37%ホルマリン243部、メタノ
ール200部を加えリン酸でPH3に調整し、この混
合物を還流温度まで昇温し10時間還流させて、均
一なメラミン樹脂液M―5を製造した。 このメラミン樹脂液M―5 30部を実施例3の
桐油変性フエノール樹脂P―1 100部に混合し
均一な変性フエノール樹脂ワニスを製造した。 次いでこの変性フエノール樹脂ワニスを用いる
以外は実施例1と同様の操作を繰り返して厚さ
1.6mmの積層板を作成した。 比較例 3 比較例2のメラミン樹脂60部とエポキシ樹脂
(大日本インキ化学工業株式会社製品エピクロン
1050)100部、ジシアンジアミド4部をメチルエ
チルケトン160部で混合溶解してエポキシ樹脂ワ
ニスを作成した。 このワニスを用いる以外は実施例4と同様の操
作を繰り返して厚さ1.6mmの積層板を作成した。 以下第1表には紙基材フエノール樹脂積層板の
特性を、第2表にはガラス布基材エポキシ樹脂積
層板の特性を示す。
The present invention relates to a thermosetting resin composition obtained by mixing or co-condensing a melamine resin produced from a self-polymerizable alcohol, melamines and formaldehydes, and a phenolic resin and/or an epoxy resin. . Melamine resin has excellent heat resistance, flame resistance, arc resistance, etc., and is widely used for various molded products, laminated products, paints, fiber processing, etc. Melamine resin is especially noteworthy for its flame retardance, and it is cheap and recent. It is attracting attention as a flame retardant filler with low toxicity. However, low condensation melamine resins, which generally have good impregnating properties, have poor storage stability and poor compatibility with various resins and organic solvents, so their use is limited. Therefore, in order to improve the stability of melamine resin and its compatibility with organic solvents, a method of etherification with butanol, methanol, etc. has been conventionally used. However, the effect of imparting flame retardance to melamine resins stabilized in this way is insufficient because the alkyl ether group remains in the resin composition even after curing, and when further heat-treated, gas generation due to dealcoholization reaction occurs. There are problems such as swelling, especially the latter problem,
In applications such as printed wiring board laminates that require high flame retardancy, this method leads to a significant decrease in soldering heat resistance, and as a result, this method does not provide a satisfactory effect. The inventors of the present invention conducted extensive research in light of these circumstances, and found that when producing melamine resin, if the reaction is carried out in the presence of an alcohol that has self-polymerizability, the stability of melamine resin and its compatibility with organic solvents will be improved. Furthermore, these resin compositions not only have excellent flame retardancy and heat retardancy, but also have excellent electrical properties, mechanical properties, soldering heat resistance, etc. The inventors have also discovered that a good laminate can also be obtained, leading to the completion of the present invention. That is, the present invention relates to a thermosetting resin composition comprising a melamine resin (A), a phenolic resin and/or an epoxy resin (B) produced from self-polymerizable alcohols, melamines and formaldehydes, and particularly The present invention relates to a thermosetting resin composition characterized in that the self-polymerizable alcohol is furfuryl alcohol or a (meth)acrylic ester having a hydroxyl group. The present invention is characterized by mixing or co-condensing a melamine resin produced using self-polymerizable alcohols, melamines, and formaldehydes with a phenolic resin and/or an epoxy resin, and the melamine resin is self-polymerized. By using polymerizable alcohols, conventional butyl etherified melamine resin,
Unlike when using methyl etherified melamine resin, the alcohol self-polymerizes and turns into a resin when the resin composition is molded into a laminate or heat treated, so problems such as blistering due to gas generation are completely eliminated. This can be solved by In the present invention, the self-polymerizable alcohols refer to alcohols that react with each other to form oligomers or polymers, such as β-
Acrylic esters with hydroxyl groups such as hydroxyethyl acrylate, β-hydroxyethyl methacrylate, β-hydroxypropyl acrylate, and trimethylolethane diacrylate, or those with radical polymerizability such as allyl alcohol, and under acidic conditions such as furfuryl alcohol. Among these, furfuryl alcohol is preferable from the viewpoint of flame retardancy of the resin composition, and from the viewpoint of flexibility and electrical performance. From this point of view, acrylic esters having a hydroxyl group are preferred. Also, two or more of these may be used in combination. Melamines in the present invention include melamine and guanamines such as benzoguanamine, acetoguanamine, and vinylguanamine, and melamine with a high nitrogen content is preferred from the viewpoint of flame retardant effect. Examples of formaldehydes include formalin, paraformaldehyde, trioxane, hexamethylenetetramine, and the like. The melamine resin of the present invention is produced using the melamine, formaldehyde, and the self-polymerizable alcohol, but the blending ratio of the raw materials, the order of blending, etc. are not particularly limited. Moreover, the conditions such as use of various reaction catalysts, reaction temperature, reaction time, etc. can be applied under all usual conditions. To give general conditions, the molar ratio of formaldehyde to melamine is 1.5 or more, preferably 1.5 to 6, and the catalyst is alkali metal, alkaline earth metal hydroxide, carbonate, A basic catalyst such as acetate or amines, or an acid catalyst such as hydrochloric acid, carbonic acid, oxalic acid, formic acid, or phosphoric acid is usually used, but it is not necessary to use a catalyst, and the reaction temperature is usually 60°C. The above is done. The amount of self-polymerizable alcohols is suitably 0.3 mol or more, preferably 0.3 to 6 mol, per 1 mol of melamine in terms of compatibility with organic solvents and stability. Appropriate timing of addition is at the beginning of the reaction between melamines and formaldehyde, or during the reaction, and then adding it during the reaction to further advance the reaction. Preferably, melamines and formaldehydes are added and the temperature is raised, or the self-polymerizable alcohol is allowed to react after the temperature is raised. Further, after adding the self-polymerizable alcohol, it is preferable to react at a pH of 1 to 6 or 8 to 14, and particularly desirable conditions are a pH of 2 to 4 or 9 to 12. If necessary, alcohols such as methanol and ethanol, glycols such as diethylene glycol and polyethylene glycol, urea, thiourea, and dicyandiamide may be added before, during or after the reaction. The phenolic resin used in the present invention generally refers to those produced by addition condensation of phenols and formaldehyde, and also those modified with tung oil, aromatic hydrocarbons, polybutadiene, polyether, polyurethane, polyester, etc. Also included.
Here, phenols include, for example, phenol, cresol, nonylphenol, octylphenol, halogenated phenol, bisphenol A,
It is a general term for monovalent or polyvalent phenols such as bisphenol F, halogenated bisphenol A, resorcinol, and catechol. The formaldehydes used here are those mentioned above, and epoxy resin is a general term for compounds having epoxy groups such as polyglycidyl ether, polyglycidyl ester, and polyglycidyl amine. Typical examples include the above-mentioned phenols, novolac type phenolic resins, hydrogenated bisphenol A, polyhydric alcohols such as glycerin, polycarboxylic acids such as phthalic acid, terephthalic acid, trimellitic acid, and adipic acid, and diaminodiphenyl. Some are obtained by reacting methane, para-aminophenol, aniline, etc. with epichlorohydrin. In the present invention, flame retardance is imparted to phenolic resins and/or epoxy resins using melamine resins with improved stability and compatibility. Such melamine resin exhibits an effect in imparting flame retardance even in a small amount due to the triazine ring it structurally contains, and the effect increases proportionately as the amount of melamine resin blended increases. Therefore, the blending amount may be appropriately selected depending on the use, purpose, required performance, etc. For example, in the case of a paper phenol laminate, if the melamine resin of the present invention is blended to account for 5% by weight or more of the melamine structure based on the solid content of the resin composition, it has flame retardancy that passes UL94V-0. A laminate is obtained. However, in modified phenolic resins modified with flammable modifiers such as tung oil, it is necessary to use more melamine resin. When producing a resin composition using a melamine resin and a phenol resin, the two may be mixed or co-condensed. The present invention is characterized by the use of a melamine resin with excellent stability and compatibility, which is produced by the reaction of melamines, formaldehyde, and self-polymerizable alcohols, and is particularly useful when cocondensing with a phenolic resin. The method is not limited. For example, a method in which phenols, melamines, formaldehyde and self-polymerizable alcohols are simultaneously charged to proceed the synthesis and co-condensation of each resin at the same time may be carried out as necessary. When manufacturing a resin composition using epoxy resin and melamine resin, it is common to manufacture the melamine resin in advance and mix it with the epoxy resin. Flame retardancy is imparted according to the proportion. Further, if necessary, a resin composition may be manufactured by using a melamine resin, a phenol resin, and an epoxy resin in combination. The resin composition of the present invention has significantly improved compatibility with organic solvents compared to conventional compositions containing melamine resins, so it can be used by diluting with an organic solvent or replacing the solvent as necessary. It is. Examples of solvents that can be used are:
Alcohols such as methanol, ethanol and isopropyl alcohol, ketones such as acetone and methyl ethyl ketone, aromatic hydrocarbons such as toluene and xylene, amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone, and esters such as ethyl acetate. , and mixed solvents thereof. The resin composition of the present invention is easily cured by heat treatment, etc., but in order to accelerate curing, curing agents such as amines, acids, carboxylic acid anhydrides, polymerization initiators such as peroxides, reactive diluents, etc. If necessary, a polymerization inhibitor or the like may be added during or after the resin composition production process. The resin composition of the present invention can be applied to a wide range of applications including laminates, molding materials, and adhesives.
Particularly when applied to electrically insulating laminates, it is possible to obtain laminates with excellent flame retardancy, solder heat resistance, electrical insulation, chemical resistance, etc. as a resin varnish with good stability. The resin composition of the present invention itself has excellent flame retardancy, but in order to further improve the effect, it may be used in combination with other flame retardants such as halogen compounds, phosphorus compounds, and antimony compounds, as necessary. Examples will be shown below, in which parts and percentages are based on weight. Example 1 Add 126 parts of melamine and 243 parts of 37% formalin,
The pH was adjusted to 11 with barium hydroxide. After raising the temperature to 70°C, add 260 parts of β-hydroxyethyl acrylate, react at 90°C for 2 hours, and further react at 60°C for 6 hours while dehydrating under reduced pressure. Carbon dioxide gas is blown into the pH.
7.5 and filtered to remove alkali ions to obtain a highly viscous resin M-1. M-1 is soluble in methanol, methyl ethyl ketone, toluene, and mixed solvents thereof, and the resin liquid diluted with these solvents to a non-volatile content of 50% did not change even after being left at room temperature for two months. On the other hand, 460 parts of phenol, 460 parts of 37% formalin, and 18.4 parts of 25% aqueous ammonia were mixed and reacted at 80°C for 3 hours. After that, melamine resin M-
1100 parts, epoxy resin (Dainippon Ink & Chemicals Co., Ltd.)
After adding 30 parts of Epicron 850) and dehydrating under reduced pressure,
A homogeneous resin varnish was prepared by diluting with 750 parts of methyl ethyl ketone. Kraft paper with a thickness of 10 mils was impregnated with this varnish to form a resin-impregnated laminated base material with a resin adhesion content of 50%. Next, a predetermined number of sheets of this impregnated laminated base material are stacked together.
A laminate plate with a thickness of 1.6 mm was produced by heat-pressing the lamination under the lamination conditions of 150° C., 80 kg/cm 2 , and 1 hour. Example 2 126 parts of melamine, 180 parts of 37% formalin, and 171 parts of furfuryl alcohol were added, and the pH was adjusted to 9.5 with triethylamine. After raising the temperature to 95°C, the mixture was reacted at 95°C for 6 hours while dehydrating at normal pressure. During this time, PH
Triethylamine was added at appropriate times to maintain the temperature between 9.5 and 10.0. Further, water was removed under reduced pressure to obtain melamine resin M-2 with high viscosity. This M-2 is soluble in methanol, toluene, methyl ethyl ketone, toluene, and mixed solvents thereof, and a resin liquid with a nonvolatile content of 50% diluted with these solvents did not change even after being left at room temperature for two months. On the other hand, a mixture consisting of 540 parts of metacresol, 300 parts of tung oil, 240 parts of nonylphenol and 6 parts of phosphoric acid was reacted at 120°C for 3 hours. After this was cooled to 90°C, 650 parts of 37% formalin and 10 parts of aqueous ammonia were added, and the mixture was further reacted at 95°C for 5 hours. After dehydration under reduced pressure, a solution of 2,300 parts of melamine resin M-2 dissolved in 1,300 parts of a mixed solvent of methanol and toluene was added to obtain a uniform resin varnish. Next, using this modified phenolic resin varnish, the same operation as in Example 1 was repeated to prepare a laminate plate with a thickness of 1.6 mm. Example 3 Add 126 parts of melamine, 300 parts of 37% formalin, 40 parts of phenol, and 280 parts of furfuryl alcohol, adjust the pH to 3 using phosphoric acid, raise the temperature to 80°C, and react at 80°C for 9 hours while dehydrating under reduced pressure. and high viscosity melamine resin M-3 was synthesized. This melamine resin is soluble in methanol, methyl ethyl ketone, toluene, and mixed solvents thereof, and a resin liquid with a nonvolatile content of 50% diluted with these solvents did not change even after being left at room temperature for two months. On the other hand, a mixture consisting of 470 parts of phenol, 200 parts of tung oil, 450 parts of butylphenol, and 5 parts of phosphoric acid was reacted at 120°C for 3 hours, and then cooled to 90°C.
Add 830 parts of 37% formalin and 10 parts of ammonia water,
The reaction was further carried out at 90°C. Next, the mixture was dehydrated under reduced pressure, and 1,400 parts of a mixed solvent of methanol and toluene were added to synthesize tung oil-modified phenolic resin P-1. To 100 parts of this tung oil modified phenolic resin P-1,
15 parts of melamine resin M-3 were mixed to produce a uniform modified phenolic resin varnish. Next, using this modified phenolic resin varnish, the same operation as in Example 1 was repeated to prepare a 1.6 mm thick laminate. Example 4 450 parts of epoxy resin (Epicron 1051, manufactured by Dainippon Ink and Chemicals Co., Ltd.), 170 parts of novolac type phenolic resin (Barcam TD2123-60M, manufactured by Dainippon Ink and Chemicals Co., Ltd.), and melamine resin M-1 of Example 1 A uniform epoxy resin varnish was produced by dissolving and mixing 160 parts with 640 parts of methyl ethyl ketone. A glass cloth base material was impregnated with this epoxy resin varnish to obtain a resin-impregnated laminated base material with a resin adhesion content of 50%.
Next, a predetermined number of sheets of this impregnated laminated base material are stacked together.
A laminate plate with a thickness of 1.6 mm was produced by heating and pressing under lamination conditions of 150°C, 40 kg/cm 2 and 1 hour. Example 5 100 parts of epoxy resin (Epicron 1051 manufactured by Dainippon Ink and Chemicals Co., Ltd.), 4 parts of dicyandiamide, and 30 parts of melamine resin M-2 of Example 2 were dissolved and mixed in 130 parts of methyl ethyl ketone to produce a uniform epoxy resin varnish. Manufactured. Next, using this epoxy resin varnish, the same operations as in Example 4 were repeated to create a 1.6 mm thick laminate. Example 6 180 parts of epoxy resin (Epicron 850 manufactured by Dainippon Ink and Chemicals Co., Ltd.), 120 parts of polyvinylphenol (Resin M manufactured by Maruzen Oil Co., Ltd.) and Example 3
A uniform epoxy resin varnish was prepared by dissolving and mixing 30 parts of melamine resin M-3 with 330 parts of methyl ethyl ketone. Next, using this epoxy resin varnish, the same operation as in Example 4 was repeated to create a laminate plate with a thickness of 1.6 mm. Comparative Example 1 Add 126 parts of melamine and 180 parts of 37% formalin, adjust the pH to 10.5 with triethylamine, raise the temperature to 95°C, add triethylamine as needed, and react at 95°C for 8 hours while maintaining the pH between 10 and 11. A uniform melamine resin aqueous solution M-4 was produced. This melamine resin M-4 precipitated after 6 days at room temperature, and even when methanol, methyl ethyl ketone, toluene, and a mixed solvent thereof were added to the resin liquid or its dehydrate, a homogeneous solution could not be obtained.After dehydration and concentration, methyl ethyl ketone, Attempts were made to add methanol and mix with epoxy resin, but the resultant resin solution was not uniform and had poor impregnation into glass and paper base materials, so we had no choice but to abandon the idea of making a laminate. Comparative Example 2 126 parts of melamine, 243 parts of 37% formalin, and 200 parts of methanol were added, the pH was adjusted to 3 with phosphoric acid, and the mixture was heated to reflux temperature and refluxed for 10 hours to obtain a uniform melamine resin liquid M-5. Manufactured. Thirty parts of this melamine resin liquid M-5 was mixed with 100 parts of tung oil modified phenolic resin P-1 of Example 3 to produce a uniform modified phenolic resin varnish. Next, the same operation as in Example 1 was repeated except for using this modified phenolic resin varnish to determine the thickness.
A 1.6mm laminate was made. Comparative Example 3 60 parts of the melamine resin of Comparative Example 2 and epoxy resin (Epicron, a product of Dainippon Ink and Chemicals Co., Ltd.)
1050) and 4 parts of dicyandiamide were mixed and dissolved in 160 parts of methyl ethyl ketone to prepare an epoxy resin varnish. A laminate plate having a thickness of 1.6 mm was produced by repeating the same operations as in Example 4 except for using this varnish. Table 1 below shows the properties of the paper-based phenolic resin laminate, and Table 2 shows the properties of the glass cloth-based epoxy resin laminate.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 自己重合性を有するアルコール類、メラミン
類及びホルムアルデヒド類により製造されるメラ
ミン樹脂(A)、フエノール樹脂及び/又はエポキシ
樹脂(B)から成る熱硬化性樹脂組成物。 2 自己重合性を有するアルコールがフルフリル
アルコール、水酸基を有する(メタ)アクリル酸
エステルであることを特徴とする特許請求の範囲
第1項記載の熱硬化性樹脂組成物。
[Scope of Claims] 1. A thermosetting resin composition comprising a melamine resin (A), a phenolic resin and/or an epoxy resin (B) produced from self-polymerizable alcohols, melamines and formaldehydes. 2. The thermosetting resin composition according to claim 1, wherein the self-polymerizable alcohol is furfuryl alcohol or a (meth)acrylic ester having a hydroxyl group.
JP3310981A 1981-03-10 1981-03-10 Thermosetting resin composition Granted JPS57147542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3310981A JPS57147542A (en) 1981-03-10 1981-03-10 Thermosetting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3310981A JPS57147542A (en) 1981-03-10 1981-03-10 Thermosetting resin composition

Publications (2)

Publication Number Publication Date
JPS57147542A JPS57147542A (en) 1982-09-11
JPS6360788B2 true JPS6360788B2 (en) 1988-11-25

Family

ID=12377486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3310981A Granted JPS57147542A (en) 1981-03-10 1981-03-10 Thermosetting resin composition

Country Status (1)

Country Link
JP (1) JPS57147542A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4903440A (en) * 1988-11-23 1990-02-27 Minnesota Mining And Manufacturing Company Abrasive product having binder comprising an aminoplast resin
US5055113A (en) * 1988-11-23 1991-10-08 Minnesota Mining And Manufacturing Company Abrasive product having binder comprising an aminoplast resin
US5725989A (en) 1996-04-15 1998-03-10 Chang; Jeffrey C. Laser addressable thermal transfer imaging element with an interlayer
US7534543B2 (en) 1996-04-15 2009-05-19 3M Innovative Properties Company Texture control of thin film layers prepared via laser induced thermal imaging
CN109232840B (en) * 2018-10-17 2021-07-30 沈阳铸造研究所有限公司 Binder for sand mold 3D printing and preparation method thereof

Also Published As

Publication number Publication date
JPS57147542A (en) 1982-09-11

Similar Documents

Publication Publication Date Title
US6703124B2 (en) Epoxy resin composition and laminate using the same
JPS6360788B2 (en)
US3947393A (en) Resin composition for laminates and prepared therefrom
JPS62172015A (en) Epoxy resin composition
JP3065383B2 (en) Manufacturing method of phenolic resin laminate
JP3302176B2 (en) Resin composition for laminated board and laminated board using the same
US4229330A (en) Process for producing phenolic resins
JPH05138793A (en) Manufacture of phenol ic resin laminate
JPH05230231A (en) Production of phenolic resin laminate
RU2026309C1 (en) Process for preparing modified aminoformaldehyde resins
JP2001181417A (en) Prepreg and copper-clad laminate
KR820001054B1 (en) Process for producing phenolic resins
JPH05154955A (en) Production of phenol resin laminated sheet
JPS588698B2 (en) Method for producing reactive flame retardant plasticizer
JPS5853909A (en) Preparation of modified phenolic resin composition for flame retardant laminate
JPS5952907B2 (en) Resin composition for flame-retardant laminates
JPH0912686A (en) Phenolic resin composition, prepreg using the phenolic resin composition, and laminated board wherein that prepreg is used
JPH1199590A (en) Paper phenol resin copper-clad laminated board and its production
JPH0967420A (en) Production of resole-type phenolic resin composition
JPH06320697A (en) Manufacture of phenol resin laminated plate
JPS60177032A (en) Production of laminated board
JPH05116265A (en) Manufacture of phenol-resin laminated board
JPH05138792A (en) Manufacture of phenol ic resin laminate
JPH07126411A (en) Production of paper substrate phenolic resin prepreg and production of paper substrate phenolic resin laminate
JPS5834821A (en) Production of thermosetting resin