JPS63603A - Guidance system for moving body - Google Patents

Guidance system for moving body

Info

Publication number
JPS63603A
JPS63603A JP61143084A JP14308486A JPS63603A JP S63603 A JPS63603 A JP S63603A JP 61143084 A JP61143084 A JP 61143084A JP 14308486 A JP14308486 A JP 14308486A JP S63603 A JPS63603 A JP S63603A
Authority
JP
Japan
Prior art keywords
map
image
point
route
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61143084A
Other languages
Japanese (ja)
Inventor
Takuji Nishitani
西谷 卓史
Yasuhiro Tomita
富田 保宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP61143084A priority Critical patent/JPS63603A/en
Publication of JPS63603A publication Critical patent/JPS63603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To calculate an optimum path extending from the present spot to a target spot, by generating a map having height as a system being capable of coping with even an object which can be got over, and providing a potential field on its map. CONSTITUTION:An image which has been inputted by an image input device 11 of a TV camera, etc., which have been installed to a robot is delivered to a device for calculating what is called a distance image for giving distance information to each picture element on the image by a method of a binocular stereoscopic vision, etc. Subsequently, by using a distance image which has been obtained from this device 12, a map which becomes a premise for calculating an optimum path is generated from a floor surface high level distribution map generating part 13. In a path calculating part 14, this map generates an optimum path extending from the present spot to a target spot by providing a potential field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、視党を用いた移動ロボットの誘導に係り、特
に三次元距離情報を用いて移動経路を自律的に生成する
に好適な移動体の誘導方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the guidance of a mobile robot using visual acuity, and in particular to a mobile robot suitable for autonomously generating a movement route using three-dimensional distance information. Concerning the body's guidance method.

〔従来の技術〕[Conventional technology]

画像入力装置によって入力された画像から物体までの奥
行位置情報を算出した画像(以下距p准画像と言う)を
前提として、最適経路を算出する方式は、移動体の誘導
において重要である。例えば、自動車の自動走行、宇宙
空間、惑星、海底などの未知領域を探索する時など不可
欠となる。
A method of calculating an optimal route based on an image (hereinafter referred to as a distance p quasi-image) in which depth position information to an object is calculated from an image input by an image input device is important in guiding a moving object. For example, it is essential for autonomous driving of cars and for exploring unknown areas such as outer space, planets, and the ocean floor.

経路探索の方法として、例えば、IEδプロシーディン
グ、71巻、7号、 1!183年7月(Procee
d、tngs of The TEEE Vo Q 、
 71 、 Nu 7 。
As a route search method, for example, IEδ Proceedings, Volume 71, No. 7, 1! July 183 (Procee
d, tngs of The TEEE Vo Q,
71, Nu 7.

July 1983)におけるハンス・ピー・モラベツ
ク()IANS P、MOIIAVEC) ニよる“ス
タンフォードカード及びシーエムニーラバー1′)(“
Tha 5tanfordCart andThe C
MU Rover” )と題する文献に示されている方
法がある。これは、TVカメラから入力した画像から得
られた位置情報をもとに、物体を構成すると思われる点
の集合を1つの物体としてモデル化し、その点の集合を
1つの物体としてモデル化し、その点の集合を囲む楕球
を床面上へ投影する。各々の物体モデルの楕円が存在す
る床面形状地図より現在地点から目標地点までの最適経
路をグラフサーチの最短路問題として求めている。
Hans P. Moravec () IANS P, MOIIAVEC) in “Stanford Card and CMNY Rubber 1’)” (July 1983) (“
Tha 5tanfordCart andThe C
There is a method described in a document entitled "MU Rover". This method combines a set of points that are thought to constitute an object into one object based on position information obtained from images input from a TV camera. The set of points is modeled as one object, and an ellipse surrounding the set of points is projected onto the floor.From the floor shape map where the ellipse of each object model exists, from the current point to the target point The optimal path to is found as a graph search shortest path problem.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術における問題は、モデル化された物体はロ
ボットにとって乗り越え可能であっても必ず回避するよ
うに経路を求めること即ち、高さという量を考慮に入れ
ていないことがあげられる。
The problem with the above-mentioned conventional technology is that even if the robot is able to climb over the modeled object, a route is always determined to avoid it, that is, the height is not taken into account.

本発明の目的は1乗り越え可能な物体に対しても対処可
能な方式として高さをもった地図を生成し、その地図上
にポテンシャルの場を設けることにより現在地点より目
標地点までの最適経路を算出する自律移動ロボットの誘
導方式を提供することにある。
The purpose of the present invention is to generate a map with height as a method that can deal with objects that can be climbed over, and to create a potential field on the map to find the optimal route from the current point to the target point. The purpose of this invention is to provide a guidance method for an autonomous mobile robot that performs calculations.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、空間位置情報を与える距離画像を用いて床面
からの高さを値に持つ地図(床面高度分布図)を生成し
、この地図上の各点において高さに比例したポテンシャ
ルの山、現在地点に十分大きなポテンシャルの山、及び
目標地点においては十分低い谷のポテンシャルを設ける
The present invention uses a distance image that provides spatial position information to generate a map (floor height distribution map) whose value is the height from the floor, and at each point on this map, a potential proportional to the height is generated. A peak with a sufficiently large potential at the current location and a valley with a sufficiently low potential at the target location are provided.

〔作用〕[Effect]

上記構成によれば、現在地点から目標地点まで移動体が
自然に移動する経路(最適経路)を算出することができ
る。
According to the above configuration, it is possible to calculate a route (optimal route) along which a moving object naturally moves from the current point to the target point.

〔実施例〕〔Example〕

以下本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明による自律移動ロボット誘導装置の全体
構成を示す図である。ロボットに設置されているTVカ
メラ等の画像入力装置11により入力された画像を、両
眼立体視等による方法で画像上の各画素に対して距離情
報を与えるいわゆる距離画像を算出する装置12へと渡
す。次に、この装置12より得られた距離画像を用いて
、床面高度分布地図生成部13より最適経路算出の前提
となる地図を生成する。経路算出部14では、この地図
にポテンシャル場を設けることにより現在地点から目標
地点までの最適経路を生成する。
FIG. 1 is a diagram showing the overall configuration of an autonomous mobile robot guidance device according to the present invention. An image inputted by an image input device 11 such as a TV camera installed on the robot is sent to a device 12 that calculates a so-called distance image that provides distance information for each pixel on the image using a method such as binocular stereoscopic vision. and pass it on. Next, using the distance image obtained by this device 12, the floor height distribution map generation unit 13 generates a map that is a prerequisite for calculating the optimal route. The route calculation unit 14 generates an optimal route from the current location to the target location by providing a potential field on this map.

次に、各処理部の動作を詳細に説明する。Next, the operation of each processing section will be explained in detail.

距離画像算出部12によって得られる情報として、各画
素に対してその像の空間座標位置(三次元位は情報)が
、第2図に示すようなロボットの視点Eを原点、視線方
向を一つの軸とする座標系として与えられる。
As the information obtained by the distance image calculation unit 12, the spatial coordinate position (three-dimensional position is information) of the image for each pixel is determined with the robot's viewpoint E as the origin and the line of sight direction as shown in FIG. It is given as a coordinate system with an axis.

この三次元位置情報を用いて、床面高度分布地図生成部
12は次のような処理を行う。即ち、この三次元位置情
報を第2図のような絶対座標系○W−XwYwZw(ロ
ボットが位置する平面をXsYw平面とする。)へ変換
し、ロボットの高さZ。
Using this three-dimensional position information, the floor height distribution map generation unit 12 performs the following processing. That is, this three-dimensional position information is converted into the absolute coordinate system ○W-XwYwZw (the plane on which the robot is located is assumed to be the XsYw plane) as shown in FIG. 2, and the height Z of the robot is determined.

と、XwYw平面上での視線方向の長さH2水平方向の
長さWとで区切られた直方体(算出領域)を考え、この
内部にある点の位置情報を対象としてその点をX w 
Y w平面上(Wと1(で切られた平面)へ投影する。
Considering a rectangular parallelepiped (calculation area) divided by a length H2 in the line of sight direction and a length W in the horizontal direction on the
Project onto the Y w plane (the plane cut by W and 1).

この投影された床面分布は、−定間隔幅でメツシュに分
割し両頂として表現する。この各メツシュに対応する点
(距離画像の各画素に対応する点で、算出領域内のもの
。以下高度分布図の点とはこれを意味する。)の個数が
十分多いものだけを考えて、それらの点の中で最大の高
さくZw−成分)をそのメツシュの持つ高度の値とする
。これを床面高度分布図と言う。この床面高度分布図の
例を第3図に示す。図におけるノλ−丸の点は算出領域
内にあった点(物体ありを示す)を示す。 次にこの床
面高度分布図に基づいて、最適経路算出部】4において
、現在地点から目的地点までの最適経路を次の手順で求
める。
This projected floor surface distribution is divided into meshes with -regular interval widths and expressed as both vertices. Considering only those points that have a sufficiently large number of points corresponding to each mesh (points corresponding to each pixel of the distance image, within the calculation area.Hereinafter, the term "points on the altitude distribution map" means this). The maximum height (Zw-component) among those points is taken as the altitude value of that mesh. This is called a floor height distribution map. An example of this floor height distribution map is shown in Figure 3. The λ-circled points in the figure indicate points that were within the calculation area (indicating the presence of an object). Next, based on this floor surface altitude distribution map, the optimal route calculating section 4 calculates the optimal route from the current point to the destination point according to the following procedure.

最適経路算出手順を第4図を用いて説明する。The optimal route calculation procedure will be explained using FIG. 4.

経路の表現は、現在地点を初期値としてロボットがある
一定時間内に移動可能な距離(単位移動距M)ごとの座
標列(経路点列)  (Pfi)ρ=0゜・・・で表現
する。
The path is expressed as a coordinate sequence (route point sequence) (Pfi) ρ = 0° for each distance (unit movement distance M) that the robot can move within a certain period of time with the current point as the initial value. .

(手M I )経路点P、を中心に単位移動距離を半径
にして、次の経路点Pt+1の候補Pg町(k=o、・
・・、N)を−定角度幅で等分割して求める。
(Hand M I ) Centering on the route point P, with the unit moving distance as the radius, select the candidate Pg town (k=o, ・
. . , N) is equally divided into - constant angle widths.

(手順■)候補点P□+1におけるポテンシャル祇V(
P*+x)を次式で求める。
(Procedure ■) Potential Gi V at candidate point P□+1 (
P*+x) is calculated using the following formula.

V (P m”z) = Mar B (P m+I 
l aj)+ B o(P mHz) + B E(P
 mHz)(手順III) MinV[P處+t)なる
点Pm+tを次の経路点1)a÷工とする。
V (P m”z) = Mar B (P m+I
l aj) + B o (P mHz) + B E (P
mHz) (Procedure III) Let the point Pm+t, which is MinV[P+t), be the next path point 1) a÷.

ここで、(手順I′I)における記号の意味は次の通り
である。
Here, the meanings of the symbols in (procedure I'I) are as follows.

・B(2皿+1.ai)二床面高度分布地図上の点ai
(i=1.・・・9M)を頂点とした第5図(a)のよ
うな山の曲面関数Bを考える。但し、頂点の値は点ai
における値、即ち高度に比例したものとする。
・B (2 dishes + 1.ai) Point ai on the two-floor altitude distribution map
Consider a curved surface function B of a mountain as shown in FIG. 5(a) with (i=1..9M) as the vertex. However, the value of the vertex is point ai
, i.e., it is proportional to the altitude.

数値である。It is a numerical value.

・B a(P 、+1) :現在地点Eを頂点(その高
さは十分大きくとる)とする上記13と同様で非負な関
数BEを考える。この記号は、点Pintにおける関数
値である。
- B a (P, +1): Consider a non-negative function BE similar to 13 above, with the current point E as the apex (its height is sufficiently large). This symbol is the function value at point Pint.

・Ba(Pa+1):関数BEの値を正負逆にし、谷の
頂点を目標地点Gとした第5図(b)のような関数BG
を考える。この記号は1点P 龍+sにおけるとその関
数値である。
・Ba (Pa+1): A function BG as shown in Fig. 5(b) with the value of the function BE reversed and the top of the valley set as the target point G.
think of. This symbol is the function value at one point Pryu+s.

・Bo(Pant):高度分布地図の領域以外の領域(
但し、現在地点Eのある辺の対辺側は開放)には経路点
を生成しないようにするための第5図(c)のような関
数Boを考える。この記号は1点Pk+1におけるその
関数値である。
・Bo (Pant): Area other than the area of the altitude distribution map (
However, consider a function Bo as shown in FIG. 5(c) in order to avoid generating route points on the side opposite to the side where the current point E is located (open). This symbol is the function value at one point Pk+1.

以上の手順を、現在地点E (=po)から、次のよう
な終了条件を満たすまでQについて繰返すことにより第
6図のような最適経路を生成する。
By repeating the above procedure for Q from the current point E (=po) until the following termination condition is satisfied, an optimal route as shown in FIG. 6 is generated.

終了条件: 経路点Pgから、次の経路点Pa+1を探索する原点P
1を中心とし単位移動距離を半径とする円領域内に目標
地点Gが含まれた場合。
Termination condition: Origin P to search for the next route point Pa+1 from route point Pg
When the target point G is included in a circular area whose center is 1 and whose radius is the unit movement distance.

または2次の経路点P露+1が、経路点Pgを探索した
領域(経路点Pa−5を中心に単位移動距離を半径とす
る円領域)内に戻った場合とする。
Alternatively, assume that the secondary route point P+1 returns to the area searched for the route point Pg (a circular area with the route point Pa-5 as the center and the radius equal to the unit movement distance).

〔発明の効果〕〔Effect of the invention〕

本発明によれば次のような効果がある、・経路探索を距
離画像という広範囲な情報をもとにしていることから、
算出した最適経路の信頼性が高い。
According to the present invention, the following effects are achieved: ・Since the route search is based on a wide range of information in the form of distance images,
The reliability of the calculated optimal route is high.

・移動ロボットの乗り越え可能な高さの物体は。・What is the height of an object that a mobile robot can climb over?

乗り越える経路を算出することができる。A route to overcome can be calculated.

以上、本誘導方式によれば、各種の移動体の自作走行を
実現する上で効果大である。
As described above, the present guidance method is highly effective in realizing self-produced running of various types of moving objects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置のブロック構成図
、第2図は床面高度分布図を生成する過程で用いる床面
算出領域を示す図、第3図は床面高度分布図の一例、第
4図はIrk適経路探索の方法を示す図、第5図は経路
探索を行う上で用いるポテンシャル関数を示す図、第6
図は最適経路算出の一結果を示す図である。
Fig. 1 is a block configuration diagram of an apparatus for carrying out the present invention, Fig. 2 is a diagram showing a floor surface calculation area used in the process of generating a floor surface height distribution map, and Fig. 3 is a diagram showing a floor surface height distribution map. For example, Fig. 4 is a diagram showing the Irk suitable route search method, Fig. 5 is a diagram showing the potential function used in route searching, and Fig. 6 is a diagram showing the potential function used in route searching.
The figure shows one result of optimal route calculation.

Claims (1)

【特許請求の範囲】[Claims] 1、距離情報を得ることができる外界センサにより得ら
れた物体の位置情報を、床面へ投影した高度分布地図へ
変換し、現在地点より目標地点までの最適経路を、前記
高度分布地図より得られるポテンシャルの場を用いるこ
とにより算出することを特徴とする移動体の誘導方式。
1. Convert the object position information obtained by an external sensor that can obtain distance information into an altitude distribution map projected on the floor, and obtain the optimal route from the current point to the target point from the altitude distribution map. A method for guiding a moving body, characterized in that the calculation is performed using a potential field.
JP61143084A 1986-06-20 1986-06-20 Guidance system for moving body Pending JPS63603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61143084A JPS63603A (en) 1986-06-20 1986-06-20 Guidance system for moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61143084A JPS63603A (en) 1986-06-20 1986-06-20 Guidance system for moving body

Publications (1)

Publication Number Publication Date
JPS63603A true JPS63603A (en) 1988-01-05

Family

ID=15330539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61143084A Pending JPS63603A (en) 1986-06-20 1986-06-20 Guidance system for moving body

Country Status (1)

Country Link
JP (1) JPS63603A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635408A (en) * 1986-06-26 1988-01-11 Fujitsu Ltd Method of adaptive control for robot
JPH06208405A (en) * 1993-01-08 1994-07-26 Takanori Ikegami Information processing method and information processor for intelligent robot
JP2008107228A (en) * 2006-10-26 2008-05-08 Nec Corp Route measuring apparatus, route measuring method and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635408A (en) * 1986-06-26 1988-01-11 Fujitsu Ltd Method of adaptive control for robot
JPH06208405A (en) * 1993-01-08 1994-07-26 Takanori Ikegami Information processing method and information processor for intelligent robot
JP2008107228A (en) * 2006-10-26 2008-05-08 Nec Corp Route measuring apparatus, route measuring method and program

Similar Documents

Publication Publication Date Title
CN108663681A (en) Mobile Robotics Navigation method based on binocular camera Yu two-dimensional laser radar
Warren A technique for autonomous underwater vehicle route planning
Burschka et al. Vision-based control of mobile robots
Goto et al. Mobile robot navigation: The CMU system
JP2022542807A (en) intermediate waypoint generator
CN108255174A (en) robot path planning method and device
Ohki et al. Collision avoidance method for mobile robot considering motion and personal spaces of evacuees
CN111488059A (en) Interactive projection method suitable for interactive fusion
Yagi et al. Collision avoidance using omnidirectional image sensor (COPIS)
Kuribayashi et al. Corridor-Walker: Mobile indoor walking assistance for blind people to avoid obstacles and recognize intersections
Ishiguro et al. A strategy for acquiring an environmental model with panoramic sensing by a mobile robot
JPS63603A (en) Guidance system for moving body
Jung et al. A generalized region-based approach for multi-target tracking in outdoor environments
Tsuji et al. Dynamic scene analysis for a mobile robot in a man-made environment
Kim et al. Curve tracking control for autonomous vehicles with rigidly mounted range sensors
Nasti et al. Obstacle avoidance during robot navigation in dynamic environment using fuzzy controller
US11865724B2 (en) Movement control method, mobile machine and non-transitory computer readable storage medium
Thompson et al. Stereo vision terrain modeling for non-planar mobile robot mapping and navigation
CN114489050A (en) Obstacle avoidance route control method, device, equipment and storage medium for straight line driving
Basiri et al. Improving robot navigation and obstacle avoidance using Kinect 2.0
JPS63186308A (en) Method and device for guiding mobile object
Skrzypczyński Uncertainty models of vision sensors in mobile robot positioning
KR102445846B1 (en) Obstacle tracking system and obstacle tracing method
Mächler Robot odometry correction using grid lines on the floor
JP3005246B2 (en) Collision avoidance control system