JPS6360073B2 - - Google Patents

Info

Publication number
JPS6360073B2
JPS6360073B2 JP61053344A JP5334486A JPS6360073B2 JP S6360073 B2 JPS6360073 B2 JP S6360073B2 JP 61053344 A JP61053344 A JP 61053344A JP 5334486 A JP5334486 A JP 5334486A JP S6360073 B2 JPS6360073 B2 JP S6360073B2
Authority
JP
Japan
Prior art keywords
zinc
coating
sol
polyamide resin
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61053344A
Other languages
Japanese (ja)
Other versions
JPS62212474A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5334486A priority Critical patent/JPS62212474A/en
Publication of JPS62212474A publication Critical patent/JPS62212474A/en
Publication of JPS6360073B2 publication Critical patent/JPS6360073B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の目的) 本発明は亜鉛及び亜鉛合金に対して、すぐれた
防蝕性を有する新規な被覆組成物に関し、その目
的とするところは、従来の防錆顔料、腐食抑制剤
を全く使用しないで、亜鉛及び亜鉛合金に対する
防食性並びに付着性、耐水性、耐塩水性、耐湿性
等の諸物性にすぐれた自然乾燥性被覆剤の創製に
ある。 (産業上の利用分野) 亜鉛及び亜鉛合金は、単独での使用のほか、亜
鉛メツキ鋼材、亜鉛合金メツキ鋼材として近年産
業界で広く使用されているが、これらはそのまま
では腐食し易いので何らかの表面処理がなされて
いるのが現状である。 なかでも被覆剤の使用は、操作が簡単、能率的
で比較的低コストである為に最も多く使用されて
いる。被覆剤には顔料を含んだ着色タイプと含ま
ない透明タイプがあり、そのどちらにするかは主
として用途及び置かれる環境により決定される。 (従来技術) 従来の亜鉛及び亜鉛合金防食用被覆剤として
は、(1)エポキシ樹脂、ポリウレタン樹脂、アクリ
ル樹脂、ビニル樹脂、塩化ゴム等の合成樹脂にジ
ンククロメート、鉛酸カルシウム、リン酸亜鉛等
の防錆顔料のほか、着色顔料、体質顔料等を加え
て作成したもの、(2)ポリビニルブチラール樹脂単
独又はこれにアルキド樹脂、エポキシ樹脂、フエ
ノール樹脂等を加えた混合樹脂にジンククロメー
ト、着色顔料、体質顔料等を加えて作成した主剤
と、リン酸を主成分とする酸液よりなるウオツシ
ユプライマー。(3)ポリビニルブチラール樹脂又は
エポキシ樹脂に腐蝕抑制剤として、無水クロム
酸、リン酸等を加えて作成した透明エツチングプ
ライマー。(4)ペトロラタム、酸化ペトロラタム、
鉱物油、ラノリン等に防錆剤として、ラノリン及
び酸化ペトロラタムの金属塩、アルキルベンゼン
スルホン酸及びアルキルナフタレンスルホン酸の
金属塩等を加えて有機溶剤に溶解又は分散させて
作成したもの。(5)アクリル樹脂、ポリウレタン樹
脂、エポキシ樹脂、石油樹脂、クマロン樹脂、環
化ゴム、ビニル共重合樹脂等の単独又は混合樹脂
を有機溶剤に溶解して作成した合成樹脂クリヤー
等があげられる。(1)の被覆剤は比較的防蝕性にす
ぐれているので着色仕上げ用防食被覆剤として工
業的に使用されているが、これらに含まれる防錆
顔料のうち、ジンククロメートは6価クロムを含
む劇毒物であり、鉛酸カルシウムは有害重金属で
ある鉛の化合物で労働衛生安全上の、又リン酸亜
鉛は防蝕性が稍劣る問題点がある。(2)のウオツシ
ユプライマー、(3)のエツチングプライマーはいず
れも有害なクロム化合物を含み、(4)は石油ワツク
ス又はラノリン系の半透明被覆剤であり、塗膜の
外観がよくなく、しかも非乾燥性のべとつきのあ
る軟質膜であり、上塗りができない等の問題があ
る。(5)は合成樹脂系透明被覆剤であり、乾燥性、
透明性、光沢等は良好であるが、現在亜鉛及び亜
鉛合金に対し有効な腐食抑制剤が殆んどない為
に、被覆剤自体の防蝕性が劣り、湿度、塩等の環
境下で腐蝕、塗膜の白化、ふくれ等を生じ易い問
題点がある。 (発明の構成及び効果) 本発明者らは、自然乾燥、薄膜で亜鉛及び亜鉛
合金に対する防蝕性並びに付着性、耐水性、耐塩
水性、耐湿性等の物性に優れ、しかも上記従来技
術品の問題のない亜鉛及び亜鉛合金防食用被覆剤
を開発すべく鋭意研究を重ねた結果、被覆剤のバ
インダーに有機溶剤に可溶で、軟化点が70〜180
℃、酸価が15以下、全アミン価が15以下のポリア
ミド樹脂20〜80部(重量部、以下同様)とオルガ
ノシリカゾルのシリカ(SiO2)換算量で80〜20
部の混合物を使用することにより、従来の防錆顔
料、腐食抑制剤等を一切使用しないで、亜鉛及び
亜鉛合金に対する防蝕性並びに付着性、耐水性、
耐塩水性、耐湿性等の物性に優れ、しかも上記従
来技術品の問題点がいずれも解消できることを見
出し、本発明を完成さすに至つた。 即ち本発明はバインダー、有機溶剤及び必要に
より着色顔料、体質顔料、添加剤等を含有する亜
鉛及び亜鉛合金防蝕用被覆組成物であつて、バイ
ンダーが有機溶剤に可溶で、軟化点が70〜180℃、
酸価が15以下、全アミン価が15以下のポリアミド
樹脂20〜80部とオルガノシリカゾルのシリカ
(SiO2)換算量で80〜20部の混合物であることを
特徴とする亜鉛及び亜鉛合金防食用被覆組成物に
係わる。 本発明のバインダー成分として使用するポリア
ミド樹脂は多塩基酸と多価アミンの縮合、アミノ
カルボン酸の縮合等により製造される、分子中に
アミド基(−CO−NH−)を有する樹脂又は/
及びその変性樹脂であり、有機溶剤に可溶で、軟
化点が70〜180℃、好ましくは90〜160℃、酸価が
15以下、好ましくは10以下、全アミン価が15以
下、好ましくは10以下のものが使用できる。該ポ
リアミド樹脂の軟化点70℃未満の場合は耐水性、
耐湿性が劣り、180℃を超えた場合は溶解性が悪
くなり、好ましくない。酸価が15を超えた場合は
防食性が劣り、全アミン価が15を超えた場合は後
述する本発明のもう1つのバインダー成分である
オルガノシリカゾルとの相溶性が悪くなりいずれ
も好ましくない。 本発明のバインダー成分として使用するもう1
つの成分であるオルガノシリカゾルは、有機媒体
中にシリカの超微粒子(粒子径5〜100mμ)を15
〜60%(重量%以下同様)の濃度に安定に分散さ
せたコロイダルシリカであつて、オルガノシリカ
ゾルは珪酸ナトリウム、珪酸カリウム等の珪酸ア
ルカリに酸を加えて生成した珪酸ゾルを精製し、
有機媒体中に分散させて作る方法とテトラメトキ
シシラン、テトラエトキシシラン、メチルトリエ
トキシシラン等のアルコキシシランまたは/及び
これらの初期縮合物を有機媒体中で加水分解、縮
合させて作る方法があり、後者の場合は未反応の
アルコキシ基が1部残存するがいずれの方法で作
られたものも使用できる。 オルガノシリカゾルの製造に使用する有機媒体
としてはメチルアルコール、エチルアルコール、
n−プロピルアルコール、イソプロピルアルコー
ル、n−ブチルアルコール、イソブチルアルコー
ル、アセトン、メチルエチルケトン、メチルセロ
ソルブ、セロソルブ、ブチルセロソルブ、プロピ
レングリコールモノメチルエーテル、プロピレン
グリコールモノエチルエーテル等が例示できる。
これらの有機媒体を用いて作られたオルガノシリ
カゾルは、いずれも本発明のバインダー成分とし
て使用できるが価格面より、媒体にメチルアルコ
ール、エチルアルコール及びイソプロピルアルコ
ールを使用したメチルアルコールシリカゾル、エ
チルアルコールシリカゾル及びイソプロピルアル
コールシリカゾルが好ましい。これらのオルガノ
シリカゾルは1種類であつてもよいし、2種類以
上であつても勿論差しつかえない。 本発明のバインダー成分としては、上記ポリア
ミド樹脂20〜80部、好ましくは30〜70部に対し、
オルガノシリカゾルをシリカ(SiO2)換算量で
80〜20部、好ましくは70〜30部を加えた混合物を
使用する。ポリアミド樹脂に対するオルガノシリ
カゾルのシリカ換算量での混合割合が80:20(重
量割合、以下省略)未満の場合は防蝕性が劣り、
20:80を超えた場合は、塗膜が脆くなり、可撓
性、付着性、防蝕性が劣るので好ましくない。 本発明に於て使用する有機溶剤としては、上記
ポリアミド樹脂及びオルガノシリカゾル混合物を
溶解するものであれば、、特に限定されることな
く公知の有機溶剤が使用でき、例えばメチルアル
コール、イソプロピルアルコール、n−ブチルア
ルコール等のアルコール系溶剤、トルエン、キシ
レン、デカリン、テトラリン等の芳香族炭化水素
系溶剤、アセトン、メチルエチルケトン、シクロ
ヘキサノン等のケトン系溶剤、酢酸メチル、酢酸
エチル、酢酸ブチル等のエステル系溶剤、エチル
セロソルブ、ブチルセロソルブ、プロピレングリ
コールモノエチルエーテル等のエーテルアルコー
ル系溶剤、エチルセロソルブアセテート、ブチル
セロソルブアセテート等のエーテルエステル系溶
剤等を挙げることができ、これらの1種又は2種
以上を混合して使用する。有機溶剤の使用量は、
用途に応じてさまざまであり、一定すのものでは
ない。 着色顔料及び体質顔料としては、特に限定され
ることなく、一般の被覆剤に使用されるものが、
必要に応じて適宜使用することができる。そのよ
うな顔料の具体例としては、二酸化チタン、ベン
ガラ、カーボンブラツク、フタロシアニンブルー
等の着色顔料、タルク、カオリン、マイカ、硫酸
バリウム等の体質顔料を挙げることができる。 添加剤としては、消泡剤、レベリング剤、分散
剤、沈澱防止剤、増粘剤等が挙げられ、必要によ
りこれらはいずれも使用することができる。 本発明組成物に於ては、上記各成分の他に、必
要に応じてアルミニウム粉末、亜鉛粉末、ステン
レス粉末等の金属粉末、リン片状酸化鉄、ガラス
粉末、ガラスフレーク、磁器粉末、雲母フレーク
等を使用することができる。 本発明の組成物は、上記特定のバインダー成分
に有機溶剤及び必要により着色顔料、体質顔料、
添加剤等を加えて、例えばデイゾルバー、ロール
ミル、サンドミル等を用いて溶解混合並びに分散
させて製造される。 かくして得られる本発明の亜鉛及び亜鉛合金防
食用被覆組成物は通常行われる塗装方法、例えば
はけ塗り、エアースプレー、エアレススプレー、
ローラー塗り、浸漬塗り、静電塗装等のいずれに
よつても好適に塗装でき、自然乾燥、薄膜で亜鉛
及び亜鉛合金に対する防蝕性並びに付着性、耐水
性、耐塩水性、耐湿性等の諸物性にすぐれている
ので亜鉛及び亜鉛合金材のほか、亜鉛メツキ鋼
材、亜鉛合金メツキ鋼材を使用したあるゆる物
体、例えば建材、フエンス、門扉、支柱、ポー
ル、ガードレール、看板、鉄塔、パイプ、ワイ
ヤ、海洋構造物、車輛、船舶、建設機械、橋梁等
の防食被覆剤として優れた効果を発輝する。 本発明により、かかる顕著な効果が得られるの
は、被覆剤のバインダーに前記特定のポリアミド
樹脂とオルガノシリカゾルの特定割合の混合物を
使用したことによる。 その機構は、現在尚明確ではないが以下のよう
に推定される。即ち、組成物中のオルガノシリカ
ゾルのシリカ粒子表面には、珪素に結合した反応
性の極性基である−OH基が多数存在し、亜鉛及
び亜鉛合金被塗物に塗布した場合に極性基(−
OH基)が被塗物に向つて規則的に配向し、被塗
物表面の亜鉛と反応して三次元網状構造を形成し
て付着性、防食性にすぐれた強靭なバリヤー層を
作ると共に、残余の−OH基は脱水縮合して粒子
間シロキサン結合(−Si−O−Si−)を生成し、
耐水性、耐塩水性、耐湿性、耐熱性に優れた塗膜
を形成する性質がある。もう1つのバインダー成
分であるポリアミド樹脂は、オルガノシリカゾル
との相溶性が良好であり、分子中のアミド基(−
CO−NH−)、アミノ基(−NH2)、カルボキシ
ル基(−COOH)等の極性基がシリカ粒子表面
のシラノール基(−Si−OH)と水素結合で一体
化し、単独では成膜性の不良なオルガノシリカゾ
ルの成膜性を助けて均一な連続膜を形成さすと共
に、ポリアミド樹脂は吸湿性(0.1〜0.3%;
ASTM D570,24時間)があるために、オルガ
ノシリカゾル中に部分的に存在するアルコキシ基
の加水分解を助長してシリカを活性化する作用が
あり、上記両成分のこられの作用が相まつて優れ
た防蝕性並びに耐水性、耐塩水性、耐湿性等の諸
物性が得られるものと思われる。 薄膜で上記優れた塗膜物性が得られることにつ
いては、上述の被塗物金属との反応による一体化
した強靭なバリヤー層の形成、ポリアミド樹脂の
吸湿性によるシリカの活性化等の作用によるもの
と思われる。また本発明組成物の自然乾燥塗膜と
焼付(140℃,30分)、塗膜の物性テスト結果が両
者全く変らない優れた結果が得られたことから、
上述のバインダー成分の作用は加熱しなくても、
常温下で生ずるものと思われる。 本発明のオルガノシリカゾルと相溶する樹脂と
しては、上記特定のポリアミド樹脂のほか、ポリ
ビニルブチラール樹脂、エポキシ樹脂、アクリル
樹脂、フエノール樹脂、エチルセルロース樹脂等
があるが、同一成分割合での性能比較試験の結果
は、上記ポリアミド樹脂以外のものはいずれも防
食性、耐水性、耐湿性が劣り、優れた結果が得ら
れた本発明組成物には遠く及ばないものであつ
た。これは上記ポリアミド樹脂が上述のような他
の樹脂にない特性を有する為と思われる。 以下合成例、実施例及び比較例を示すが、本発
明は以下に記載した例のみに限定されるものでは
ない。なお部は重量部、%は重量%を示す。 合成例 (アルコキシシランの加水分解によるオ
ルガノシリカゾルの合成) テトラエトキシシラン初期縮合物(多摩化学
工業社製「エチルシリケート40」) 100部 イソプロピルアルコール 25〃 エチルアルコール 25〃 10%リン酸水溶液 16〃 166部 10%リン酸水溶液を除いた残りの成分を反応溶
器に入れ、かくはん下に10%リン酸水溶液を1時
間を要して滴下し、その後温度を徐々に80℃に上
げ、同温度で10時間反応させてオルガノシリカゾ
ルを得た。このもののシリカ(SiO2)含有率は
24%であつた。 実施例 1〜11 第1表に示す配合割合で、ポリアミド樹脂に有
機溶剤を加えて、デイゾルバーで撹拌して完全に
溶解した後、オルガノシリカゾルを添加し更にデ
イゾルバーで撹拌し均一に混合して本発明の亜鉛
及び亜鉛合金防蝕用被覆組成物を得た。 実施例 12,13 第1表に示す配合割合で、ポリアミド樹脂に有
機溶剤を加えて、デイゾルバーで撹拌して完全に
溶解し、その溶液中に顔料、添加剤を加えて3本
ロールミルを4回通し均一に分散した後、オルガ
ノシリカゾルを添加し、デイゾルバーで撹拌して
均一に混合し、本発明の亜鉛及び亜鉛合金防食用
被覆組成物を得た。
(Object of the invention) The present invention relates to a novel coating composition that has excellent corrosion resistance for zinc and zinc alloys, and its object is to provide a coating composition that does not use any conventional antirust pigments or corrosion inhibitors. The purpose of the present invention is to create an air-drying coating that has excellent physical properties such as corrosion resistance and adhesion to zinc and zinc alloys, water resistance, salt water resistance, and moisture resistance. (Industrial Application Fields) Zinc and zinc alloys have been widely used in industry in recent years, in addition to being used alone, as galvanized steel and zinc alloy plated steel. The current situation is that it is being processed. Among these, coating agents are most commonly used because they are easy to operate, efficient, and relatively inexpensive. There are two types of coating materials: colored types that contain pigments and transparent types that do not, and which one to use is mainly determined by the intended use and the environment in which it is placed. (Prior art) Conventional zinc and zinc alloy anticorrosion coatings include (1) synthetic resins such as epoxy resins, polyurethane resins, acrylic resins, vinyl resins, and chlorinated rubber, zinc chromate, calcium lead oxide, zinc phosphate, etc. (2) Polyvinyl butyral resin alone or a mixed resin with alkyd resin, epoxy resin, phenolic resin, etc. added to it, zinc chromate, and colored pigments. A wash primer consisting of a main ingredient made by adding extender pigments, etc., and an acid solution whose main ingredient is phosphoric acid. (3) A transparent etching primer made by adding chromic anhydride, phosphoric acid, etc. as a corrosion inhibitor to polyvinyl butyral resin or epoxy resin. (4) petrolatum, petrolatum oxide,
Made by adding metal salts of lanolin and petrolatum oxide, metal salts of alkylbenzenesulfonic acid and alkylnaphthalenesulfonic acid as rust preventive agents to mineral oil, lanolin, etc. and dissolving or dispersing them in an organic solvent. (5) Synthetic resin clears made by dissolving single or mixed resins such as acrylic resins, polyurethane resins, epoxy resins, petroleum resins, coumaron resins, cyclized rubbers, and vinyl copolymer resins in organic solvents can be mentioned. The coating agent (1) has relatively excellent corrosion resistance and is used industrially as an anticorrosion coating agent for colored finishing. Among the anticorrosive pigments contained in these, zinc chromate contains hexavalent chromium. Calcium leadate is a poisonous substance, and calcium leadate is a compound of lead, a toxic heavy metal, which poses problems in terms of occupational health and safety, and zinc phosphate has a slightly inferior corrosion resistance. Washing primer (2) and etching primer (3) both contain harmful chromium compounds, and (4) is a translucent coating based on petroleum wax or lanolin, which does not give a good appearance to the paint film. It is a non-drying sticky soft film and has problems such as not being able to be overcoated. (5) is a synthetic resin-based transparent coating agent with drying properties,
Although it has good transparency and gloss, there are currently few effective corrosion inhibitors for zinc and zinc alloys, so the coating itself has poor corrosion resistance, and it corrodes in humid, salty, etc. environments. There is a problem that whitening and blistering of the paint film are likely to occur. (Structure and Effects of the Invention) The present inventors have discovered that a thin film that is naturally dried has excellent physical properties such as corrosion resistance and adhesion to zinc and zinc alloys, water resistance, salt water resistance, moisture resistance, etc., and also has the problems of the prior art products described above. As a result of intensive research to develop anti-corrosion coatings for zinc and zinc alloys that are free of corrosion, we have found that the coating binder is soluble in organic solvents and has a softening point of 70 to 180.
℃, 20 to 80 parts (parts by weight, the same applies hereinafter) of polyamide resin with an acid value of 15 or less and a total amine value of 15 or less, and 80 to 20 in terms of silica (SiO 2 ) of organosilica sol
By using a mixture of parts, corrosion resistance and adhesion to zinc and zinc alloys, water resistance, and
The present inventors have discovered that the product has excellent physical properties such as salt water resistance and moisture resistance, and can solve all of the problems of the prior art products mentioned above, leading to the completion of the present invention. That is, the present invention is a coating composition for zinc and zinc alloy corrosion protection containing a binder, an organic solvent, and optionally a coloring pigment, an extender pigment, an additive, etc., wherein the binder is soluble in the organic solvent and has a softening point of 70 to 70. 180℃,
Corrosion-preventing zinc and zinc alloy, characterized by being a mixture of 20 to 80 parts of a polyamide resin with an acid value of 15 or less and a total amine value of 15 or less, and 80 to 20 parts of organosilica sol in terms of silica (SiO 2 ). Concerning coating compositions. The polyamide resin used as the binder component of the present invention is a resin having an amide group (-CO-NH-) in the molecule, which is produced by condensation of a polybasic acid and a polyvalent amine, condensation of an aminocarboxylic acid, etc.
and its modified resin, which is soluble in organic solvents, has a softening point of 70 to 180°C, preferably 90 to 160°C, and an acid value of
Those having a total amine value of 15 or less, preferably 10 or less, and 15 or less, preferably 10 or less, can be used. If the softening point of the polyamide resin is less than 70℃, water resistance,
Moisture resistance is poor, and if the temperature exceeds 180°C, solubility deteriorates, which is not preferable. If the acid value exceeds 15, the anticorrosion properties will be poor, and if the total amine value exceeds 15, the compatibility with organosilica sol, which is another binder component of the present invention described later, will deteriorate, so both are unfavorable. Another compound used as a binder component of the present invention
Organosilica sol consists of 15 ultrafine particles of silica (particle size 5 to 100 mμ) in an organic medium.
Colloidal silica is stably dispersed at a concentration of ~60% (the same applies below weight%), and organosilica sol is produced by adding acid to an alkali silicate such as sodium silicate or potassium silicate to refine the silicate sol.
There are two methods: by dispersing it in an organic medium, and by hydrolyzing and condensing alkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and methyltriethoxysilane, and/or their initial condensates in an organic medium. In the latter case, a portion of unreacted alkoxy groups remains, but products prepared by either method can be used. The organic media used in the production of organosilica sol include methyl alcohol, ethyl alcohol,
Examples include n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, acetone, methyl ethyl ketone, methyl cellosolve, cellosolve, butyl cellosolve, propylene glycol monomethyl ether, propylene glycol monoethyl ether, and the like.
Any of the organosilica sols made using these organic media can be used as the binder component of the present invention, but from a price point of view, methyl alcohol silica sol, ethyl alcohol silica sol, and ethyl alcohol silica sol using methyl alcohol, ethyl alcohol, and isopropyl alcohol as the medium are Isopropyl alcohol silica sol is preferred. Of course, there may be one type of organosilica sol, or two or more types of organosilica sol may be used. As the binder component of the present invention, based on 20 to 80 parts, preferably 30 to 70 parts of the above polyamide resin,
Organosilica sol in terms of silica (SiO 2 )
A mixture of 80 to 20 parts, preferably 70 to 30 parts is used. If the mixing ratio of organosilica sol to polyamide resin is less than 80:20 (weight ratio, hereinafter omitted), the corrosion resistance will be poor.
If the ratio exceeds 20:80, the coating film becomes brittle and has poor flexibility, adhesion, and corrosion resistance, which is not preferable. The organic solvent used in the present invention is not particularly limited, and any known organic solvent can be used as long as it dissolves the polyamide resin and organosilica sol mixture, such as methyl alcohol, isopropyl alcohol, n - Alcohol solvents such as butyl alcohol, aromatic hydrocarbon solvents such as toluene, xylene, decalin, and tetralin, ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, and ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; Examples include ether alcohol solvents such as ethyl cellosolve, butyl cellosolve, and propylene glycol monoethyl ether, and ether ester solvents such as ethyl cellosolve acetate and butyl cellosolve acetate, and these may be used alone or in combination of two or more. . The amount of organic solvent used is
They vary depending on the purpose and are not fixed. Coloring pigments and extender pigments are not particularly limited, and include those used in general coating materials.
It can be used appropriately as needed. Specific examples of such pigments include coloring pigments such as titanium dioxide, red iron oxide, carbon black, and phthalocyanine blue, and extender pigments such as talc, kaolin, mica, and barium sulfate. Examples of additives include antifoaming agents, leveling agents, dispersants, anti-settling agents, thickeners, etc., and any of these can be used if necessary. In addition to the above-mentioned components, the composition of the present invention may optionally contain metal powders such as aluminum powder, zinc powder, and stainless steel powder, flaky iron oxide, glass powder, glass flakes, porcelain powder, and mica flakes. etc. can be used. The composition of the present invention includes an organic solvent and, if necessary, a coloring pigment, an extender pigment,
It is manufactured by adding additives and the like and dissolving, mixing and dispersing them using, for example, a dissolver, roll mill, sand mill, etc. The zinc and zinc alloy anticorrosive coating composition of the present invention thus obtained can be coated using conventional coating methods such as brushing, air spraying, airless spraying,
It can be applied suitably by roller coating, dip coating, electrostatic coating, etc., and when air dried, it has a thin film that has corrosion resistance against zinc and zinc alloys, and various physical properties such as adhesion, water resistance, salt water resistance, and moisture resistance. Because of its excellent properties, it is suitable for all kinds of objects using zinc and zinc alloy materials, as well as galvanized steel materials and zinc alloy plating steel materials, such as building materials, fences, gates, supports, poles, guardrails, signboards, steel towers, pipes, wires, and marine structures. It has excellent effects as an anti-corrosion coating for objects, vehicles, ships, construction machinery, bridges, etc. According to the present invention, such remarkable effects can be obtained because a mixture of the specific polyamide resin and organosilica sol in a specific ratio is used as the binder of the coating material. Although the mechanism is still not clear, it is presumed as follows. That is, on the surface of the silica particles of the organosilica sol in the composition, there are many -OH groups, which are reactive polar groups bonded to silicon, and when applied to zinc and zinc alloy objects, the polar groups (-
(OH groups) are regularly oriented toward the object to be coated and react with the zinc on the surface of the object to form a three-dimensional network structure, creating a strong barrier layer with excellent adhesion and anti-corrosion properties. The remaining -OH groups are dehydrated and condensed to form interparticle siloxane bonds (-Si-O-Si-),
It has the property of forming a coating film with excellent water resistance, salt water resistance, moisture resistance, and heat resistance. Polyamide resin, another binder component, has good compatibility with organosilica sol, and has an amide group (-
Polar groups such as CO-NH-), amino groups (-NH 2 ), and carboxyl groups (-COOH) are integrated with silanol groups (-Si-OH) on the surface of silica particles through hydrogen bonds, and their film-forming properties are poor when used alone. The polyamide resin is hygroscopic (0.1-0.3%;
ASTM D570, 24 hours), it has the effect of promoting the hydrolysis of the alkoxy groups partially present in the organosilica sol and activating the silica, and the effects of these two components are excellent together. It is believed that various physical properties such as corrosion resistance, water resistance, salt water resistance, and moisture resistance can be obtained. The above-mentioned excellent physical properties of a thin film can be obtained due to the formation of an integrated tough barrier layer through the reaction with the metal of the object to be coated, and the activation of silica due to the hygroscopicity of the polyamide resin. I think that the. In addition, excellent results were obtained for the air-dried coating film of the composition of the present invention, baking (140°C, 30 minutes), and physical property test results of the coating film, with no difference between the two.
The action of the binder component mentioned above can be achieved even without heating.
It seems to occur at room temperature. Resins that are compatible with the organosilica sol of the present invention include polyvinyl butyral resins, epoxy resins, acrylic resins, phenolic resins, ethyl cellulose resins, etc. in addition to the above-mentioned specific polyamide resins. The results showed that all of the resins other than the above-mentioned polyamide resins had poor corrosion resistance, water resistance, and moisture resistance, and were far inferior to the compositions of the present invention, which yielded excellent results. This is thought to be because the polyamide resin has the above-mentioned characteristics not found in other resins. Synthesis Examples, Examples, and Comparative Examples are shown below, but the present invention is not limited to the examples described below. Note that parts are parts by weight, and % is weight %. Synthesis example (synthesis of organosilica sol by hydrolysis of alkoxysilane) Tetraethoxysilane initial condensate (“Ethylsilicate 40” manufactured by Tama Chemical Industry Co., Ltd.) 100 parts Isopropyl alcohol 25〃 Ethyl alcohol 25〃 10% phosphoric acid aqueous solution 16〃 166 Place the remaining components except for the 10% phosphoric acid aqueous solution into a reaction vessel, add the 10% phosphoric acid aqueous solution dropwise over 1 hour while stirring, then gradually raise the temperature to 80℃, and then add the remaining ingredients at the same temperature. The reaction was carried out for 10 hours to obtain an organosilica sol. The silica (SiO 2 ) content of this material is
It was 24%. Examples 1 to 11 Add an organic solvent to the polyamide resin at the blending ratio shown in Table 1, stir with a dissolver to completely dissolve it, then add organosilica sol and further stir with a dissolver to mix uniformly. A coating composition for corrosion protection of zinc and zinc alloys according to the invention was obtained. Examples 12, 13 Add an organic solvent to polyamide resin at the blending ratio shown in Table 1, stir with a dissolver to completely dissolve, add pigments and additives to the solution, and run a three-roll mill four times. After uniformly dispersing the mixture, organosilica sol was added and mixed uniformly by stirring with a dissolver to obtain a coating composition for zinc and zinc alloy anticorrosion of the present invention.

【表】【table】

【表】【table】

【表】 比較例 1〜5,10 第2表に示す配合割合で、実施例1〜11と同様
にして比較の亜鉛及び亜鉛合金防食用被覆組成物
を得た。但し比較例4の場合はポリアミド樹脂成
分のDPX850がオルガノシリカゾル成分のメタノ
ールシリカゾルと相溶しない為、また比較例5の
場合はポリアミド樹脂成分のマクロメルト6300が
有機溶剤に溶解しない為に比較例4及び5の被覆
組成物は作成できなかつた。 比較例 6〜9 第2表に示す配合割合で、樹脂に有機溶剤を加
えてデイゾルバーで撹拌して完全に溶解した後、
オルガノシリカゾルを添加し、更にデイゾルバー
で撹拌し均一に混合して比較の亜鉛及び亜鉛合金
防食用被覆組成物を得た。 比較例 11,12 第2表に示す配合割合で、実施例12,13と同様
にして比較の亜鉛及び亜鉛合金防食用被覆組成物
を得た。
[Table] Comparative Examples 1 to 5, 10 Comparative zinc and zinc alloy anticorrosive coating compositions were obtained in the same manner as Examples 1 to 11 at the blending ratios shown in Table 2. However, in the case of Comparative Example 4, the polyamide resin component DPX850 is not compatible with the methanol silica sol of the organosilica sol component, and in the case of Comparative Example 5, the polyamide resin component Macromelt 6300 does not dissolve in the organic solvent. It was not possible to create the coating compositions of Nos. and 5. Comparative Examples 6 to 9 After adding an organic solvent to the resin and stirring with a dissolver to completely dissolve it in the proportions shown in Table 2,
Organosilica sol was added and further stirred with a dissolver to mix uniformly to obtain comparative zinc and zinc alloy anticorrosive coating compositions. Comparative Examples 11 and 12 Comparative zinc and zinc alloy anticorrosion coating compositions were obtained in the same manner as in Examples 12 and 13 at the blending ratios shown in Table 2.

【表】【table】

【表】 実施例及び比較例によつて得た各亜鉛及び亜鉛
合金防食用被覆組成物を、下記の方法により試験
し評価した。 試験片の作成 試験板{試験板a:電気亜鉛メツキ鋼板(70×
150×0.8mm)、試験板b:電気亜鉛合金メツキ鋼
板(70×150×0.8mm)}の表面に試料を吹付塗り
し、室温で4日間乾燥させた後供試 (1) 膜厚 (株)ケツト科学研究所製、膜厚計LX−100を用い
て試験片の乾燥膜厚を測定した。 (2) 耐塩水噴霧性 試験片の表面の塗膜にカツターナイフで対角線
上に素地達するクロスカツトを入れた後、JISZ
2371の塩水噴霧試験方法にしたがつて100時間試
験し、塗布面の状態を観察し、異状なし(〇)、
やや発錆(△)、かなり発錆(×)の3段階に分
けて評価した。 (3) 耐水性 試験片を20℃の水道水に30日間浸漬した後、塗
布面の状態を観察し、異状なし(〇)、やや白化
(△)、かなり白化(×)の3段階に分けて評価し
た。 (4) 耐塩水性 試験片を20℃の3%塩化ナトリウム水溶液に30
日間浸漬した後、塗布面の状態を観察し、異状な
し(〇)、やや発錆(△)、かなり発錆(×)の3
段階に分けて評価した。 (5) 耐湿性 試験片を50℃、98%R.H.の耐湿試験器で30日
間試験した後、塗面の状態を観察し、異状なし
(〇)、やや発錆又か白化(△)、かなり発錆又は
ひどい白化(×)の3段階に分けて評価した。 (6) 付着性 基盤目試験(JIS K 5400−6.15)を行い、セ
ロテープ剥離後の塗膜の付着状態を観察し10〜0
の点数で評価した。10点:切り傷の1本ごとが細
くて両側が滑らかで、切り傷の交点と正方形の一
目一目にはがれがない。0点:はがれの面積は、
全正方形面積の65%以上。 (7) 耐屈曲性 直径6mmの鋼製心棒のまわりに1秒間を要して
180度折り曲げ、屈曲面の塗膜の状態を観察し、
異状なし(○)、稍ひび割れ(△)、全面ひび割れ
(×)の3段階に分けて評価した。 これらの結果を第3表に示す。
[Table] Each zinc and zinc alloy anticorrosive coating composition obtained in the Examples and Comparative Examples was tested and evaluated by the following method. Preparation of test piece Test plate {Test plate a: Electrogalvanized steel plate (70×
150 x 0.8 mm), test plate b: electrolytic zinc alloy plated steel plate (70 x 150 x 0.8 mm)}, and after drying at room temperature for 4 days, test (1) Film thickness (Co., Ltd.) ) The dry film thickness of the test piece was measured using a film thickness meter LX-100 manufactured by Kett Science Institute. (2) Salt spray resistance After making diagonal cross cuts on the coating film on the surface of the test piece with a cutter knife, JISZ
Tested for 100 hours according to the salt spray test method of 2371, and observed the condition of the applied surface. No abnormality (〇),
The evaluation was divided into three levels: slightly rusted (△) and considerably rusted (×). (3) Water resistance After immersing the test piece in tap water at 20℃ for 30 days, the condition of the coated surface was observed and divided into three grades: no abnormality (〇), slight whitening (△), and considerable whitening (×). It was evaluated. (4) Salt water resistance The test piece was placed in a 3% sodium chloride aqueous solution at 20℃ for 30 minutes.
After soaking for a day, the condition of the coated surface was observed and rated as 3: no abnormality (〇), slight rust (△), and considerable rust (×).
The evaluation was divided into stages. (5) Moisture resistance After testing the test piece in a humidity tester at 50℃ and 98%RH for 30 days, the condition of the painted surface was observed: no abnormality (○), slight rust or whitening (△), considerable The evaluation was divided into three grades: rusting or severe whitening (×). (6) Adhesion Conduct a substrate test (JIS K 5400-6.15) and observe the adhesion state of the paint film after peeling off the Sellotape.
It was evaluated by the score. 10 points: Each cut is thin and smooth on both sides, and there is no peeling at the intersection of the cuts and at the first glance of the square. 0 points: The area of peeling is
More than 65% of the total square area. (7) Flexibility It takes 1 second to bend around a steel mandrel with a diameter of 6 mm.
Bend it 180 degrees, observe the condition of the coating on the bent surface,
The evaluation was divided into three grades: no abnormality (◯), slight cracking (△), and full-scale cracking (x). These results are shown in Table 3.

【表】【table】

【表】 第3表から明らかなように、実施例1〜13に示
した本発明の亜鉛及び亜鉛合金防蝕用被覆組成物
は、すべての項目において亜鉛メツキ鋼板及び亜
鉛合金メツキ鋼板共に良好な結果が得られ、自然
乾燥、薄膜で防蝕性、耐水性、耐塩水性、耐湿性
及び付着にすぐれていることが実証された。 これに対して、バインダー成分のポリアミド樹
脂に対するオルガノシリカゾル(SiO2換算)の
混合割合が規定割合未満の比較例2,12は耐塩水
噴霧性、耐塩水性が劣り、規定割合を超えた比較
例1,10,11は耐塩水噴霧性、耐塩水性、付着
性、耐屈曲性に劣る結果が得られた。 酸価が規定値より高いポリアミド樹脂を使用し
た比較例3は耐塩水噴霧性、耐塩水性が劣り、全
アミン価が規定値より高いポリアミド樹脂を使用
した比較例4はポリアミド樹脂とオルガノシリカ
ゾルとの相溶性が悪く、また軟化点が規定値より
高いポリアミド樹脂を使用した比較例5はポリア
ミド樹脂が有機溶剤に溶解しない為、比較例4及
び5の被覆組成物は作成できなかつた。 バインダー成分のポリアミド樹脂の代りにその
他の樹脂を使用した比較例6〜9は樹脂の種類に
より、若干差はあるものの本発明組成物に比べ
て、耐塩水噴霧性、耐水性、耐塩水性、耐湿性が
大きく劣る結果が得られた。
[Table] As is clear from Table 3, the zinc and zinc alloy corrosion-resistant coating compositions of the present invention shown in Examples 1 to 13 gave good results in all items for both galvanized steel sheets and zinc alloy-plated steel sheets. was obtained, and it was demonstrated that it was a thin film that dried naturally and had excellent corrosion resistance, water resistance, salt water resistance, moisture resistance, and adhesion. On the other hand, Comparative Examples 2 and 12, in which the mixing ratio of organosilica sol (SiO 2 equivalent) to the polyamide resin of the binder component was less than the specified ratio, had poor salt water spray resistance and salt water resistance, and Comparative Example 1, in which the mixing ratio exceeded the specified ratio. , 10, and 11 had poor salt spray resistance, salt water resistance, adhesion, and bending resistance. Comparative Example 3, which used a polyamide resin with an acid value higher than the specified value, had poor salt water spray resistance and salt water resistance, and Comparative Example 4, which used a polyamide resin with a total amine value higher than the specified value, had a combination of polyamide resin and organosilica sol. In Comparative Example 5, which used a polyamide resin with poor compatibility and a softening point higher than the specified value, the coating compositions of Comparative Examples 4 and 5 could not be created because the polyamide resin did not dissolve in the organic solvent. Comparative Examples 6 to 9, in which other resins were used instead of the polyamide resin as the binder component, had better salt spray resistance, water resistance, salt water resistance, and moisture resistance than the compositions of the present invention, although there were slight differences depending on the type of resin. The results showed that the quality was significantly inferior.

Claims (1)

【特許請求の範囲】 1 バインダー、有機溶剤及び必要により着色顔
料、体質顔料、添加剤等よりなり、かつバインダ
ーが有機溶剤に可溶で、軟化点が70℃〜180℃、
酸化が15以下、全アミン価が15以下のポリアミド
樹脂20〜80重量部とオルガノシリカゾルのシリカ
(SiO2)換算量で80〜20重量部の混合物であるこ
とを特徴とする亜鉛及び亜鉛合金防食用被覆組成
物。 2 オルガノシリカゾルが、メチルアルコールシ
リカゾル、エチルアルコールシリカゾル及びイソ
プロピルアルコールシリカゾルの1種類又は2種
類以上の混合物である特許請求の範囲第1項の亜
鉛及び亜鉛合金防蝕用被覆組成物。
[Scope of Claims] 1. Consists of a binder, an organic solvent, and if necessary, a coloring pigment, an extender pigment, an additive, etc., and the binder is soluble in the organic solvent and has a softening point of 70°C to 180°C,
A zinc and zinc alloy preventive material characterized by being a mixture of 20 to 80 parts by weight of a polyamide resin with an oxidation rate of 15 or less and a total amine value of 15 or less, and 80 to 20 parts by weight of organosilica sol in terms of silica (SiO 2 ). Edible coating composition. 2. The corrosion-protective coating composition for zinc and zinc alloys according to claim 1, wherein the organosilica sol is one or a mixture of two or more of methyl alcohol silica sol, ethyl alcohol silica sol, and isopropyl alcohol silica sol.
JP5334486A 1986-03-12 1986-03-12 Coating composition resistant to corrosion due to zinc alloy Granted JPS62212474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5334486A JPS62212474A (en) 1986-03-12 1986-03-12 Coating composition resistant to corrosion due to zinc alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5334486A JPS62212474A (en) 1986-03-12 1986-03-12 Coating composition resistant to corrosion due to zinc alloy

Publications (2)

Publication Number Publication Date
JPS62212474A JPS62212474A (en) 1987-09-18
JPS6360073B2 true JPS6360073B2 (en) 1988-11-22

Family

ID=12940149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5334486A Granted JPS62212474A (en) 1986-03-12 1986-03-12 Coating composition resistant to corrosion due to zinc alloy

Country Status (1)

Country Link
JP (1) JPS62212474A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717463U (en) * 1993-08-30 1995-03-28 株式会社シバ・エム・イ− Fluid-filled polishing body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641271A (en) * 1979-09-10 1981-04-17 Kokusai Giken Kk Water paint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641271A (en) * 1979-09-10 1981-04-17 Kokusai Giken Kk Water paint

Also Published As

Publication number Publication date
JPS62212474A (en) 1987-09-18

Similar Documents

Publication Publication Date Title
JPS5950269B2 (en) Coating composition for corrosion protection on the inner surface of heat exchanger tubes
CN101717930A (en) Environment-friendly nano water-based silane treatment agent capable of improving anti-corrosion performance of metal surface
JP6242318B2 (en) Weak solvent type high corrosion resistance coating composition using Sn ions
JPS62273272A (en) Rustproof coating composition
WO2002060999A1 (en) Anti-rust coating
JP5993799B2 (en) High corrosion resistance coating composition using Sn ions
KR20180061933A (en) A chrome-free water-based corrosion inhibitor coating composition
US4795492A (en) Corrosion inhibiting coating composition
US20050287376A1 (en) Corrosion protection of zinc surfaces
JPS6360073B2 (en)
KR101746954B1 (en) Cr-free modified epoxy wash primer high adhesion anti-corrosive coating composition and a method of manufacturing the same
JP2003113346A (en) Rustproof coating material, galvanized steel sheet having rustproof film, and method for producing the same
JP2768808B2 (en) Resin composition for zinc rich paint
JPH07133442A (en) Zinc-rich paint
US4094837A (en) Corrosion inhibiting primer paint for hand cleaned ferrous metals
JP2005264170A (en) Chromium-free surface treatment agent for galvanized product
JPS58142948A (en) Zinc-rich paint composition
JP7321046B2 (en) Anticorrosion coating composition, method for preventing corrosion of magnesium alloy molding using the composition, and coating molding
JPH0941168A (en) Zinc-inorganic based surface treated steel sheet excellent in flaw resistance and corrosion resistance
JPS61211373A (en) Water paint composition and method for forming coating film
JPS6253552B2 (en)
JPH08895B2 (en) Construction steel joining method
JPS60235871A (en) Primary rust-resisting paint composition
JPS5817176A (en) Coating composition for powder transmission pylon
WO2012087671A1 (en) Coating compositions