JPS6360080B2 - - Google Patents

Info

Publication number
JPS6360080B2
JPS6360080B2 JP4599484A JP4599484A JPS6360080B2 JP S6360080 B2 JPS6360080 B2 JP S6360080B2 JP 4599484 A JP4599484 A JP 4599484A JP 4599484 A JP4599484 A JP 4599484A JP S6360080 B2 JPS6360080 B2 JP S6360080B2
Authority
JP
Japan
Prior art keywords
gas
catalyst
impurities
raw material
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4599484A
Other languages
Japanese (ja)
Other versions
JPS60190495A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4599484A priority Critical patent/JPS60190495A/en
Publication of JPS60190495A publication Critical patent/JPS60190495A/en
Publication of JPS6360080B2 publication Critical patent/JPS6360080B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Industrial Gases (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は一酸化炭素と不純物として少なくとも
酸素とを含む合成用原料ガスの精製方法に関する
ものである。 [従来技術] 一酸化炭素を含むガスの代表的なものとして、
製鉄所の転炉から得られる転炉ガス、電気炉から
得られる電炉ガス、コークスをガス化して得られ
る発生炉ガス等がある。これらのガスの中には70
%以上の一酸化炭素が含まれているものもあり、
通常は殆どが燃料として消費されているが、最
近、この一酸化炭素に着目し、これを有機合成用
の原料として利用することが試みられている。 しかし、各種の炉から得られるガスは不純物を
含んでいる。例えば、窒素、水素、二酸化炭素、
酸素、硫化水素、水、メタン等を含んでいる。こ
れらの成分の内、二酸化炭素、酸素、硫化水素、
水、メタンが存在すると有機合成の触媒等に影響
し、一酸化炭素の反応を阻害して十分な合成反応
を期待することが出来ない。例えば、蟻酸の合成
反応に対して、酸素(O2)の存在は重大な悪影
響を及ぼす。 従つて何らかの前処理を行つて、十分にこれら
の不純物を取り除く必要があつた。この様な不純
物の内、分子の形状等から一酸化炭素とは吸着性
の異なる二酸化炭素、硫化水素、水等は、公知の
圧力スイング法(PSA法)あるいは温度スイン
グ法(TSA法)を用いて、吸着剤で取り除くこ
とが出来る(「圧力スイングサイクルシステム」
鈴木謙一郎・北川浩:1983年 講談社発行)、
(「空調技術者のための除湿の実用設計」鈴木・大
矢:共立出版発行)、(「吸着の基礎と設計」鈴木
謙一郎・北川浩:槙書店発行)。 一方、酸素を取り除く方法として、まず銅触
媒と接触させることにより、酸素と一酸化炭素と
を反応させて二酸化炭素にし、この後、前記
PSA法あるいはTSA法を用いて、吸着剤にて二
酸化炭素を吸着除去する方法がある。の工程で
は硫化水素、水等も吸着されるので、単に上記
,の工程のみで、全ての有害な不純物が取り
除かれるはずである。 [発明が解決しようとする問題点] しかし、硫化水素等の硫黄化合物は上記にお
ける触媒に対しては触媒毒となる。原料ガス中に
は硫黄化合物が含まれていることがおおく、上記
,の工程をそのまま実施すると、の工程で
は酸素のほとんどが未反応のままとなり、の工
程に至つてしまうという事態が発生する。 ところが、吸着による分別では、有機合成に有
害な不純物はほとんど除かれるが、酸素は一酸化
炭素と吸着性が近似していることから、そのほと
んどが最終製品である一酸化炭素ガス中に残留す
る。 従つて、何らかの不純物が含まれている原料ガ
スは上記工程の前に、更に不純物を取り除くた
めの1工程が必要となつた。即ち、PSA法等で
予め硫化水素等の硫黄化合物を取り除いておき、
その後主に酸素ガスを酸化・吸着して取り除くた
めに上記,の工程を実施しなければならな
い。 このように、一酸化炭素原料ガスの不純物を取
に除くために少なくとも3工程が必要であり、設
備的にもエネルギー的にも不利であり、コスト高
を招いてその利用にも支障を来していた。 [本発明の目的] 本発明は、一酸化炭素回収分離における上記の
ような問題点を解消した一酸化炭素の精製方法に
つき種々検討を加えた結果、達成されたものであ
つて、原料ガスを基本的に2工程にて合成用に適
した性状に精製する方法を提供することを目的と
している。 [課題を解決するための手段] 即ち、本発明の要旨とするところは、 一酸化炭素と不純物とを含む合成用原料ガス
を、部分還元処理した酸化銅と酸化亜鉛とを組み
合わせた二元組成系触媒に接触させることによ
り、不純物中の酸素と一酸化炭素とを反応させ
て、二酸化炭素に変化させる第1工程と、 該第1工程を経た原料ガスを加圧下に、活性
炭、または該活性炭にゼオライトおよび/または
活性アルミナを混合した組成物よりなる吸着剤を
充填した吸着塔に導通して不純物を吸着除去する
第2工程とからなることを特徴とする合成用一酸
化炭素ガスの精製方法にある。 本発明を更に詳細に説明するに、本発明の適用
される一酸化炭素(以下「CO」ともいう)と不
純物とを含む合成用原料ガスとしては、例えば製
鉄所の転炉から発生する転炉ガス、電気炉から得
られる電炉ガス、コークスをガス化して得られる
発生炉ガス等であり、主体のCO、窒素(以下
「N2」ともいう)および少量の酸素(以下「O2
ともいう)のほか、二酸化炭素(以下「CO2」と
もいう)、メタン等の炭化水素(以下「CH4等」
ともいう)、水蒸気(以下「H2O」ともいう)お
よび硫化水素等の硫黄化合物(以下「H2S等」と
もいう)等を含む混合ガスが挙げられる。本発明
は以上のような合成用原料ガスを、酸素除去用と
して不純物にても影響されない特別な二元組成系
触媒に接触させ、不純物の存在下にても該ガスに
含まれるCO以外のガス成分のうち、O2をCO2
変化させる第1工程と、第1工程を経た原料ガス
を吸着剤を充填した吸着塔に導き、PSA法を適
用してCO2のほかH2O、H2S等およびCH4等の合
成に支障をきたす不純物を吸着剤に吸着させ、合
成用に適した性状に精製する第2工程とよりなる
ことを特徴とする。 <第1工程について> 本発明方法において、原料ガス中のO2をCO2
変化させる第1工程で接触させるO2除去触媒と
しては基質が部分還元した酸化銅(CuO)及び酸
化亜鉛(ZnO)よりなる二元組成系触媒であり、
その組成割合がCuO:10〜40重量%、好ましくは
20〜40重量%、ZnO:90〜60重量%好ましくは80
〜60重量%の範囲で、これに例えばグラフアイト
のようなバインダーを4〜10重量%を加え、直径
及び高さがそれぞれ3m/m程度の円柱状に成型
してなるものが使用される。この触媒は、公知の
各種方法によつて調製される。例えば、銅及び亜
鉛の硝酸塩のような無機酸塩の混合溶液に、アル
カリを加えてPHを調製し銅及び亜鉛の水酸化物を
共沈させ析出した水酸化物を熱分解して酸化物と
したのち成型し、N2ガスのような不活性ガスに
少量のH2ガスまたはCOガスを存在させた還元性
ガスで接触処理して、部分還元する方法;銅及び
亜鉛の硝酸塩の混合溶液を担体例えば、アルミナ
のような担体に浸漬して、熱分解し、酸化物とし
たのち成型し、N2ガスのような不活性ガスに少
量のH2ガスまたはCOガスを存在させた還元性ガ
スで接触処理して、部分還元する方法;銅及び亜
鉛の酢酸塩のような有機酸塩の混合物にグラフア
イトのような無機質バインダーを加えて混練し成
型したのち、熱分解して酸化物とし、前記のよう
な不活性ガス中にH2ガスやCOガスを少量存在さ
せた還元性ガスで接触処理する方法などにより調
製される。上記触媒の調製に当つての、部分還元
処理は、触媒活性を高めるためである。尚、本発
明方法の第1工程において、この部分還元処理は
CuO及びZnOの組合わせよりなる二元組成系触媒
を触媒充填塔に充填後、還元性ガスを直接導通す
ることによつて行うこともできる。 本触媒は前記した不純物、即ちCO2、H2S、
H2O、CH4、H2,N2等の不純物により触媒活性
を失うことがない。従つて、そのような不純物の
存在下でもO2をCO2化することができる。 本発明方法の第1工程は有害な不純物を含む原
料ガス中に少量存在するO2をCOと反応させCO2
に変化させるものである。このO2とCOとの反応
は発熱反応であり、自らの燃焼熱により、一定の
温度が保持され、外部からの熱源の供給を必要と
しないか、あるいは、少なくて済む。触媒充填塔
における保持温度は常温から230℃の雰囲気下で
充分O2除去反応が完結する。また、O2とCOとの
反応は常圧下、昇圧下のいずれでも進行するが、
昇圧時に発生する圧縮熱が利用できる利点がある
こと、及び第1工程のあとに引続いて行う後記の
第2工程では、昇圧下に原料ガスを吸着塔に圧入
する必要があることから、第1工程以前に原料ガ
スを予め4〜9気圧に昇圧する工程を設けるのが
よい。尚、被処理ガスのCOを主成分とするガス
の触媒充填塔への導通空間速度は500〜60万hr-1
の範囲で行つて存在する酸素を完全に除去するこ
とができる。 <第2工程について> 第1工程を経て、その中に少量含まれるO2
がCOと反応して生成したCO2を含む被処理ガス
は、共存している例えばCO2、H2O、CH4等およ
びH2S等のような有機合成反応上障害となるガス
成分を吸着分離する第2工程へ導かれる。第2工
程における原料ガスの精製は、例えば上記のCO2
以下のガス成分を選択的に吸着する吸着剤の充填
された複数の吸着塔を交互に用いて行う。即ち原
料ガスを、常温下、第1工程で保持された例えば
4〜9気圧の圧力で入力し、上記のCO2以下のガ
ス成分を吸着除去する。O2は第2工程では除去
対象ではないが、既に第1工程で除去されている
ので、最終精製物に残留することはない。尚、第
1工程以前に昇圧工程を行わなかつた場合は、第
2工程と第1工程の間に昇圧工程を設ける必要が
ある。次に、吸着された上記CO2以下のガス成分
は吸着塔を減圧にして吸着塔からパージさせ、そ
のあと、既に精製された被処理ガスを逆導通して
吸着剤を洗浄する。以下、吸着塔間を接続した配
管、それに配置される切換弁、および制御装置に
よりサイクリツクに操作するいわゆるPSA方式
が適用される。吸着塔に充填される吸着剤として
は、活性炭が挙げられるが、なかでも、14〜30Å
の最頻度細孔径を有する活性炭は原料被処理ガス
中に含まれる上記のCO2以下のガス成分の吸着除
去用として最も好適である。また、そのような細
孔径を有する活性炭にゼオライトおよび/または
活性アルミナを混合した組成物も同様に使用する
ことができる。 第1図は、第2工程としての上記PSA方式の
フロー図で吸着塔が2塔式の例を示す。図におい
て、F14は流量計、V110は切換弁、1A,1
Bは吸着塔、2a,2bは吸着剤、3は精製され
た被処理ガスのタンク、4は第1工程を経た被処
理ガスの導入酸管、5は精製された被処理ガスの
導出配管、6は洗浄用の精製された被処理ガス配
管、7は吸着塔1A,1Bで精製された被処理ガ
スを該ガス用タンク3に通す配管、8はガスパー
ジ配管である。 次に、吸着分離による精製操作の一例を述べる
と、V1,V7以外の切換弁はすべて閉とした状態
で、原料ガス配管4より原料ガスが吸着塔1Aに
圧入され、前記CO2以下のガス成分は吸着剤2a
に吸着され、精製された原料ガスはV7、配管7
経由精製ガスタンクに貯蔵される。一方、吸着塔
1B内の吸着剤2bに吸着されている前記CO2
下のガス成分は切換弁V8、V6、V2が閉、V4開、
塔内減圧状態とし、ガスパージ管8経由系外へ排
出され、そのあと、V9、V6、V4開、V2閉とし、
精製ガスタンク3内の該ガスを配管6経由吸着塔
1Bに逆導通し、不純剤2bを洗浄し、洗浄ガス
はガスパージ管8経由系外へ排出される。洗浄が
終われば、V4閉として、引き続き、精製ガスタ
ンク3内の精製ガスを逆導入して吸着塔1Bを加
圧する。加圧が終れば、V2、V8開、V6閉として
原料ガス導入配管4より原料ガスを圧入し以下、
吸着による原料ガスの精製、吸着されているガス
成分の減圧パージ、精製されたガスによる吸着剤
の洗浄加圧、そして原料ガスの圧入が反覆され
る。又、前記の吸着操作により、吸着塔1Aの吸
着剤2aに吸着されている前記CO2以下のガス成
分は、V7、V5、V1、V4閉、V3開、塔内減圧の状
態でガスパージ管8経由系外へ排出される。以
下、前記吸着塔1Bの場合と同様、加圧状態で精
製ガスタンク3内の精製された原料ガスを吸着塔
1Aに逆導通し、吸着剤1aの洗浄加圧、切換弁
切換えによる原料ガスの圧入、精製が反覆され
る。これらの操作、例えば切換弁の開閉切換えは
通常の制御装置によつて行われる。 [作用] 第1工程では、部分還元処理した酸化銅と酸化
亜鉛とを組み合わせた二元組成系触媒が、不純物
(特に硫黄化合物)の存在下でも、酸素を一酸化
炭素と反応させて、二酸化炭素に変化させてい
る。 第2工程では、PSA法により二酸化炭素を含
め、有機合成に有害な不純物を除去している。 従つて、基本的に2つの工程で有機合成に有害
な不純物を除去した一酸化炭素原料ガスを得るこ
とが出来る。 [発明の効果] 本発明は、以上述べたように、合成用一酸化炭
素原料ガスを、酸素除去用の二元組成系触媒と接
触させ、含まれるO2とCO2に変化させる第1工程
に導き、引続いて、公知のPSA法を適用して有
機合成反応上障害となる成分を吸着除去する第2
工程に導いている。 この第1工程に、不純物に耐性の高い上記した
特別な触媒を用いていることにより、予め不純物
を除去する前処理工程を経ずとも、原料ガスを直
接、第1工程で処理出来る。不純物は元来、第2
工程にて除くことが可能であるため、全処理を第
1工程と第2工程との2つの工程で処理すること
が可能となる。従つて、比較的小型の設備で有機
合成にとつて有害な不純物を十分に除いた一酸化
炭素原料ガスを得ることが出来る。更に省エネル
ギーにもなり、コスト的にきわめて有利となる。 [実施例] 次に本発明を実施例を掲げて説明するが本発明
はその要旨を超えない限り、以下の実施例に限定
されることはない。尚、第1〜第4実施例は第1
工程の実施例である。 実施例 1 共沈法により調製した80wt%のCuO−20wt%
のZnOよりなる二元組成系触媒(1c.c.)を充填し
た反応管(10m/mφ×400m/m)に、N2
99.0vol%、CO:1.0vol%よりなる還元性ガス
(100c.c./min)を導通し、該触媒を温度170℃、
圧力1Kg/cm2Gで部分還元した。こののち、第1
工程として組成がCO:84.5vol%、N2:15.0vol
%、O2:0.5vol%からなるCOを主成分とする原
料ガスを、圧力1Kg/cm2G、空間速度5万hr-1
割合で第2図に示す触媒相の温度条件下で通過さ
せた。このときの触媒層の反応温度とO2除去率
との関係を第2図に示す。比較例として部分還元
したCuO単独触媒を用いた場合、及び部分還元し
たZnO単独触媒を用いた場合についても併記す
る。但し、ZnO単独触媒は活性が極めて低いため
空間速度1000hr-1で行つた。 尚、本実施例に用いたCuO−ZnO触媒は次のよ
うにして調製した。即ち、硝酸銅と硝酸亜鉛の混
合溶液をアンモニア水でPH調整し、水酸化銅及び
水酸化亜鉛として共沈させ、濾過、乾燥後大気中
約400℃で熱分解して得た酸化物の粉末を混合成
型した。 第2図の結果から明らかなように、部分還元し
たCuO−ZnO二元組成系触媒を用いる本発明方法
は、100℃程度の低温で容易にCOを主体とする
O2含有ガスからO2を除去できることが分かる。
尚、いずれの場合も反応管出口ガス中のO2濃度
をテレダイン社製の微量酸素分析計で実測したと
ころ検出限界(0.5ppm)以下でO2はほぼ完全に
除去されたことが確認された。この濃度であれば
一酸化炭素を用いた有機合成には問題ない。 実施例 2 実施例1と同様の反応管に、実施例1と同様に
して調製したCuO−ZnO二元組成系触媒を充填し
還元性ガスを導通して部分還元したのち、触媒層
温度を180℃に保持し、実施例1と同様のCOを主
成分とする供試ガスを次の第1表に示す、空間速
度及び圧力条件下で接触させO2除去率を測定し
た。結果を同表に示す。この結果から明らかなと
おり、空間速度を大きくしてもO2除去率は低下
しないことが分かる。
[Industrial Field of Application] The present invention relates to a method for purifying a raw material gas for synthesis containing carbon monoxide and at least oxygen as an impurity. [Prior art] As a typical gas containing carbon monoxide,
Examples include converter gas obtained from converters in steel plants, electric furnace gas obtained from electric furnaces, and generator gas obtained by gasifying coke. Some of these gases contain 70
Some contain more than % carbon monoxide,
Usually, most of it is consumed as fuel, but recently, attention has been focused on carbon monoxide, and attempts have been made to use it as a raw material for organic synthesis. However, the gases obtained from various furnaces contain impurities. For example, nitrogen, hydrogen, carbon dioxide,
Contains oxygen, hydrogen sulfide, water, methane, etc. Among these components, carbon dioxide, oxygen, hydrogen sulfide,
If water or methane is present, it will affect the organic synthesis catalyst and inhibit the carbon monoxide reaction, making it impossible to expect a sufficient synthesis reaction. For example, the presence of oxygen (O 2 ) has a significant negative effect on the synthesis reaction of formic acid. Therefore, it was necessary to perform some kind of pretreatment to sufficiently remove these impurities. Among these impurities, carbon dioxide, hydrogen sulfide, water, etc., which have different adsorption properties from carbon monoxide due to their molecular shape, etc., can be extracted using the well-known pressure swing method (PSA method) or temperature swing method (TSA method). can be removed using an adsorbent (“pressure swing cycle system”)
Kenichiro Suzuki and Hiroshi Kitagawa: Published by Kodansha in 1983),
(“Practical Design of Dehumidification for Air Conditioning Engineers” by Suzuki and Oya: published by Kyoritsu Publishing), (“Basics and Design of Adsorption” by Kenichiro Suzuki and Hiroshi Kitagawa: published by Maki Shoten). On the other hand, as a method for removing oxygen, first, by bringing it into contact with a copper catalyst, oxygen and carbon monoxide are reacted to form carbon dioxide, and then the
There is a method of adsorbing and removing carbon dioxide using an adsorbent using the PSA method or the TSA method. Since hydrogen sulfide, water, etc. are also adsorbed in the process, all harmful impurities should be removed simply by the process described above. [Problems to be Solved by the Invention] However, sulfur compounds such as hydrogen sulfide poison the catalysts mentioned above. The raw material gas often contains sulfur compounds, and if the above step is carried out as is, most of the oxygen will remain unreacted in the step, leading to the step. However, while adsorption-based separation removes most of the impurities that are harmful to organic synthesis, most of the impurities remain in the final product, carbon monoxide gas, because the adsorptivity of oxygen is similar to that of carbon monoxide. . Therefore, a raw material gas containing some impurities requires an additional step to remove impurities before the above steps. That is, sulfur compounds such as hydrogen sulfide are removed in advance using the PSA method, etc.
After that, the above steps must be carried out mainly to remove oxygen gas by oxidizing and adsorbing it. In this way, at least three steps are required to completely remove impurities from the carbon monoxide raw material gas, which is disadvantageous in terms of equipment and energy, which increases costs and impedes its use. was. [Objective of the present invention] The present invention was achieved as a result of various studies on a carbon monoxide purification method that solved the above-mentioned problems in carbon monoxide recovery and separation. The objective is to provide a method for purifying a substance into a state suitable for synthesis in basically two steps. [Means for Solving the Problems] That is, the gist of the present invention is to provide a binary composition in which a raw material gas for synthesis containing carbon monoxide and impurities is combined with partially reduced copper oxide and zinc oxide. A first step in which oxygen and carbon monoxide in impurities are reacted and converted into carbon dioxide by contacting with a system catalyst, and the raw material gas that has passed through the first step is heated under pressure with activated carbon or the activated carbon. A method for purifying carbon monoxide gas for synthesis, comprising a second step of adsorbing and removing impurities by passing the gas through an adsorption tower filled with an adsorbent made of a composition of a mixture of zeolite and/or activated alumina. It is in. To explain the present invention in more detail, the raw material gas for synthesis containing carbon monoxide (hereinafter also referred to as "CO") and impurities to which the present invention is applied is, for example, a converter gas generated from a converter in a steel mill. Gas, electric furnace gas obtained from electric furnaces, generating furnace gas obtained by gasifying coke, etc., mainly CO, nitrogen (hereinafter also referred to as "N 2 "), and a small amount of oxygen (hereinafter "O 2 ").
), carbon dioxide (hereinafter also referred to as ``CO 2 ''), hydrocarbons such as methane (hereinafter referred to as ``CH 4 etc.'')
Examples include mixed gases containing water vapor (hereinafter also referred to as "H 2 O"), sulfur compounds such as hydrogen sulfide (hereinafter also referred to as "H 2 S, etc."), and the like. In the present invention, the raw material gas for synthesis as described above is brought into contact with a special binary composition catalyst for oxygen removal which is unaffected by impurities, and gases other than CO contained in the gas are removed even in the presence of impurities. Among the components, there is a first step in which O 2 is converted to CO 2 , and the raw material gas that has passed through the first step is led to an adsorption tower filled with an adsorbent, and the PSA method is applied to convert CO 2 as well as H 2 O, H It is characterized by comprising a second step in which impurities that interfere with synthesis, such as 2 S and CH 4 , are adsorbed onto an adsorbent and purified to properties suitable for synthesis. <About the first step> In the method of the present invention, as the O 2 removal catalyst contacted in the first step of converting O 2 in the raw material gas to CO 2 , copper oxide (CuO) whose substrate is partially reduced and zinc oxide (ZnO ) is a binary composition catalyst consisting of
Its composition ratio is CuO: 10 to 40% by weight, preferably
20-40% by weight, ZnO: 90-60% by weight preferably 80
60% by weight, and 4 to 10% by weight of a binder such as graphite is added thereto, and the mixture is molded into a cylindrical shape with a diameter and height of about 3 m/m, respectively. This catalyst is prepared by various known methods. For example, an alkali is added to a mixed solution of inorganic acid salts such as copper and zinc nitrates to adjust the pH, coprecipitate copper and zinc hydroxides, and the precipitated hydroxides are thermally decomposed to form oxides. This method is then molded and partially reduced by contact treatment with a reducing gas containing a small amount of H 2 gas or CO gas in an inert gas such as N 2 gas; a mixed solution of copper and zinc nitrates is Support: For example, a reducing gas that is prepared by soaking a support such as alumina, thermally decomposing it, making it into an oxide, and then molding it into an inert gas such as N 2 gas with a small amount of H 2 gas or CO gas present. A method in which an inorganic binder such as graphite is added to a mixture of organic acid salts such as copper and zinc acetate, kneaded and molded, and then thermally decomposed to form an oxide. It is prepared by a method such as contact treatment with a reducing gas in which a small amount of H 2 gas or CO gas is present in an inert gas as described above. The purpose of the partial reduction treatment in preparing the above catalyst is to increase the catalytic activity. In addition, in the first step of the method of the present invention, this partial reduction treatment is
It can also be carried out by filling a catalyst-packed column with a binary composition catalyst consisting of a combination of CuO and ZnO, and then directly passing a reducing gas through the column. This catalyst contains the above-mentioned impurities, namely CO 2 , H 2 S,
Catalytic activity is not lost due to impurities such as H 2 O, CH 4 , H 2 and N 2 . Therefore, O 2 can be converted to CO 2 even in the presence of such impurities. The first step of the method of the present invention is to react a small amount of O 2 present in the raw material gas containing harmful impurities with CO to generate CO 2
It changes the This reaction between O 2 and CO is an exothermic reaction, which maintains a constant temperature due to its own heat of combustion, and does not require or require a small external heat source. The O 2 removal reaction is sufficiently completed at a temperature maintained in the catalyst-packed column under an atmosphere of room temperature to 230°C. Additionally, the reaction between O 2 and CO proceeds both under normal pressure and under elevated pressure.
There is an advantage that the heat of compression generated during pressure increase can be used, and in the second step described later, which is performed after the first step, it is necessary to pressurize the raw material gas into the adsorption tower under increased pressure. It is preferable to provide a step of previously pressurizing the raw material gas to 4 to 9 atmospheres before the first step. In addition, the space velocity of the gas to be treated whose main component is CO to the catalyst-packed tower is 500 to 600,000 hr -1
Existing oxygen can be completely removed by using <Regarding the second step> After the first step, the gas to be treated containing CO 2 generated by the reaction of a small amount of O 2 contained therein with CO 2 coexists with CO 2 , H 2 O, This leads to the second step of adsorbing and separating gas components such as CH 4 and H 2 S that are obstacles to organic synthesis reactions. Purification of the raw material gas in the second step is performed using, for example, the above CO 2
This is carried out by alternately using a plurality of adsorption towers filled with adsorbents that selectively adsorb the following gas components. That is, the raw material gas is input at room temperature at a pressure of, for example, 4 to 9 atmospheres maintained in the first step, and the gas components below CO 2 are adsorbed and removed. Although O 2 is not a target for removal in the second step, since it has already been removed in the first step, it will not remain in the final purified product. Note that if the pressure increasing step is not performed before the first step, it is necessary to provide the pressure increasing step between the second step and the first step. Next, the adsorbed gas components below CO 2 are purged from the adsorption tower by reducing the pressure in the adsorption tower, and then the already purified gas to be treated is passed back through the adsorption tower to wash the adsorbent. Hereinafter, the so-called PSA system, which is operated cyclically by pipes connecting adsorption towers, switching valves disposed therein, and a control device, will be applied. Activated carbon can be used as the adsorbent packed in the adsorption tower, but among them, 14 to 30 Å
Activated carbon having a most frequent pore size of Furthermore, a composition in which activated carbon having such a pore size is mixed with zeolite and/or activated alumina can also be used. FIG. 1 is a flow diagram of the above-mentioned PSA method as the second step, and shows an example in which the adsorption tower is of a two-column type. In the figure, F 1 to 4 are flowmeters, V 1 to 10 are switching valves, 1A, 1
B is an adsorption tower, 2a and 2b are adsorbents, 3 is a tank for the purified gas to be treated, 4 is an acid pipe for introducing the gas to be treated after the first step, 5 is a pipe for discharging the purified gas to be treated, Reference numeral 6 designates a purified gas pipe for cleaning, 7 a pipe for passing the gas purified in the adsorption towers 1A and 1B to the gas tank 3, and 8 a gas purge pipe. Next, to describe an example of a purification operation by adsorption separation, with all switching valves other than V 1 and V 7 closed, raw material gas is pressurized into the adsorption tower 1A from the raw gas pipe 4, and the CO 2 or less is The gas component is adsorbent 2a
The purified raw material gas is adsorbed to V 7 , pipe 7
The purified gas is stored in tanks. On the other hand, the gas components below CO 2 adsorbed on the adsorbent 2b in the adsorption tower 1B are controlled by switching valves V 8 , V 6 , and V 2 closed, and V 4 opened.
The pressure inside the tower is reduced, and the gas is discharged to the outside of the system via the gas purge pipe 8. After that, V 9 , V 6 , and V 4 are opened, and V 2 is closed.
The gas in the purified gas tank 3 is passed back through the pipe 6 to the adsorption tower 1B to clean the impurity agent 2b, and the cleaning gas is discharged to the outside of the system via the gas purge pipe 8. When the cleaning is completed, V 4 is closed, and the purified gas in the purified gas tank 3 is subsequently introduced back to pressurize the adsorption tower 1B. When pressurization is completed, V 2 and V 8 are opened, and V 6 is closed, and the raw material gas is injected from the raw material gas introduction pipe 4, and the following steps are performed.
Purification of the raw material gas by adsorption, purge of adsorbed gas components under reduced pressure, washing and pressurization of the adsorbent with the purified gas, and pressurization of the raw material gas are repeated. In addition, by the above adsorption operation, the gas components below CO 2 adsorbed on the adsorbent 2a of the adsorption tower 1A are separated by V 7 , V 5 , V 1 , V 4 closed, V 3 opened, and the pressure inside the tower reduced. It is discharged to the outside of the system via the gas purge pipe 8. Thereafter, as in the case of the adsorption tower 1B, the purified raw material gas in the purified gas tank 3 is passed back to the adsorption tower 1A in a pressurized state, the adsorbent 1a is washed and pressurized, and the raw material gas is pressurized by switching the switching valve. , the purification is repeated. These operations, such as opening and closing of the switching valve, are performed by a conventional control device. [Operation] In the first step, a binary composition catalyst combining partially reduced copper oxide and zinc oxide reacts oxygen with carbon monoxide even in the presence of impurities (especially sulfur compounds) to produce carbon dioxide. It is converted into carbon. In the second step, impurities harmful to organic synthesis, including carbon dioxide, are removed using the PSA method. Therefore, carbon monoxide raw material gas from which impurities harmful to organic synthesis have been removed can be obtained basically in two steps. [Effects of the Invention] As described above, the present invention includes a first step in which carbon monoxide raw material gas for synthesis is brought into contact with a binary composition catalyst for oxygen removal to convert it into O 2 and CO 2 contained therein. The second step is to adsorb and remove components that may be a hindrance to the organic synthesis reaction by applying the known PSA method.
Guides the process. By using the above-mentioned special catalyst that is highly resistant to impurities in this first step, the raw material gas can be directly processed in the first step without having to undergo a pretreatment step to remove impurities. Impurities are originally secondary
Since it can be removed in the process, the entire process can be performed in two steps, the first step and the second step. Therefore, carbon monoxide raw material gas from which impurities harmful to organic synthesis are sufficiently removed can be obtained using relatively small equipment. Furthermore, it saves energy and is extremely advantageous in terms of cost. [Examples] Next, the present invention will be described with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. Note that the first to fourth embodiments are the first to fourth embodiments.
This is an example of the process. Example 1 80wt% CuO-20wt% prepared by coprecipitation method
N 2 :
A reducing gas (100 c.c./min) consisting of 99.0 vol% and CO: 1.0 vol% was passed through the catalyst at a temperature of 170°C.
Partial reduction was carried out at a pressure of 1 Kg/cm 2 G. After this, the first
The composition of the process is CO: 84.5vol%, N2 : 15.0vol
%, O 2 : 0.5 vol%, a raw material gas mainly composed of CO was passed through the catalyst phase at a pressure of 1 Kg/cm 2 G and a space velocity of 50,000 hr -1 under the temperature conditions of the catalyst phase shown in Figure 2. I let it happen. The relationship between the reaction temperature of the catalyst layer and the O 2 removal rate at this time is shown in FIG. As comparative examples, cases in which a partially reduced CuO catalyst alone is used and a case in which a partially reduced ZnO catalyst alone is used are also described. However, since the ZnO catalyst alone has extremely low activity, the space velocity was 1000 hr -1 . Incidentally, the CuO-ZnO catalyst used in this example was prepared as follows. That is, the pH of a mixed solution of copper nitrate and zinc nitrate is adjusted with aqueous ammonia, coprecipitated as copper hydroxide and zinc hydroxide, filtered, dried, and then thermally decomposed in the atmosphere at about 400°C to produce an oxide powder. were mixed and molded. As is clear from the results shown in Figure 2, the method of the present invention using a partially reduced CuO-ZnO binary composition catalyst can easily convert CO to a main component at a low temperature of about 100°C.
It can be seen that O 2 can be removed from O 2 -containing gas.
In each case, when the O 2 concentration in the reaction tube outlet gas was actually measured using a trace oxygen analyzer manufactured by Teledyne, it was confirmed that O 2 was almost completely removed below the detection limit (0.5 ppm). . At this concentration, there is no problem in organic synthesis using carbon monoxide. Example 2 A reaction tube similar to that in Example 1 was filled with a CuO-ZnO binary composition catalyst prepared in the same manner as in Example 1, and a reducing gas was passed therethrough for partial reduction, and then the catalyst layer temperature was raised to 180°C. ℃ and brought into contact with a test gas containing CO as a main component similar to that in Example 1 under the space velocity and pressure conditions shown in Table 1 below to measure the O 2 removal rate. The results are shown in the same table. As is clear from this result, it can be seen that the O 2 removal rate does not decrease even if the space velocity is increased.

【表】 実施例 3 実施例1と同様の反応管に、実施例1と同様に
して調製したCuO−ZnO二元組成系触媒を充填
し、還元性ガスを導通して部分還元したのち、触
媒層温度を180℃に保持し、CO:84.5vol%、
N2:15.0vol%、O2:0.5vol%、H2S:1ppmから
なる供試ガスを、常圧及び、空間速度10000hr-1
で通過させ、O2除去率を測定して、活性の低下
の有無をみた。この結果を第3図に示す。尚比較
例として、部分還元したCuO単独触媒を用いた場
合の結果についても併記する。 第3図の結果から明らかなように、部分還元し
たCuO−ZnO二元組成系触媒を用いる本発明方法
では、3000時間使用後もO2除去率の低下はみら
れず、耐硫黄性にすぐれており活性が充分維持さ
れていることが分る。これに対し、比較例のCuO
単独触媒は比較的早い時期に活性が劣り、O2
去率が低下する。 従つて、本実施例では第1工程前に硫黄化合物
を除去しておく必要はない。 実施例 4 実施例1と同様の反応管に、CuOとZnOを種々
の割合に変えて調製したCuO−ZnO二元組成系触
媒をそれぞれ充填し還元性ガスを導通して部分還
元したのち媒媒層温度を100℃に保持し、実施例
1と同じ供試ガスを常圧及び空間速度50000hr-1
で通過させ、O2除去率と触媒組成との関係をみ
た。その結果を第4図に示す。この結果から明ら
かなとおり、本発明方法ではCuO:20〜40重量
%、ZnO:80〜60重量%の触媒組成の場合、O2
除去効率が最も顕著であることが分る。 実施例 5 実施例1と同様にして第1工程を実施する。即
ち、共沈法により調製した80wt%のZnO−20wt
%のCuOよりなる二元組成系触媒(1c.c.)を充填
した反応管(10m/mφ×400m/m)に、N2
99.0vol%、CO:1.0vol%よりなる環元性ガスを
100c.c./minの割合で導通し、該触媒を、温度170
℃、圧力1Kg/cm2Gで部分還元した。次に第1工
程として、これに、組成がCO:84.5vol%、N2
15.0vol%、O2:0.5vol%からなるCOを主成分と
する合成用原料ガスを圧力9Kg/cm2G、空間速度
5万hr-1の割合で、触媒相の温度を約100℃に保
持して通過させた。その結果、組成がCO:
83.9vol%、N2:15.1vol%、、CO2:1.0vol%より
なる被処理ガスが得られ、O2は完全に除去され
た。尚、本実施例に用いたCuO−ZnO触媒は、硝
酸銅と硝酸亜鉛の混合溶液をアンモニア水でPH調
整し、水酸化銅及び水酸化亜鉛として共沈させ、
濾過、乾燥後大気中約400℃で熱分解して得た酸
化物の粉末を混合成型して得た。 次に、第2工程として、O2を含まない。CO、
N2およびCO2よりなる上記被処理ガスを、第1
図に示すように2塔式のPSA装置を用い、その
吸着塔、(34m/mφ×300m/m)に最頻度細孔
径17Åを有する活性炭150c.c.を充填し、9Kg/
cm2Gの加圧下、SV500hr-1で導通して、CO2を吸
着させ、被処理ガスを精製した。精製された被処
理ガス中のCO2分は3ppmに過ぎず、第1工程の
脱O2工程で生成したCO2をほぼ完全に除去するこ
とができた。なお、再生は、大気圧まで減圧さ
せ、そのあと精製された被処理ガスで、逆洗浄を
行つた。 実施例 6 第1工程を経て脱O2された、組成がCO:
70.9vol%、N2:13.1vol%、CO2:16.0vol%の被
処理ガスを、実施例5と同じく第1図に示すよう
な2塔式装置を用い、吸着塔に同じ活性炭を充填
して、実施例5と同一条件で、CO2の吸着除去を
行なつた。その結果得られた精製ガスの組成は
CO:81.7vol%、N2:18.3vol%の残存CO2分は
6ppmに過ぎず、極めて効果的にCO2の吸着除去
が達成された。 実施例 7 第1工程を経て、脱O2された、組成がCO:
75.6vol%、N2:4.4vol%、CO2:20.0vol%の被
処理ガスを、実施例5と同じく第1図に示すよう
な2塔式装置を用い、吸着塔に同じ活性炭を充填
して、実施例5と同一条件でCO2の吸着除去を行
なつた。その結果得られた精製ガスの組成は
CO:92.1vol%、N2:7.9vol%で残存CO2分は
10ppmに過ぎず、極めて効果的にCO2の吸着除去
が達成された。 上記各実施例では、吸着剤に活性炭、あるいは
活性炭と活性アルミナの組合わせを用いていた
が、活性炭にゼオライトを組み合わせても同様な
吸着効果を得た。 実施例 8 第5図のフローに示したガス処理装置にて第2
表に示した実ガスを用いて実験した。 本ガス処理装置には、ガス流路10に沿つて、
上流から脱酸素塔11、冷却器(水冷)12、並
設されたA塔・B塔の2つの吸着塔13,14、
サージタンク15、及び製品タンク16が設けら
れている。冷却器12と吸着塔13,14との間
には、シーケンサにより開閉操作される電動弁A
−1,A−2,B−1,C−1,C−2,G−1
及び手動弁M−1が配設され、吸着塔13,14
とサージタンク15、及び製品タンク16とのの
間には、シーケンサにより開閉操作される電動弁
D−1,D−2,E−1,E−2,F−1,F−
2,G−1、手動弁M−2,M−3及び逆止弁S
−1,S−2が配設されている。 シーケンサによる電動弁A−1〜G−1の開閉
操作は第6図に示すごとくになされる。斜線にて
示されるのは弁の閉状態を示し、他の部分は開状
態を示している。このときA塔13、B塔14
は、それぞれ吸着・平衡・減圧・パージ・洗浄・
平衡・昇圧処理を繰り返す。このときの圧力変化
は第7図に示す。 尚、脱酸素塔11には実施例1で述べた共沈法
により調整したCuO(80重量%)−ZnO(20重量%)
よりなる二元組成系触媒を2.5l充填した。吸着塔
13,14上部に最頻度細孔径が17Åの石油系ピ
ツチ活性炭を各50l、下部に市販活性アルミナを
各20l充填した。この吸着剤の内、活性炭は、更
に活性アルミナおよび/または活性ゼオライトを
混合した組成物を用いてもよい。 入口ガス量25.0Nm3/hrを導入し、脱酸素塔1
1は100℃に保ち、吸着(PSA)塔13,14は
5分間サイクルで運転を行つた。 これらの結果は第2表に示されている。
[Table] Example 3 A reaction tube similar to that in Example 1 was filled with a CuO-ZnO binary composition catalyst prepared in the same manner as in Example 1, and a reducing gas was passed through it for partial reduction. Keep the layer temperature at 180℃, CO: 84.5vol%,
A test gas consisting of N 2 : 15.0 vol%, O 2 : 0.5 vol%, H 2 S: 1 ppm was heated at normal pressure and at a space velocity of 10000 hr -1.
The O 2 removal rate was measured to see if there was a decrease in activity. The results are shown in FIG. As a comparative example, the results obtained when a partially reduced CuO catalyst alone was used are also shown. As is clear from the results in Figure 3, the method of the present invention using a partially reduced CuO-ZnO binary composition catalyst shows no decrease in O 2 removal rate even after 3000 hours of use, and has excellent sulfur resistance. It can be seen that the activity is sufficiently maintained. In contrast, CuO in the comparative example
A single catalyst loses its activity relatively early and the O 2 removal rate decreases. Therefore, in this example, it is not necessary to remove the sulfur compound before the first step. Example 4 The same reaction tubes as in Example 1 were filled with CuO-ZnO binary composition catalysts prepared by changing CuO and ZnO in various ratios, and after partial reduction by passing reducing gas, the medium was removed. The layer temperature was maintained at 100°C, and the same test gas as in Example 1 was heated at normal pressure and space velocity at 50000 hr -1.
The relationship between O 2 removal rate and catalyst composition was examined. The results are shown in FIG. As is clear from this result, in the method of the present invention, when the catalyst composition is CuO: 20 to 40% by weight and ZnO: 80 to 60% by weight, O 2
It can be seen that the removal efficiency is the most significant. Example 5 The first step is carried out in the same manner as in Example 1. That is, 80wt% ZnO prepared by coprecipitation method - 20wt
N 2 :
A cyclic gas consisting of 99.0vol% and CO: 1.0vol%
Conducting at a rate of 100c.c./min, the catalyst was heated to a temperature of 170℃.
Partial reduction was carried out at a temperature of 1 Kg/cm 2 G and a pressure of 1 Kg/cm 2 G. Next, as the first step, the composition is CO: 84.5vol%, N2 :
A raw material gas for synthesis mainly composed of CO, consisting of 15.0 vol% and O 2 : 0.5 vol%, was heated at a pressure of 9 Kg/cm 2 G and a space velocity of 50,000 hr -1 to bring the temperature of the catalyst phase to approximately 100°C. I held it and let it pass. As a result, the composition is CO:
A gas to be treated consisting of 83.9 vol%, N2 : 15.1 vol%, and CO2 : 1.0 vol% was obtained, and O2 was completely removed. The CuO-ZnO catalyst used in this example was prepared by adjusting the pH of a mixed solution of copper nitrate and zinc nitrate with aqueous ammonia, and co-precipitating it as copper hydroxide and zinc hydroxide.
After filtration and drying, the oxide powder was thermally decomposed in the air at about 400°C, and the resulting oxide powder was mixed and molded. Next, as a second step, O 2 is not included. C.O.
The above-mentioned gas to be treated consisting of N 2 and CO 2 is
As shown in the figure, a two-column type PSA device is used, and the adsorption tower (34 m/mφ x 300 m/m) is filled with 150 c.c. of activated carbon having a most frequent pore diameter of 17 Å.
It was conducted under a pressure of cm 2 G at SV 500 hr −1 to adsorb CO 2 and purify the gas to be treated. The CO 2 content in the purified gas to be treated was only 3 ppm, and the CO 2 generated in the first O 2 removal step could be almost completely removed. Note that during regeneration, the pressure was reduced to atmospheric pressure, and then backwashing was performed with purified gas to be treated. Example 6 O 2 removed through the first step, the composition is CO:
A gas to be treated containing 70.9 vol%, N 2 : 13.1 vol%, and CO 2 : 16.0 vol% was prepared by using the same two-column apparatus as shown in FIG. 1 as in Example 5, and filling the adsorption column with the same activated carbon. Then, CO 2 was adsorbed and removed under the same conditions as in Example 5. The composition of the resulting purified gas is
CO: 81.7vol%, N2 : 18.3vol% residual CO 2 min is
The amount was only 6 ppm, and very effective adsorption and removal of CO 2 was achieved. Example 7 After the first step, O 2 was removed, and the composition was CO:
A gas to be treated containing 75.6 vol%, N 2 : 4.4 vol%, and CO 2 : 20.0 vol% was prepared by using a two-column apparatus as shown in Figure 1 as in Example 5, and filling the adsorption column with the same activated carbon. Then, CO 2 was adsorbed and removed under the same conditions as in Example 5. The composition of the resulting purified gas is
CO: 92.1vol%, N2 : 7.9vol%, residual CO 2 minutes is
The amount was only 10 ppm, and very effective adsorption and removal of CO 2 was achieved. In each of the above Examples, activated carbon or a combination of activated carbon and activated alumina was used as the adsorbent, but similar adsorption effects were obtained by combining activated carbon with zeolite. Example 8 In the gas treatment equipment shown in the flow of Fig. 5, the second
Experiments were conducted using the actual gases shown in the table. In this gas treatment device, along the gas flow path 10,
From upstream, a deoxidizing tower 11, a cooler (water-cooled) 12, two adsorption towers 13, 14, A tower and B tower installed in parallel,
A surge tank 15 and a product tank 16 are provided. Between the cooler 12 and the adsorption towers 13 and 14, there is an electric valve A that is opened and closed by a sequencer.
-1, A-2, B-1, C-1, C-2, G-1
and a manual valve M-1 are installed, and the adsorption towers 13, 14
Between the surge tank 15 and the product tank 16, there are electrically operated valves D-1, D-2, E-1, E-2, F-1, F- which are opened and closed by a sequencer.
2, G-1, manual valve M-2, M-3 and check valve S
-1 and S-2 are arranged. The opening and closing operations of the electric valves A-1 to G-1 by the sequencer are performed as shown in FIG. The hatched portions indicate the closed state of the valve, and the other portions indicate the open state. At this time, A tower 13, B tower 14
are adsorption, equilibrium, depressurization, purge, cleaning, and
Repeat the equilibration/boosting process. The pressure change at this time is shown in FIG. The deoxidizing tower 11 contains CuO (80% by weight)-ZnO (20% by weight) prepared by the coprecipitation method described in Example 1.
2.5 liters of a binary composition catalyst consisting of: The upper parts of the adsorption towers 13 and 14 were each filled with 50 liters of petroleum-based pitch activated carbon having a most frequent pore diameter of 17 Å, and the lower parts were each filled with 20 liters of commercially available activated alumina. Among these adsorbents, activated carbon may be further mixed with activated alumina and/or activated zeolite. Introducing an inlet gas amount of 25.0Nm 3 /hr, deoxidizing tower 1
1 was maintained at 100° C., and adsorption (PSA) columns 13 and 14 were operated in a 5-minute cycle. These results are shown in Table 2.

【表】 このように本実施例でも実ガスが2工程の処理
のみで、有機合成に有害な二酸化炭素、酸素、硫
化水素、水といつた不純物が十分に除去できてい
ることが判る。窒素や水素は残留するが、一酸化
炭素を用いるような有機合成に対しては問題がな
い。 また上記第8実施例に対して、触媒としてCuO
単独触媒又はZnO単独触媒を用いた比較例は、第
2工程後の製品に0.5vol%の酸素ガスが残留し、
このまま有機合成の一酸化炭素原料ガスとするこ
とは不可能であつた。
[Table] In this way, it can be seen that impurities such as carbon dioxide, oxygen, hydrogen sulfide, and water, which are harmful to organic synthesis, can be sufficiently removed by treating the actual gas in only two steps in this example. Nitrogen and hydrogen remain, but there is no problem with organic synthesis using carbon monoxide. In addition, for the above-mentioned eighth embodiment, CuO was used as a catalyst.
In the comparative example using a single catalyst or a single ZnO catalyst, 0.5 vol% of oxygen gas remained in the product after the second step;
It was impossible to use this as a raw material gas for carbon monoxide in organic synthesis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第2工程におけるPSA方
式の一例を示すフロー図、第2図は本発明方法に
よる、O2除去率と触媒層温度との関係を示す図、
第3図はO2除去率と触媒使用時間との関係を示
す図、第4図はO2除去率と触媒組成との関係を
示す図、第5図は本実施例の第1工程・第2工程
の一連のフロー図、第6図は電動弁の開閉のタイ
ミングチヤート、第7図はその際の吸着塔の状態
図を表わす。 1A,1B,13,14……吸着塔、2a,2
b……吸着剤、3……精製ガスタンク、4……原
料ガス導入配管、5……精製ガス導出配管、6…
…洗浄用精製ガス配管、7……配管、8……ガス
パージ配管、F1〜F4……ガス流量計、V1〜V1
…切換弁、10……ガス流路、11……脱酸素
塔。
FIG. 1 is a flow diagram showing an example of the PSA method in the second step of the present invention, and FIG. 2 is a diagram showing the relationship between O 2 removal rate and catalyst bed temperature according to the method of the present invention.
Figure 3 is a diagram showing the relationship between O 2 removal rate and catalyst usage time, Figure 4 is a diagram showing the relationship between O 2 removal rate and catalyst composition, and Figure 5 is a diagram showing the relationship between O 2 removal rate and catalyst composition. A series of flowcharts of the two steps, FIG. 6 shows a timing chart of opening and closing of the electric valve, and FIG. 7 shows a state diagram of the adsorption tower at that time. 1A, 1B, 13, 14...Adsorption tower, 2a, 2
b...Adsorbent, 3...Purified gas tank, 4...Material gas introduction piping, 5...Purified gas outlet piping, 6...
…Purified gas piping for cleaning, 7…Piping, 8…Gas purge piping, F 1 to F 4 …Gas flow meter, V 1 to V 1
...Switching valve, 10...Gas flow path, 11...Deoxygenation tower.

Claims (1)

【特許請求の範囲】 1 一酸化炭素と不純物とを含む合成用原料ガス
を、部分還元処理した酸化銅と酸化亜鉛とを組み
合わせた二元組成系触媒に接触させることによ
り、不純物中の酸素と一酸化炭素とを反応させ
て、二酸化炭素に変化させる第1工程と、 該第1工程を経た原料ガスを加圧下に、活性
炭、または該活性炭にゼオライトおよび/または
活性アルミナを混合した組成物よりなる吸着剤を
充填した吸着塔に導通して不純物を吸着除去する
第2工程とからなることを特徴とする合成用一酸
化炭素ガスの精製方法。 2 第1工程を常圧下または加圧下のいずれかで
行う特許請求の範囲第1項記載の合成用一酸化炭
素ガスの精製方法。 3 吸着剤が、14〜30Åの最頻度細孔径を有する
活性炭、または該活性炭にゼオライトおよび/ま
たは活性アルミナを混合した組成物よりなる特許
請求の範囲第1項または第2項記載の合成用一酸
化炭素ガスの精製方法。
[Claims] 1. By bringing a raw material gas for synthesis containing carbon monoxide and impurities into contact with a binary composition catalyst that combines partially reduced copper oxide and zinc oxide, oxygen in the impurities is removed. A first step of reacting with carbon monoxide to convert it into carbon dioxide, and using the raw material gas that has passed through the first step under pressure with activated carbon or a composition in which the activated carbon is mixed with zeolite and/or activated alumina. A method for purifying carbon monoxide gas for synthesis, comprising a second step of adsorbing and removing impurities by passing the gas through an adsorption column filled with an adsorbent. 2. The method for purifying carbon monoxide gas for synthesis according to claim 1, wherein the first step is carried out either under normal pressure or under increased pressure. 3. The synthetic material according to claim 1 or 2, wherein the adsorbent is made of activated carbon having a most frequent pore size of 14 to 30 Å, or a composition in which the activated carbon is mixed with zeolite and/or activated alumina. Method for purifying carbon oxide gas.
JP4599484A 1984-03-10 1984-03-10 Method of purification raw material gas for synthesis comprising carbon monoxide as main component Granted JPS60190495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4599484A JPS60190495A (en) 1984-03-10 1984-03-10 Method of purification raw material gas for synthesis comprising carbon monoxide as main component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4599484A JPS60190495A (en) 1984-03-10 1984-03-10 Method of purification raw material gas for synthesis comprising carbon monoxide as main component

Publications (2)

Publication Number Publication Date
JPS60190495A JPS60190495A (en) 1985-09-27
JPS6360080B2 true JPS6360080B2 (en) 1988-11-22

Family

ID=12734667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4599484A Granted JPS60190495A (en) 1984-03-10 1984-03-10 Method of purification raw material gas for synthesis comprising carbon monoxide as main component

Country Status (1)

Country Link
JP (1) JPS60190495A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111770892B (en) * 2018-03-06 2023-06-30 住友精化株式会社 Method for removing oxygen from crude carbon monoxide gas and method for purifying carbon monoxide gas

Also Published As

Publication number Publication date
JPS60190495A (en) 1985-09-27

Similar Documents

Publication Publication Date Title
CA2638678C (en) Gas purification by adsorption of hydrogen sulfide
KR100966064B1 (en) Syngas purification process
CA1301431C (en) Hydrogen generation and recovery
US4025321A (en) Purification of natural gas streams containing oxygen
CN103910331B (en) Device and method for hydrogen recovery in andrussow process
KR20120022060A (en) Method of refining gas and gas refining equipment
CA2662582C (en) Process for removal of metal carbonyls from a synthesis gas stream
KR20100118570A (en) Contaminant removal from a gas stream
JP2002520423A (en) Method for removing metal carbonyls from gas streams
US6589493B2 (en) Gas purification-treating agents and gas purifying apparatuses
US4329160A (en) Suppression of COS formation in molecular sieve purification of hydrocarbon gas streams
CA1070249A (en) Suppression of cos formation in molecular sieve purification of hydrocarbon streams
CN107567350B (en) For removing and recovering H from a gas stream2Improved method of S
RU2147918C1 (en) Hydrogen sulfide-containing gas desulfurization method
JPS6360080B2 (en)
JPS6351056B2 (en)
US6517797B1 (en) Process for separation of NOx from N2O in a mixture
JPH0569566B2 (en)
JP2519998B2 (en) Method for producing hydrogen from hydrocarbons
JPS58201893A (en) Preliminary purification of coke oven gas
KR20240084224A (en) A device for producing high-purity hydrogen from coke oven gas
SU1530228A1 (en) Method of cleaning nitrogen-hydrogen mixture
CN113214879A (en) Dry type natural gas purification device and process
KR100283046B1 (en) Nitrogen oxide removal method
CN117228627A (en) System and method for purifying high-purity hydrogen by coupling catalysis and metal hydrogen storage alloy