JPS6360571A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device

Info

Publication number
JPS6360571A
JPS6360571A JP61204882A JP20488286A JPS6360571A JP S6360571 A JPS6360571 A JP S6360571A JP 61204882 A JP61204882 A JP 61204882A JP 20488286 A JP20488286 A JP 20488286A JP S6360571 A JPS6360571 A JP S6360571A
Authority
JP
Japan
Prior art keywords
doped
emitting region
band width
semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61204882A
Other languages
Japanese (ja)
Other versions
JPH0577310B2 (en
Inventor
Kenichi Nishi
研一 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61204882A priority Critical patent/JPS6360571A/en
Publication of JPS6360571A publication Critical patent/JPS6360571A/en
Publication of JPH0577310B2 publication Critical patent/JPH0577310B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To reduce the temperature change of an optical output, and to reduce cost and improve reproducibility by making a refractive index higher than first and second semiconductor layers holding a light-emitting region semiconductor, narrowing forbidden band width, altering forbidden band width in the direction of laminating and doping an impurity as a non-radiative center into a narrow region in the light- emitting region semiconductor. CONSTITUTION:An S-doped n-type InP buffer layer 12, a light-emitting region 15 consisting of an un-doped InGaAsP layer 13 and an Fe-doped InGaAsP layer 14, a Zn-doped p-type InP clad layer 16, and a Zn-doped p-type InGaAs cap layer 17 are laminated onto an S-doped n-type InP substrate 11 in succession, p-n-p structure 18 normally used for current constriction to the substrate is laminated around the lightemitting region 15, and electrodes 19 are shaped onto an upper surface and a lower surface. Both a conduction-band lower end and a valence-band upper end intermittently vary regarding the direction of laminating in the forbidden band width of the light-emitting region 15 at that time, and an impurity forming a non-radiative center is doped only to the layer 14 having narrow forbidden band width. Accordingly, reproducibility is improved and cost can be reduced while the temperature dependency of an optical output is also minimized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光出力の温度変動の小さい半導体発光素子に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor light emitting device whose light output has small temperature fluctuations.

(従来の技術) 半導体発光素子からの光出力が周囲の温度によル変動す
ることは実用上太いに問題である。半導体レーザでは、
この問題を低減させるため、超薄膜中のキャリヤ密度分
布の量子サイズ効果による変化を利用し、キャリヤの密
度分布の温度変化を低減させている(この−例は、アプ
ライド・フィジックス・レター(Appl、phys、
Lett、)1980年、36巻19ページに記載され
ている)。
(Prior Art) It is a serious practical problem that the light output from a semiconductor light emitting device fluctuates depending on the ambient temperature. In semiconductor lasers,
To reduce this problem, changes in the carrier density distribution in ultrathin films due to quantum size effects are used to reduce temperature changes in the carrier density distribution. phys,
Lett, ) 1980, Vol. 36, p. 19).

(発明が解決しようとする問題点) しかしながら、この超薄膜構造を利用することはGaA
s系の材料に対しては大きな効果を有しているが、他の
材料系に対しては適応が簡単ではない。特KP(燐)を
含む半導体材料系では超薄膜構造の製作自体にかなシの
困難を伴なうし、光出力の温度変動を低減させることは
できても非常に小さくすることは不可能で、素子製作上
の再現性、コストにも問題がある。
(Problem to be solved by the invention) However, using this ultra-thin film structure
Although it has a great effect on s-based materials, it is not easy to apply it to other material systems. In particular, with semiconductor materials containing KP (phosphorus), the production of ultra-thin film structures itself is extremely difficult, and although it is possible to reduce temperature fluctuations in optical output, it is impossible to make them extremely small. There are also problems with the reproducibility and cost of device manufacturing.

(問題点を解決するための手段) 本発明による半導体発光素子は;多層ヘテロ構造を有し
;この多層ヘテロ構造は、互いに導電型の異なる第1及
び第2の半導体層で発光領域となる半導体を挾んでなり
;この発光領域半導体は前記第1及び第2の半導体層よ
シ屈折率が高くかつ禁制帯幅が狭く;前記発光領域半導
体では積層方向に関して禁制帯幅が変化するとともに禁
制帯幅が相対的に狭い領域に非発光中心となる不純物が
ドープされていることを特徴とする。
(Means for Solving the Problems) A semiconductor light-emitting device according to the present invention has a multilayer heterostructure; this multilayer heterostructure includes a semiconductor layer that serves as a light emitting region with first and second semiconductor layers having different conductivity types. This light-emitting region semiconductor has a higher refractive index and a narrower forbidden band width than the first and second semiconductor layers; In the light-emitting region semiconductor, the forbidden band width changes with respect to the stacking direction and the forbidden band width increases. is characterized in that a relatively narrow region is doped with an impurity that serves as a non-emissive center.

(作用) 半導体発光領域の禁制帯幅を積層方向に関して変化させ
ると、特に温度の低い状態では注入されたキャリヤは禁
制帯幅の狭い領域忙多く存在する。
(Function) When the forbidden band width of the semiconductor light emitting region is changed in the stacking direction, the injected carriers are concentrated in the region where the forbidden band width is narrow, especially in a low temperature state.

一方、その状態から温度が上昇すると、キャリヤのエネ
ルギー分布の範囲が広がるため、禁制帯幅の広い領域の
方へも積層方向に関して広がっていく。ここで、禁制帯
幅の狭い領域に非発光中心となる不純物が意図的忙ドー
プされていると、この領域ではキャリヤの発光再結合は
相対的に減少する。つまシ、本構造では、一般に発光効
率の高い状態である低温では非発光中心の影響を太きぐ
受けるが、温度が上昇し発光効率が低下すると逆にキャ
リヤのエネルギー分布が広が)、それにより積層方向に
関する空間分布も広がることKより非発光中心の影響は
小さく万る。このことによう、ある一定のキャリヤ注入
状態において、広い温度範囲に渡シ光出力の変動を抑制
することが可能となる。この場合、低温での光出力は本
作用によシ多少低減するが、高温での光出力の低減は小
さく、実際の使用上でも使用温度範囲の最も上の温度で
の特性に合わせたシステムを考えるため問題はない。ま
た、半導体発光領域の禁制帯幅の変化の様子や、非発光
中心となる不純物のドーピングの程度を選択すれば、光
出力の温度依存性を非常に小さくすることも可能である
On the other hand, when the temperature rises from this state, the range of the carrier energy distribution widens, so that it also spreads toward the wide forbidden band width region in the stacking direction. Here, if an impurity serving as a non-luminescent center is intentionally doped in a region with a narrow forbidden band width, radiative recombination of carriers is relatively reduced in this region. However, in this structure, the influence of non-luminous centers is large at low temperatures, where luminous efficiency is generally high, but as the temperature rises and the luminous efficiency decreases, the energy distribution of the carriers widens. Since the spatial distribution in the stacking direction is also widened, the influence of non-emissive centers is smaller than K. As a result, it is possible to suppress fluctuations in the optical output over a wide temperature range under a certain carrier injection state. In this case, the light output at low temperatures is somewhat reduced due to this effect, but the reduction in light output at high temperatures is small, and in actual use, the system must be tailored to the characteristics at the highest temperature in the operating temperature range. There is no problem in thinking. Furthermore, by selecting the manner in which the forbidden band width of the semiconductor light emitting region changes and the degree of doping of impurities that serve as non-light emitting centers, it is possible to make the temperature dependence of the optical output extremely small.

この構造は、製作上膜厚の精密な制御等を必要としない
ので多くの材料系に対して適用が可能で、かつ特殊な製
作法でなくとも実現可能なので、コスト及び再現性にも
優れる。
This structure does not require precise control of film thickness during manufacturing, so it can be applied to many material systems, and it can be realized without special manufacturing methods, so it is excellent in cost and reproducibility.

(実施例) 以下図面を参照して本発明について一層詳しく説明する
(Example) The present invention will be described in more detail below with reference to the drawings.

第1図(a)は本発明の第1の実施例である発光ダイオ
ードの積層方向の断面図、第1図(b)はその斜視図、
第1図(C)はその発光領域のバンド図である。この実
施例は、気相成長法により、Sドープn型InP基板l
l上に2μmのSドープn型InPバッファー層12.
5ooAのアンドーブエrr G a A s P (
禁制帯幅α98 eV)層13及び300^のFeドー
プエn Q a A s P (禁制帯幅0.96 e
 V )層14からなる発光領域15.2/jmのZn
ドープp型InPクラッド層16、並びにα5μmのZ
nドープp型I n o、sa G a O,47As
キャップ層17を順次積層し、この基板に対して、通常
電流狭窄に用いられるp−n−p構造18を幅1.5μ
mの発光領域のまわりに液相成長法によシ積層し、上面
及び下面に電極19を形成し、へき関した後に片端面に
無反射ツー)IA。
FIG. 1(a) is a sectional view in the stacking direction of a light emitting diode according to the first embodiment of the present invention, FIG. 1(b) is a perspective view thereof,
FIG. 1(C) is a band diagram of the light emitting region. In this example, an S-doped n-type InP substrate was grown using a vapor phase growth method.
a 2 μm S-doped n-type InP buffer layer 12.
5ooA's undove error rr G a A s P (
Forbidden band width α98 eV) Fe-doped layers 13 and 300^ Q a A s P (Forbidden band width 0.96 e
V) Zn of light emitting region 15.2/jm consisting of layer 14
Doped p-type InP cladding layer 16 and α5 μm Z
n-doped p-type I no, sa Ga O, 47As
A cap layer 17 is sequentially laminated, and a p-n-p structure 18, which is usually used for current confinement, is formed on this substrate with a width of 1.5 μm.
The electrodes 19 are formed around the light emitting region of m by a liquid phase growth method, electrodes 19 are formed on the upper and lower surfaces, and after separation, a non-reflective layer (2) IA is formed on one end surface.

もう片端面に高反射ツー)IBを施したものである。The other end surface is coated with high reflection (2) IB.

ここで、発光領域の禁制帯幅は伝導帯下端IC。Here, the forbidden band width of the light emitting region is the lower limit of the conduction band IC.

価電子帯上端IDとも、第1図(c) Ic示す様に積
層方向釦関して断続的に変化し、禁制帯幅の狭い層14
にのみ非発光中心を形成する不純物であるFeがおよそ
1016 cm−3の濃度でドープされている。
The valence band upper end ID also changes intermittently with respect to the stacking direction, as shown in FIG.
Fe, which is an impurity that forms non-luminescent centers only, is doped at a concentration of about 1016 cm-3.

本実施例では、注入電流が80mAのときの光出力は、
20℃において1mW、70℃においても0.8mWで
あシ、光出力の温度変動は小さかった。
In this example, the optical output when the injection current is 80 mA is:
Temperature fluctuations in optical output were small, with 1 mW at 20°C and 0.8 mW at 70°C.

次に本発明の第2の実施例の発光ダイオードについて述
べる。これは積層構造、デバイス構造とも第1の実施例
とほぼ同じであるが、半導体発光領域15を、200^
のアンドープInGaAsP(禁制帯幅α98eV)層
13と50^のFeドープI nGaAsP (禁制帯
幅α96eV)層14が交互忙5周期積層したものとし
た。
Next, a light emitting diode according to a second embodiment of the present invention will be described. This has almost the same laminated structure and device structure as the first embodiment, but the semiconductor light emitting region 15 is 200^
The undoped InGaAsP (forbidden band width α98 eV) layer 13 and the 50^ Fe-doped InGaAsP (forbidden band width α96 eV) layer 14 were laminated in five alternating periods.

この実施例においては、光出力の温度依存性は第1の実
施例とほぼ同様であシ、かつ光出力ビームの形状は積層
方向に関しても対称な良好なものであった。
In this example, the temperature dependence of the optical output was almost the same as in the first example, and the shape of the optical output beam was also good and symmetrical with respect to the stacking direction.

次に本発明の第3の実施例の半導体レーザについて説明
する。第2図(a)はその積層方向の断面図、第2図(
b)はその斜視図、第2図(c)はその発光領域のバン
ド図である。この第3の実施例は、有機金属気相成長法
(MOCVD法)により、Siドープn型G a A 
S基板21上に、1μmのSiドープn型G a A 
sバッファー層22.2μmのSIドープn型A 10
.3 G a O,7A sクラッド層23.1組成比
がOからα1まで連続的に変化し、Aft組成比がOの
所から100^の領域24にのみFeがドープされてい
る厚さα1μmのA i xG a 1 +、As発光
領域25.2μmのZnドープp型A fio、3G 
a O,7A sクラッド層26、及び0.5μmのZ
nnドープ型GaAsキャップ層27を11次に積層し
、CVD法で5io2を積層上面に付着させ通常のフォ
) IJメソゲラフィー法幅1.5μm幅のストライブ
状の5i02を選択的に残し、その後基板まで1.5μ
m@のストライプ状領域の両脇をエツチングし、電流狭
窄のためのp−n−p構造28のA10.3 G a 
O,7A 5層を積層し、SiO2を除去した後上面、
下面に電極29を蒸着により製作したものである。
Next, a semiconductor laser according to a third embodiment of the present invention will be described. Figure 2(a) is a cross-sectional view in the stacking direction;
b) is a perspective view thereof, and FIG. 2(c) is a band diagram of its light emitting region. In this third embodiment, Si-doped n-type Ga
On the S substrate 21, a 1 μm Si-doped n-type Ga A
s buffer layer 22.2μm SI doped n-type A 10
.. 3G a O, 7A s cladding layer 23.1 The composition ratio changes continuously from O to α1, and Fe is doped only in the region 24 where the Aft composition ratio is O to 100^, and the thickness is α1 μm. A i xG a 1 +, Zn-doped p-type A fio with As light emitting region 25.2 μm, 3G
a O,7A s cladding layer 26 and 0.5 μm Z
An nn-doped GaAs cap layer 27 is laminated in the 11th order, and 5io2 is deposited on the top surface of the laminated layer using the CVD method, and a strip-like 5i02 layer with a width of 1.5 μm is selectively left by IJ mesogelation method. up to 1.5μ
Both sides of the striped region of m@ are etched to form a p-n-p structure 28 A10.3 Ga for current confinement.
After stacking 5 layers of O,7A and removing SiO2, the top surface
The electrode 29 is manufactured by vapor deposition on the lower surface.

この第3の実施例では、発光領域の禁制帯幅は積層方向
に関して連続的に変化して、相対的に禁制帯幅の狭い領
域24にのみ非発光中心を形成するpeがおよそ101
6〜1017cm−3の濃度でドープされている。
In this third embodiment, the forbidden band width of the light-emitting region changes continuously in the stacking direction, and the pe that forms the non-light-emitting center only in the region 24 where the forbidden band width is relatively narrow is approximately 101.
It is doped with a concentration of 6-1017 cm-3.

実際のデバイス特性は、発振しきい電流値は20℃及び
70℃どちらでも約40mAであり、温度によシはとん
ど変化せず、注入電流が80mAのときの光出力は20
℃及び70℃でともに約15rnWであり、非常圧優れ
たものであった。
The actual device characteristics are that the oscillation threshold current value is about 40 mA at both 20°C and 70°C, and it hardly changes depending on temperature, and the optical output when the injection current is 80 mA is 20 mA.
It was approximately 15 rnW both at 70° C. and 70° C., and was excellent in extreme pressure.

以上に3つの実施例を挙げ説明したが、本発明は何らこ
れら実施例に限定されない。例えば、半導体成長法も液
相成長法、分子線エピタキシー法等であってもかまわな
いし、ドープする不純物も非発光中心を形成するもので
あればFe以外のもので何ら問題はなく、例えばCr%
V(バナジウム)などや、それらの複合物であってもか
まわない。また発光領域のバンド構造も、伝導帯下端I
C。
Although three embodiments have been described above, the present invention is not limited to these embodiments in any way. For example, the semiconductor growth method may be a liquid phase growth method, a molecular beam epitaxy method, etc., and the impurity to be doped may be anything other than Fe as long as it forms a non-luminescent center, for example, Cr%.
It may be V (vanadium) or a composite thereof. Furthermore, the band structure of the light emitting region is also the lower conduction band I
C.

価電子帯止端IDが第3図(a)に示すように放物線的
に連続に変化していても良いし、同図(b) K示すよ
うに階段状に断続的に変化していても良い。
The valence band toe ID may change continuously in a parabolic manner as shown in Figure 3 (a), or it may change intermittently in a stepwise manner as shown in Figure 3 (b). good.

(発明の効果) 本発明によれば、厳密な膜厚制御を必要とせず、素子製
作プロセスが簡便なため再現性の向上、コストの低減に
有利な、しかも光出力の温度依存性の小さい半導体発光
素子が得られ、これKより、複雑な温度安定装置や、高
価な半導体発光素子を用いずとも周囲温度の変動に対し
ても安定に動作する光通信システムや光情報処理システ
ムを実現することができる。
(Effects of the Invention) According to the present invention, a semiconductor that does not require strict film thickness control and has a simple device manufacturing process, is advantageous in improving reproducibility and reducing costs, and has a small temperature dependence of optical output. A light-emitting device is obtained, and from this K, an optical communication system and an optical information processing system that operate stably even under fluctuations in ambient temperature without using a complicated temperature stabilizing device or an expensive semiconductor light-emitting device can be realized. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の第1の実施例による発光ダイオ
ードの積層方向の断面図、同図(b)はその斜視図、同
図(c)はその発光領域のバンド図である。第2図(a
)は本発明の第3の実施例による半導体レーザの積層方
向の断面図、同図(b)はその斜視図、同図(C)はそ
の発光領域のバンド図である。第3図(a)、(b)は
発光領域のバンド構造の他の例を示すバンド図である。 11・・・・・・n型InP基板、12・・・・・・n
型InPバッファー層、13・・・・・・アンドープI
flGaASP(禁制帯幅α98 eV)層、14・・
・・・・Feドープエn Qa As P (禁制帯幅
α96 eV)層、15−・・・・・発光領域、16・
・・・・・p型InPクラッド層、17 ・’−”’ 
f)型I nO,53Qa O,47Asキャップ層−
18・・・・・・p−n−p構造、19・・・・・・電
極、IA・・・・・・無反射コー)、IB・・・・・・
高反射コート、IC・・・・・・伝導帯下端、ID・・
・・・・価電子帯上端、21・・・・・・n型QaAs
基板、22・・・・・・n型QaAsバッファー層、2
3−・・・n型A1o、a Qa O,7A sクラッ
ド層、24・・・・・・発光領域中Feドープされた1
00Aの領域、25−・・−・1xGa、−xAs発光
領域、26・・・・・・p型A n O,3G a o
、7 A sクラッド層、27・・・・・・p型層aA
Sキャップ層、28・・・・・・p−n−p構造、29
・・・・・・電極。 代理人 弁理士  本 庄 伸 介 第1図(a) 第1図(b) 第1図(c) 第2図(a) 第2図(1)) ALxGa+−x As L九棉織 5巨購 第2図(c)
FIG. 1(a) is a sectional view in the stacking direction of a light emitting diode according to a first embodiment of the present invention, FIG. 1(b) is a perspective view thereof, and FIG. 1(c) is a band diagram of its light emitting region. Figure 2 (a
) is a cross-sectional view in the stacking direction of a semiconductor laser according to a third embodiment of the present invention, FIG. 3B is a perspective view thereof, and FIG. FIGS. 3(a) and 3(b) are band diagrams showing other examples of the band structure of the light emitting region. 11...n-type InP substrate, 12...n
type InP buffer layer, 13...undoped I
flGaASP (forbidden band width α98 eV) layer, 14...
...Fe-doped En Qa As P (forbidden band width α96 eV) layer, 15-... Light emitting region, 16.
...p-type InP cladding layer, 17 ・'-”'
f) Type I nO, 53Qa O, 47As cap layer-
18...p-n-p structure, 19...electrode, IA...non-reflective), IB...
High reflective coating, IC...lower end of conduction band, ID...
...Top of valence band, 21...n-type QaAs
Substrate, 22...n-type QaAs buffer layer, 2
3-... n-type A1o, a Qa O, 7A s cladding layer, 24... Fe-doped 1 in the light emitting region
00A region, 25-...1xGa, -xAs light emitting region, 26...p-type A n O, 3G ao
, 7 A s cladding layer, 27...p-type layer aA
S cap layer, 28... p-n-p structure, 29
······electrode. Agent Patent Attorney Shinsuke Honjo Figure 1 (a) Figure 1 (b) Figure 1 (c) Figure 2 (a) Figure 2 (1)) ALxGa+-x As L Kusa Ori 5 Big Purchase Figure 2(c)

Claims (1)

【特許請求の範囲】[Claims] 多層ヘテロ構造を有し;この多層ヘテロ構造は、互いに
導電型の異なる第1及び第2の半導体層で発光領域とな
る半導体を挾んでなり;この発光領域半導体は前記第1
及び第2の半導体層より屈折率が高くかつ禁制帯幅が狭
く;前記発光領域半導体では積層方向に関して禁制帯幅
が変化するとともに禁制帯幅が相対的に狭い領域に非発
光中心となる不純物がドープされていることを特徴とす
る半導体発光素子。
It has a multilayer heterostructure; this multilayer heterostructure includes a semiconductor serving as a light emitting region sandwiched between first and second semiconductor layers having different conductivity types; this light emitting region semiconductor is
and the second semiconductor layer, the refractive index is higher and the forbidden band width is narrower; in the light emitting region semiconductor, the forbidden band width changes with respect to the stacking direction, and impurities that become non-emissive centers are present in the region where the forbidden band width is relatively narrow. A semiconductor light emitting device characterized in that it is doped.
JP61204882A 1986-08-29 1986-08-29 Semiconductor light-emitting device Granted JPS6360571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61204882A JPS6360571A (en) 1986-08-29 1986-08-29 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61204882A JPS6360571A (en) 1986-08-29 1986-08-29 Semiconductor light-emitting device

Publications (2)

Publication Number Publication Date
JPS6360571A true JPS6360571A (en) 1988-03-16
JPH0577310B2 JPH0577310B2 (en) 1993-10-26

Family

ID=16497959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61204882A Granted JPS6360571A (en) 1986-08-29 1986-08-29 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPS6360571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220545A1 (en) * 2018-05-15 2019-11-21 Sharp Kabushiki Kaisha Light emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220545A1 (en) * 2018-05-15 2019-11-21 Sharp Kabushiki Kaisha Light emitting element

Also Published As

Publication number Publication date
JPH0577310B2 (en) 1993-10-26

Similar Documents

Publication Publication Date Title
US5418183A (en) Method for a reflective digitally tunable laser
EP0166593B1 (en) A semiconductor laser device
EP0661782B1 (en) A semiconductor laser
US4845724A (en) Semiconductor laser device having optical guilding layers of unequal resistance
JPH0381317B2 (en)
US5042049A (en) Semiconductor optical device
JP2558744B2 (en) Semiconductor laser device and manufacturing method thereof
JPH06224512A (en) Semiconductor device and its manufacturing process
JPH01239980A (en) Semiconductor laser device
US4761790A (en) Optical semiconductor device
JP2703784B2 (en) Semiconductor laser device
EP0528439B1 (en) Semiconductor laser
JPS6360571A (en) Semiconductor light-emitting device
JP2586671B2 (en) Semiconductor multilayer film
JPH04350988A (en) Light-emitting element of quantum well structure
JP2595774B2 (en) Manufacturing method of surface emitting semiconductor laser
KR0130066B1 (en) Semiconductor laser devices and process for making them
JPH06334256A (en) Formation of semiconductor light reflective layer
JPS62291191A (en) Semiconductor light-emitting device
JP2769408B2 (en) Super luminescent diode
JPS59155978A (en) Semiconductor light emitting device
JPH09298338A (en) Quantum well crystalline body and semiconductor laser
JPH10294530A (en) Multiquantum well type semiconductor light emitting element
JPS61224482A (en) Semiconductor light emitting device
JPH0114716B2 (en)