JPS6360578A - Solid-state laser element - Google Patents

Solid-state laser element

Info

Publication number
JPS6360578A
JPS6360578A JP61205292A JP20529286A JPS6360578A JP S6360578 A JPS6360578 A JP S6360578A JP 61205292 A JP61205292 A JP 61205292A JP 20529286 A JP20529286 A JP 20529286A JP S6360578 A JPS6360578 A JP S6360578A
Authority
JP
Japan
Prior art keywords
optical waveguide
laser
light
beams
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61205292A
Other languages
Japanese (ja)
Inventor
Hidenori Takahashi
高橋 秀則
Ichiro Yoshida
吉田 伊知朗
Shigeru Semura
滋 瀬村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61205292A priority Critical patent/JPS6360578A/en
Publication of JPS6360578A publication Critical patent/JPS6360578A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094084Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light with pump light recycling, i.e. with reinjection of the unused pump light, e.g. by reflectors or circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To generate laser beams having different wavelengths while miniaturizing a solid laser element by forming an optical waveguide, to which an element for laser oscillation is doped, onto a substrate and mounting mirrors, through which beams from a semiconductor laser element fitted near one end surface of the optical waveguide is transmitted and which reflect beams from the element, onto both end surfaces. CONSTITUTION:When a semiconductor laser element 13 is oscillated, laser beams from a striped oscillation region 14 are outputted in the direction of an optical waveguide 12, and transmitted through a reflecting mirror on an optical incident end surface 15a and the greater part is projected to the optical waveguide 12. Since an element for laser oscillation is doped to the optical waveguide 12 at that time, beams are generated by laser transition, and reflected by mirrors fitted to both end surfaces 15a, 15b of the optical waveguide 12, and beams repeat resonance in the optical waveguide 12. Accordingly, laser beams having a wave range different from laser beams by the semiconductor laser element 13 can be outputted from the optical outgoing end surface 15b of the optical waveguide 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信、光情報処理などの分野で用いられる固
体レーザ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state laser device used in fields such as optical communication and optical information processing.

(従来の技術) 光通信、光情報処理等の分野では、キーデバイスとして
固体レーザ素子、半導体レーザ素子、ファイバレーザ素
子などが用いられている。そしてこの様な分野では、レ
ーザ索子に要求される条件として、小型・軽量でおるこ
と、環境の変化に対して強いこと、安価で扱いやすいこ
と等が挙げられる。
(Prior Art) In fields such as optical communication and optical information processing, solid-state laser elements, semiconductor laser elements, fiber laser elements, and the like are used as key devices. In such fields, the requirements for laser ropes include being small and lightweight, being resistant to environmental changes, being inexpensive and easy to handle, and so on.

ところが従来の固体レーザ素子は大型で扱いにくく、ま
た一般に高価である。これに対して半導体レーザ素子は
、小型・軽量で扱いやすく、そのため近年では光通信等
の分野で盛んに応用が試みられている。特に、光ファイ
バの損失が長波長帯では小さくなることと関連して、長
波長帯での研究が進められている。しかしながら半導体
レーザ素子については、例えばQa AS系素子では発
光波長が1μm以上のものを1qるのが難しく、また例
えばInP系素子では1.0〜1.5μmの発光波長を
得ることは可能であるものの、レーザ素子の製造が難し
いという問題点がめった。
However, conventional solid-state laser devices are large, difficult to handle, and generally expensive. On the other hand, semiconductor laser elements are small, lightweight, and easy to handle, and therefore, in recent years, applications have been actively attempted in fields such as optical communications. In particular, research in long wavelength bands is progressing in connection with the fact that the loss of optical fibers becomes smaller in long wavelength bands. However, regarding semiconductor laser devices, for example, it is difficult to obtain an emission wavelength of 1 μm or more with a Qa AS-based device, and it is possible to obtain an emission wavelength of 1.0 to 1.5 μm with, for example, an InP-based device. However, the problem often occurred that it was difficult to manufacture the laser device.

そこで従来は、上記の如き問題点を解決するために、例
えば第4図に示す如きファイバレーザ素子を用いて発光
波長が1μm程度以上のレーザ光を1ぶるようにしてい
た。図示のように、例えば0.8μm帯の発振波長をも
つ半導体レーザ素子1からのレーザ光を、シングルモー
ドファイバ2に結合させる。このとき、ファイバ2は例
えばNd3+(ネオジム〉を0.03%程度ドープして
あり、その両端面には高反射ミラー3a、3bが形成さ
れている。このようなファイバレーザ素子によれば、1
.08μm程度の波長のレーザ光を1qることができる
Conventionally, in order to solve the above-mentioned problems, a fiber laser element as shown in FIG. 4, for example, was used to emit laser light with an emission wavelength of about 1 μm or more. As shown in the figure, a laser beam from a semiconductor laser device 1 having an oscillation wavelength in the 0.8 μm band, for example, is coupled to a single mode fiber 2. At this time, the fiber 2 is doped with, for example, about 0.03% Nd3+ (neodymium), and high reflection mirrors 3a and 3b are formed on both end faces.According to such a fiber laser element, 1
.. It is possible to emit 1 q of laser light with a wavelength of about 0.8 μm.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このようなファイバレーザ素子ではシングル
モードファイバ2の長さが2m程度となり、従ってレー
ザ素子としては半導体レーザ素子と比べて著しく大型化
し、扱いにくいという問題点がめった。
However, in such a fiber laser device, the length of the single mode fiber 2 is about 2 m, and therefore, the laser device is significantly larger than a semiconductor laser device and has the problem of being difficult to handle.

そこで本発明は、小型・軽量で扱いやすく、かつ半導体
レーザ素子と異なる発光波長(例えば1μm程度以上の
発光波長)のレーザ光を容易に1qることのできる固体
レーザ素子を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a solid-state laser device that is small, lightweight, easy to handle, and can easily emit 1 q of laser light with an emission wavelength different from that of a semiconductor laser device (e.g., an emission wavelength of about 1 μm or more). do.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る固体レーザ素子は、レーザ発振用の元素を
ドープした光導波路を基板上に形成し、この光導波路の
光入射端面に発光端面からのレーザ光が入射されるよう
にした半導体レーザ素子を設け、更に光導波路の光入射
端面および光出射端面に半導体レーザ素子からのレーザ
光を透過しかつドープされた元素によるレーザ光を反射
する反射ミラーを形成したことを特徴とする。
A solid-state laser device according to the present invention is a semiconductor laser device in which an optical waveguide doped with an element for laser oscillation is formed on a substrate, and laser light from a light-emitting end face is incident on a light incident end face of the optical waveguide. The present invention is characterized in that a reflecting mirror is further formed on the light input end face and the light output end face of the optical waveguide to transmit the laser light from the semiconductor laser element and reflect the laser light due to the doped element.

〔作用〕[Effect]

本発明の固体レーザ素子は以上のように構成されるので
、光導波路にドープされた元素は半導体レーザ素子から
のレーザ光によって異なる波長の光を発生させるように
働き、光導波路の両端面の反射ミラーは半導体レーザ素
子からのレーザ光を入射させると共にドープされた元素
から光を光導波路内で共振させるように働き、従って半
導体レーザ素子によるレーザ光とは異なる波長帯のレー
ザ光を光導波路の光出射端面から出力するように動く。
Since the solid-state laser device of the present invention is configured as described above, the element doped in the optical waveguide acts to generate light of different wavelengths depending on the laser light from the semiconductor laser device, and the reflection on both end faces of the optical waveguide is caused. The mirror allows the laser light from the semiconductor laser device to enter and resonates the light from the doped element within the optical waveguide. Therefore, the mirror allows the laser light in a wavelength band different from that of the laser light from the semiconductor laser device to enter the optical waveguide. It moves to output from the output end face.

〔実施例〕〔Example〕

以下、添付図面を参照して本発明のいくつかの実施例を
説明する。なあ、以下の説明においては、同一の要素に
は同一の符号を付して重複する説明を省略する。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. In the following description, the same elements are given the same reference numerals and redundant description will be omitted.

第1図は第1の実施例に係る固体レーザ素子の斜視図で
おる。石英系ガラスで出来た基板11にはレーザ発掘用
元素として例えばNd3+をドープしたストライプ状の
シングルモード光導波路12が形成され、その光導波路
12の一方の端部側の基板11には溝が形成されている
。この溝には例えば0.8μm帯の発振波長を持つ半導
体レーザ素子13が配設され、この素子13中のストラ
イプ状発振rA域14は基板11の光導波路12と同一
の光学軸におる。また、この光導波路12の半導体レー
ザ素子13側の端面(光入射端面)15aおよび反対側
の端面(光出射端面)15bには、例えば誘電体多層膜
からなる反射ミラーが形成されている。そしてこの端面
15a、15bの反射ミラーは、半導体レーザ素子13
からの波長−o、sμmの光ヲ80 %LX上透過シ、
N d3 +ドープ光導波路12からの波長−1,1μ
mの光を99%以上反射するようにする。
FIG. 1 is a perspective view of a solid-state laser device according to a first embodiment. A striped single mode optical waveguide 12 doped with, for example, Nd3+ as an element for laser excavation is formed on a substrate 11 made of quartz glass, and a groove is formed on the substrate 11 at one end of the optical waveguide 12. has been done. A semiconductor laser element 13 having an oscillation wavelength in the 0.8 μm band, for example, is disposed in this groove, and a striped oscillation rA region 14 in this element 13 is located on the same optical axis as the optical waveguide 12 of the substrate 11. Further, a reflecting mirror made of, for example, a dielectric multilayer film is formed on the end face (light incident end face) 15a of the optical waveguide 12 on the side of the semiconductor laser element 13 and the end face (light emitting end face) 15b on the opposite side. The reflecting mirrors on the end surfaces 15a and 15b are the semiconductor laser element 13.
80% of light of wavelength -o, s μm from the LX is transmitted,
N d3 + wavelength from doped optical waveguide 12 -1,1μ
Reflect more than 99% of the light of m.

次に、第2図を参照して第1図に示す固体レーザ素子の
製造方法の一例を説明する。第2図は製造工程別の素子
の斜視図である。
Next, an example of a method for manufacturing the solid-state laser device shown in FIG. 1 will be described with reference to FIG. 2. FIG. 2 is a perspective view of the element according to the manufacturing process.

まず、基板の原料として130.29のSi(OC2H
5)4と124.89のエタノールを混合した液中に、
13%のアンモニア水を20M含む459の水を加えて
攪拌する。なお、これら原料の混合は60’Cに加熱し
た状態にて行う。
First, 130.29 Si (OC2H
5) In a mixture of 4 and 124.89 ethanol,
Add 459 water containing 20M of 13% ammonia water and stir. Note that these raw materials are mixed while being heated to 60'C.

次に、これを密閉ビンに入れて60°Cの恒温槽で9日
間放置すると、分解によってゾル液が得られる。そこで
、このゾル液209に1.29のSi (OCH3)4
を加えてよく混合する。そして、この中に13%のアン
モニア水を2滴含む59の水と3.87のエタノールを
加え、よく@拌する。その後、これを至温中でゾル液が
沸騰するまで真空引きし、沸騰状態に5分間保った後に
取り出す。
Next, this is placed in a sealed bottle and left in a constant temperature bath at 60°C for 9 days to obtain a sol solution through decomposition. Therefore, 1.29 Si (OCH3)4 is added to this sol solution 209.
Add and mix well. Then, add 59 water containing 2 drops of 13% ammonia water and 3.87 ethanol to this, and stir well. Thereafter, the sol solution is vacuumed at very high temperature until it boils, and the solution is kept in the boiling state for 5 minutes and then taken out.

次に、テフロンのシャーレに入れてアルミ箔で軽く益を
し、60’Cの恒温槽に入れて放置する。
Next, place it in a Teflon petri dish, cover it lightly with aluminum foil, and leave it in a constant temperature bath at 60'C.

このようにするとゾル液は翌日にはゲル化しノ、約1週
間後には乾燥ゲルが得られる。
In this way, the sol solution will turn into a gel the next day, and a dry gel will be obtained in about one week.

次に、この乾燥ゲルをシャーレから取り出して研磨し、
第2図(a)に示す如く例えば30#X15#X5M程
度の大きざの板状ゲル21とする。
Next, this dried gel was removed from the petri dish and polished.
As shown in FIG. 2(a), the plate-shaped gel 21 has a size of, for example, 30#x15#x5M.

次に、この板状ゲルに、例えばフォ1−レジス1へで7
μm程度の幅のストライプを残してマスクをし、3%程
度のホウ酸を含むエタノール液を浸み込ませる。その後
、S・ (OCH3)4を1.07と、Ndのメトキシ
ドをエタノールに溶かした液(Nd :1.08%)を
3.399と、Qe(OC2H5)4を2.209だけ
混合した添加物溶液に、マスクを施した板状ゲルを15
秒間程度浸漬する。そして、水とエタノールを1対1の
重量比で混合して3%のホウ酸を加えた液に浸漬し、1
晩程度放置する。その後、この板状ゲルを取り出して1
晩程度乾燥する。
Next, this plate-shaped gel is coated with, for example, 7
A mask is applied, leaving a stripe with a width of about μm, and an ethanol solution containing about 3% boric acid is soaked into the mask. Then, a mixture of 1.07% of S. (OCH3)4, 3.399% of a solution of Nd methoxide dissolved in ethanol (Nd: 1.08%), and 2.209% of Qe(OC2H5)4 was added. Add 15 sheets of masked gel to the solution.
Immerse for about 2 seconds. Then, it was immersed in a solution containing water and ethanol mixed at a weight ratio of 1:1 and 3% boric acid added.
Leave it overnight. After that, take out this plate-shaped gel and
Dry overnight.

次に、この板状ゲルを500’Cで24時間、800℃
で8時間程度空気中で仮焼し、板状ゲル中の有機成分と
フォトレジストを焼きとばす。更に、Heガス雰囲気中
で200’C/時間の昇温速度により1300’C程度
に加熱すると、第2図(b)に示す如く基板上に平面導
波路22を形成することができる。
Next, this plate-shaped gel was heated at 500'C for 24 hours at 800°C.
The gel is calcined in the air for about 8 hours to burn off the organic components and photoresist in the gel plate. Furthermore, by heating the substrate to about 1300'C at a heating rate of 200'C/hour in a He gas atmosphere, a planar waveguide 22 can be formed on the substrate as shown in FIG. 2(b).

そして、この導波路22の一方の端部近傍を約30μm
の深さにエツチングすると、第2図(C)に示す如き溝
23を形成できる。そして、導波路22の一方の端面2
4は鏡面に仕上げる。
Then, the vicinity of one end of this waveguide 22 is approximately 30 μm thick.
By etching to a depth of , grooves 23 as shown in FIG. 2(C) can be formed. Then, one end surface 2 of the waveguide 22
Step 4: Finish to a mirror surface.

次に、導波路22の両端面に誘電体多層膜からなる反射
ミラー25を形成しく第2図(d>図示>、o、82μ
mの光を80%透過し、1.1μmの光は99%以上反
射するようにする。そして、溝23に0.82μmの発
光波長の半導体レーザ素子を塔載し、そのレーザ出力が
導波路に入るように調整する。更に、半導体レーザ素子
の位置を固定し、放熱器(図示しない)を取り付けると
第1図に示す固体レーザ素子が1qられる。
Next, reflective mirrors 25 made of a dielectric multilayer film are formed on both end faces of the waveguide 22.
It is designed to transmit 80% of the light of 1.1 μm and reflect 99% or more of the light of 1.1 μm. Then, a semiconductor laser element with an emission wavelength of 0.82 μm is placed in the groove 23, and the laser output is adjusted so that it enters the waveguide. Furthermore, by fixing the position of the semiconductor laser element and attaching a radiator (not shown), the solid-state laser element shown in FIG. 1 is completed 1q.

本発明に係る固体レーザ素子の製造工程は上記のものに
限られない。例えば、板状ゲルの代りにバイコール多孔
質ガラスを用い、添加物溶液に浸漬する時間を15秒で
なく1時間としてもよい。
The manufacturing process of the solid-state laser device according to the present invention is not limited to the above. For example, Vycor porous glass may be used instead of the plate-shaped gel, and the immersion time in the additive solution may be 1 hour instead of 15 seconds.

次に、上記第1の実施例に係る固体レーザ素子の作用を
説明する。まず、第1図に示す半導体レーザ素子13を
1.5m”vV程度のパワーで発振させると、ス1〜ラ
イブ状の発振領域14からのレーザ光が光導波路12の
方向に出力される。このとき、レーザ光の発振波長は例
えば0.8μmでおり、光導波路12の光入射端面15
aの反射ミラーは約0.8μm波長の光を80%以上透
過するようになっているので、レーザ光の大部分は光導
波路12に入射される。
Next, the operation of the solid-state laser device according to the first embodiment will be explained. First, when the semiconductor laser device 13 shown in FIG. 1 is oscillated with a power of about 1.5 m''vV, laser light from the oscillation region 14 shaped like a strip 1 is outputted in the direction of the optical waveguide 12. At this time, the oscillation wavelength of the laser beam is, for example, 0.8 μm, and the light incidence end face 15 of the optical waveguide 12
Since the reflecting mirror a is designed to transmit 80% or more of light with a wavelength of approximately 0.8 μm, most of the laser light is incident on the optical waveguide 12.

このとき、光導波路12にはレーザ発振用の元素として
Nd3+がドープされており、従ってレーザ遷移によっ
て例えば1.05μmの波長の光が発生させられる。す
ると、光導波路12の両端面15a、15bには1.1
μm程度の波長の光を99%以上反射するミラーが設け
られているので、Nd3+による光は光導波路12の中
で共振を繰り返す。すなわち、光導波路12が固体レー
ザ素子の共振器として機能することになる。
At this time, the optical waveguide 12 is doped with Nd3+ as an element for laser oscillation, and therefore light with a wavelength of, for example, 1.05 μm is generated by laser transition. Then, 1.1 is applied to both end surfaces 15a and 15b of the optical waveguide 12.
Since a mirror is provided that reflects 99% or more of light with a wavelength of approximately μm, the light caused by Nd3+ repeatedly resonates within the optical waveguide 12. That is, the optical waveguide 12 functions as a resonator of the solid-state laser element.

従って、光導波路12の光出射端面からは波長が1.0
5μmのレーザ光を得ることができる。
Therefore, the wavelength from the light output end face of the optical waveguide 12 is 1.0
A laser beam of 5 μm can be obtained.

よって、光出射端面15bに光ファイバ(図示しない)
を結合すれば、光通信等のシステムに用いることができ
る。
Therefore, an optical fiber (not shown) is attached to the light emitting end surface 15b.
If these are combined, it can be used in systems such as optical communication.

第3図は本発明の第2の実施例に係る固体レーザ素子の
斜視図である。そしてこれが第1図のものと異なる点は
、光導波路12の光出射端面15b側の基板11に、光
ファイバ(図示しない)を配設するためのガイド溝17
を設けていることでおる。このようなガイド溝17は、
半導体レーザ素子13を設けるための溝をエツチングに
よって形成する際に同時に形成できる。この第2の実施
例によれば、光ファイバの位置決め、調芯と固定を迅速
かつ容易に行なえるという利点がある。
FIG. 3 is a perspective view of a solid-state laser device according to a second embodiment of the invention. The difference between this and the one in FIG. 1 is that a guide groove 17 for arranging an optical fiber (not shown) is formed on the substrate 11 on the light output end face 15b side of the optical waveguide 12.
This is achieved by providing Such a guide groove 17 is
It can be formed at the same time as the groove for providing the semiconductor laser element 13 is formed by etching. This second embodiment has the advantage that the optical fiber can be positioned, aligned, and fixed quickly and easily.

本発明は上記第1、第2の実施例に限定されるものでは
なく、種々の変形が可能である。例えば基板は石英系ガ
ラス基板に限られず、また基板に形成される溝の形状も
実施例のものに限られない。
The present invention is not limited to the first and second embodiments described above, and various modifications are possible. For example, the substrate is not limited to a quartz-based glass substrate, and the shape of the groove formed in the substrate is not limited to that of the embodiment.

半導体レーザ素子は0.8μm帯のGa AI Asね
のちのに限らず、他の波長帯のものであってもよい。ま
た、レーザ発掘用の元素としてはNdの他にEr  (
エルビウム)、HO(ホルミウム)などを用いることが
でき、特にErを用いると1.5μm帯で発掘し、光フ
ァイバの光損失を最小限に抑えることができる。ざらに
、光導波路の光出射端面への光ファイバの接続は、屈折
率整合液を用いてもよく融着接続によってもよい。
The semiconductor laser device is not limited to Ga AI As in the 0.8 μm band, but may be in other wavelength bands. In addition to Nd, Er (
(Erbium), HO (Holmium), etc. can be used, and in particular, when Er is used, it is possible to excavate in the 1.5 μm band and minimize the optical loss of the optical fiber. In general, the optical fiber may be connected to the light output end face of the optical waveguide by using a refractive index matching liquid or by fusion splicing.

[発明の効果] 以上、詳細に説明したように本発明によれば、基板上に
レーザ発掘用の元素をドープした光導波路を形成し、光
導波路の一方の端面近傍に半導体レーザ素子を設けると
共に、光導波路の両端面に半導体レーザ素子からの光を
透過しドープされた元素からの光を反射するミラーを形
成したので、半導体レーザ素子からのレーザ光によって
光導波路内で異なる波長のレーザ光を発生させることが
できる効果がある。本発明は特に、0.7〜0.9μm
帯の発光波長の半導体レーザ素子を用いて、1μm程度
以上の発光波長を持つ固体レーザ素子を得るのに適して
いる。
[Effects of the Invention] As described above in detail, according to the present invention, an optical waveguide doped with an element for laser excavation is formed on a substrate, a semiconductor laser element is provided near one end face of the optical waveguide, and a semiconductor laser element is provided near one end face of the optical waveguide. By forming mirrors on both end faces of the optical waveguide that transmit the light from the semiconductor laser element and reflect the light from the doped element, the laser light from the semiconductor laser element causes laser light of different wavelengths to be transmitted within the optical waveguide. There are effects that can be generated. The present invention particularly provides 0.7 to 0.9 μm
It is suitable for obtaining a solid-state laser device with an emission wavelength of about 1 μm or more by using a semiconductor laser device with an emission wavelength in the band.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の構成を示す斜視図、第
2図は第1図に示す固体レーザ素子の製造工程の一例を
示す工程別斜視図、第3図は本発明の第2の実施例の構
成を示す斜視図、第4図は従来例の構成図である。 11・・・石英系ガラス基板、12・・・光導波路、1
3・・・半導体レーザ素子、15a・・・光入射端面、
15b・・・光出射端面、17・・・ガイド溝。 特許出願人  住友電気工業株式会社 代理人弁理士   長谷用  芳  樹第1図 第1実施例の製造工程別IA視図 第2図 第2実施例の固体レーザ索子の斜視図 筒  3  図 従来例の構成図 第  4  図
FIG. 1 is a perspective view showing the structure of the first embodiment of the present invention, FIG. 2 is a perspective view showing an example of the manufacturing process of the solid-state laser device shown in FIG. 1, and FIG. 3 is a perspective view showing the structure of the first embodiment of the present invention. FIG. 4 is a perspective view showing the configuration of the second embodiment, and FIG. 4 is a configuration diagram of the conventional example. 11... Quartz-based glass substrate, 12... Optical waveguide, 1
3... Semiconductor laser element, 15a... Light incidence end surface,
15b...Light emission end surface, 17... Guide groove. Patent Applicant: Sumitomo Electric Industries, Ltd. Representative Patent Attorney Yoshiki Hase Figure 1 IA view of the manufacturing process of the first embodiment Figure 2 Perspective view of the solid-state laser cord of the second embodiment Figure 3 Conventional example Configuration diagram Figure 4

Claims (1)

【特許請求の範囲】 1、基板と、 この基板上に形成され、レーザ発振用の元素をドープし
た光導波路と、 この光導波路の光入射端面側に設けられ、発光端面から
のレーザ光がこの光入射端面に入射されるようにした半
導体レーザ素子と、 前記光導波路の光入射端面および光出射端面に形成され
、前記半導体レーザ素子からのレーザ光を透過しかつ前
記ドープされた元素によるレーザ光を反射する反射ミラ
ーと、 を備える固体レーザ素子。 2、前記光導波路の光入射端面側の基板に、前記半導体
レーザを配設するための溝を形成した特許請求の範囲第
1項記載の固体レーザ素子。
[Claims] 1. A substrate; an optical waveguide formed on the substrate and doped with an element for laser oscillation; a semiconductor laser element configured to allow light to be incident on an incident end face; and a laser beam formed on a light incident end face and a light output end face of the optical waveguide to transmit laser light from the semiconductor laser element and to generate laser light from the doped element. A solid-state laser element comprising: a reflecting mirror that reflects; and a solid-state laser element. 2. The solid-state laser device according to claim 1, wherein a groove for arranging the semiconductor laser is formed in the substrate on the light incident end face side of the optical waveguide.
JP61205292A 1986-09-01 1986-09-01 Solid-state laser element Pending JPS6360578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61205292A JPS6360578A (en) 1986-09-01 1986-09-01 Solid-state laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61205292A JPS6360578A (en) 1986-09-01 1986-09-01 Solid-state laser element

Publications (1)

Publication Number Publication Date
JPS6360578A true JPS6360578A (en) 1988-03-16

Family

ID=16504555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61205292A Pending JPS6360578A (en) 1986-09-01 1986-09-01 Solid-state laser element

Country Status (1)

Country Link
JP (1) JPS6360578A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225083A (en) * 1988-07-14 1990-01-26 Nippon Telegr & Teleph Corp <Ntt> Glass waveguide laser and amplifier
EP0665616A1 (en) * 1994-01-28 1995-08-02 Thomson-Csf Semiconducteurs Specifiques High power two-stage laser
EP0692151B1 (en) * 1993-03-26 1997-03-19 Honeywell Inc. Method of fabricating diode pumped lasers using ion beam deposition
US6628692B2 (en) 1998-05-11 2003-09-30 Nec Corporation Solid-state laser device and solid-state laser amplifier provided therewith
EP2012151A3 (en) * 2007-07-05 2009-10-21 NEC Corporation Mounting structure of semiconductor optical element
JP2009278069A (en) * 2008-04-17 2009-11-26 Dainippon Screen Mfg Co Ltd Heat treatment device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225083A (en) * 1988-07-14 1990-01-26 Nippon Telegr & Teleph Corp <Ntt> Glass waveguide laser and amplifier
JP2708793B2 (en) * 1988-07-14 1998-02-04 日本電信電話株式会社 Manufacturing method of glass waveguide laser and amplifier
EP0692151B1 (en) * 1993-03-26 1997-03-19 Honeywell Inc. Method of fabricating diode pumped lasers using ion beam deposition
EP0665616A1 (en) * 1994-01-28 1995-08-02 Thomson-Csf Semiconducteurs Specifiques High power two-stage laser
FR2715776A1 (en) * 1994-01-28 1995-08-04 Thomson Csf Semiconducteurs Two-stage high-power laser.
US5570387A (en) * 1994-01-28 1996-10-29 Thomson-Csf Semiconducteurs Specifiques Two-stage power laser
US6628692B2 (en) 1998-05-11 2003-09-30 Nec Corporation Solid-state laser device and solid-state laser amplifier provided therewith
EP2012151A3 (en) * 2007-07-05 2009-10-21 NEC Corporation Mounting structure of semiconductor optical element
JP2009278069A (en) * 2008-04-17 2009-11-26 Dainippon Screen Mfg Co Ltd Heat treatment device

Similar Documents

Publication Publication Date Title
US6636678B1 (en) Method and apparatus for waveguide optics and devices
US5499256A (en) Polarized frequency-selective optical source
US6259711B1 (en) Laser
US5436919A (en) Multiwavelength upconversion waveguide laser
WO1996025779A1 (en) Optical source with mode reshaping
JP2002521827A (en) Optical waveguide having different core material and clad material, and light emitting device using the same
US5274650A (en) Solid state laser
JP2001251002A (en) Laser device
JP4781648B2 (en) Optical resonator
JPS6360578A (en) Solid-state laser element
JP3211770B2 (en) Solid-state laser device and solid-state laser amplifier having the same
EP1653278A1 (en) Blue laser beam oscillating method and device
WO2021125007A1 (en) Method for producing optical resonator and optical modulator, optical resonator, optical modulator, optical frequency comb generator, and optical oscillator
US7382808B1 (en) Apparatus and method for spatial mode selection of planar waveguide and thin slab lasers in the large cross section size direction
JPH01297874A (en) Optical fiber laser device
JP2663197B2 (en) Laser diode pumped solid state laser
JPH05291655A (en) Planer optical-waveguide type laser element and laser device
JPH04157778A (en) Laser diode pumping solid state laser
RU2177665C2 (en) Internally radiation-frequency doubling solid-state laser
JPH07106684A (en) Solid state laser
JPH0792514A (en) Wavelength conversion solid-state laser element
JPH06224510A (en) Light exciting waveguide type solid-state laser and its production
JPS6139594A (en) Thin-film optical waveguide function element
Duguay et al. Polarization-selective SiO2-Si resonant-reflecting waveguide
Contolini et al. Novel tunable pulsed dye laser holography and subsequent processing for fabrication of optoelectronic device gratings