JPS635998B2 - - Google Patents

Info

Publication number
JPS635998B2
JPS635998B2 JP54102922A JP10292279A JPS635998B2 JP S635998 B2 JPS635998 B2 JP S635998B2 JP 54102922 A JP54102922 A JP 54102922A JP 10292279 A JP10292279 A JP 10292279A JP S635998 B2 JPS635998 B2 JP S635998B2
Authority
JP
Japan
Prior art keywords
induction motor
current
current component
circuit
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54102922A
Other languages
Japanese (ja)
Other versions
JPS5629486A (en
Inventor
Sukeo Saito
Masanori Myazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10292279A priority Critical patent/JPS5629486A/en
Publication of JPS5629486A publication Critical patent/JPS5629486A/en
Publication of JPS635998B2 publication Critical patent/JPS635998B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/02Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using supply voltage with constant frequency and variable amplitude
    • H02P27/026Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using supply voltage with constant frequency and variable amplitude whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Stopping Of Electric Motors (AREA)

Description

【発明の詳細な説明】 この発明は誘導電動機の制御方式に係り、特に
負荷となる誘導電動機の界磁電流成分とトルク電
流成分をそれぞれ独立に制御することができる電
力変換装置を用いて誘導電動機を駆動する場合の
制御方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control system for an induction motor, and in particular, the present invention relates to a control method for an induction motor, and in particular, the invention relates to a control system for an induction motor, and in particular, a power conversion device that can independently control the field current component and torque current component of the induction motor, which is a load, is used to control the induction motor. The present invention relates to a control method for driving a .

誘導電動機を用いて可変速運転を行なう場合各
種の制御方式があるが、その制御範囲の広さと任
意の負荷条件において任意の速度で運転できるこ
と及び誘導電動機として堅牢でメインテナンスフ
リーであるかご形誘導電動機を使用することがで
きるという面から、一次周波数制御方式が使用さ
れることが多い。第1図は一次周波数制御方式の
代表的なブロツク図であり、交流電源11から得
られる電力を任意の周波数、任意の電圧、電流の
交流電力に変換する電力変換装置12を介して負
荷となる誘導電動機13を駆動する構成である。
電力変換装置12はある周波数、ある電圧を有す
る交流電源として使用される場合には各種の回路
例があるが、この発明の目的とする誘導電動機の
制御方式を実現するべき回路の1例として第2図
に示す。同図において、交流電源11より得られ
る電力は整流回路121を介して直流に変換さ
れ、直流リアクトル122にて平滑化している。
更にこの直流電力をインバータ回路123にて再
び交流電力に変換して負荷となる誘導電動機13
を駆動している。インバータ回路123は直列ダ
イオード方式と呼ばれている電流形インバータ装
置であるが、この発明にとつて特に限定された回
路ではないため、その詳細説明を省く。この第2
図に示される電流形インバータ装置がこの発明の
誘導電動機の制御方式に対して有効な理由は、後
に述べる瞬時の出力交流電流及び位相が制御でき
るためである。その理由は、電流は整流回路12
1により、位相はインバータ回路123により制
御できるためである。
There are various control methods for variable speed operation using induction motors, but squirrel cage induction motors have a wide control range, can be operated at any speed under any load conditions, and are robust and maintenance-free as induction motors. The primary frequency control method is often used because it allows the use of FIG. 1 is a typical block diagram of the primary frequency control system, which becomes a load through a power converter 12 that converts power obtained from an AC power source 11 into AC power of any frequency, voltage, and current. This is a configuration for driving an induction motor 13.
When the power conversion device 12 is used as an AC power supply having a certain frequency and a certain voltage, there are various circuit examples, but the following is an example of a circuit that should realize the control method for an induction motor that is the object of the present invention. Shown in Figure 2. In the figure, electric power obtained from an AC power source 11 is converted to DC via a rectifier circuit 121, and smoothed by a DC reactor 122.
Furthermore, this DC power is converted back into AC power by an inverter circuit 123, and the induction motor 13 becomes a load.
is driving. The inverter circuit 123 is a current source inverter device called a series diode type, but since it is not a circuit particularly limited to the present invention, a detailed explanation thereof will be omitted. This second
The reason why the current source inverter device shown in the figure is effective for the induction motor control method of the present invention is that the instantaneous output alternating current and phase, which will be described later, can be controlled. The reason is that the current is in the rectifier circuit 12
1, the phase can be controlled by the inverter circuit 123.

以下の説明を理解し易くするため、誘導電動機
の界磁電流成分とトルク電流成分をそれぞれ独立
に制御する原理について述べる。誘導電動機にお
いて1次電流ベクトル1と2次磁束ベクトル〓2
との関係は (1+T2P+jωST2)〓2=M1 ……(1) で表わされる。ただし、T2は電動機2次時定数、
Mは1次、2次相互インダクタンス、ωSはすべ
り角速度、またPは微分演算子である。この関係
を図に示したのが第3図である。同図において
の〓2軸成分を1d、その直角成分を1qとすれ
ば、誘導電動機における発生トルクTおよび2次
磁束Φ2は、 T=M/L2Φ2 1q ……(2) Φ2=M/1+T2P1d ……(3) にて表わされる。ただし、L2は2次自己インダ
クタンスである。(2),(3)から、トルクT及び2次
磁束Φ21q・1dにより制御することができ、
1dを界磁電流成分、1qをトルク電流成分と呼
ぶことにする。また滑り角速度は(1)と(2)から ωS=M/T2Φ2 1q=L2/T2Φ22T ……(4) にて表わされる。従つてトルク基準T※、2次磁
束基準Φ2※に一致したトルク及び2次磁束を持
つた誘導電動機の運転をするためには(2),(3)より
1q・1dを合成した誘導電動機の一次電流1
と、(4)式及び誘導電動機の運転角速度ωnの合成
角速度ω1=ωn+ωSを持つた交流を供給すればよ
いことがわかる。
In order to make the following explanation easier to understand, the principle of independently controlling the field current component and torque current component of the induction motor will be described. In an induction motor, primary current vector 1 and secondary magnetic flux vector 〓 2
The relationship with is expressed as (1+T 2 P+jω S T 2 )〓 2 =M 1 (1). However, T 2 is the motor secondary time constant,
M is the primary and secondary mutual inductance, ω S is the slip angular velocity, and P is a differential operator. FIG. 3 illustrates this relationship. In the same figure
1〓 If the biaxial component is 1 d and its orthogonal component is 1 q, the generated torque T and secondary magnetic flux Φ 2 in the induction motor are as follows: T=M/L 2 Φ 2 1 q ...(2) Φ 2 = M/1 + T 2 P 1 d ...(3). However, L 2 is the secondary self-inductance. From (2) and (3), the torque T and the secondary magnetic flux Φ 2 can be controlled by 1 q・1 d,
1 d is called the field current component, and 1 q is called the torque current component. Also, the slip angular velocity is expressed from (1) and (2) as ω S =M/T 2 Φ 2 1 q = L 2 /T 2 Φ 2 / 2 T (4). Therefore, in order to operate an induction motor with torque and secondary magnetic flux that match the torque standard T* and secondary magnetic flux standard Φ 2 *, from (2) and (3)
Primary current 1 of induction motor combining 1 q and 1 d
It can be seen that it is sufficient to supply an alternating current having the formula (4) and the resultant angular velocity ω 1nS of the operating angular velocity ω n of the induction motor.

以上の説明を電流形インバータ装置に実現した
制御ブロツク図を第4図に示す。同図において誘
導電動機13に対する運転角速度基準14(ωn
※)と誘導電動機13の回転軸に直結された速度
センサー15からの運転角速度ωnが比較増巾さ
れて速度制御16を介してトルク基準T※を得
る。演算回路17は(2)式に従つてトルク基準T※
よりトルク電流成分1qを求める回路である。ま
た2次磁束基準18より与えられる2次磁束基準
Φ2※は演算回路19を介して(3)式に従つて演算
され界磁電流成分1dを得る。トルク電流成分
1qと界磁電流成分1dを合成して得られる1次電
流基準1※に従つて電力変換装置12の出力電
流を制御する電流制御回路20は、電流基準と電
流検出回路21からの帰還信号を誤差増幅するこ
とによつて制御信号を発する回路である。一方ト
ルク基準T※と2次磁束基準Φ2※から(4)式に従つ
て演算する演算回路22から得られる信号は滑り
角速度ωSとなり、周波数制御回路23は、ω1
ωn+ωSに対応した周波数を電力変換装置12か
ら供給する制御信号を発する。従つて、運転角速
度基準ωn※及び2次磁束基準Φ2※に一致した運
転角速度及び2次磁束にて誘導電動機の運転が可
能となる。電流制御回路20へ信号を供給するロ
ジツク回路51は、電力変換装置12の運転、停
止を指令するスイツチ52に従つて電流制御回路
20を動作或いは不動作にする機能を持ち、電力
変換装置12が停止の時には、誘導電動機13へ
流す電流を絞つて流さないようにし、電力変換装
置12が運転の時には誘導電動機13へ電流を流
すように制御する。
FIG. 4 shows a control block diagram in which the above explanation is implemented in a current source inverter device. In the figure, an operating angular velocity reference 14 (ω n
*) and the operating angular velocity ω n from the speed sensor 15 directly connected to the rotating shaft of the induction motor 13 are compared and amplified to obtain the torque reference T* via the speed control 16. The calculation circuit 17 calculates the torque reference T* according to equation (2).
This is a circuit that calculates the torque current component 1q . Further, the secondary magnetic flux reference Φ 2 * given by the secondary magnetic flux reference 18 is calculated in accordance with equation (3) via the calculation circuit 19 to obtain the field current component 1 d. Torque current component
A current control circuit 20 that controls the output current of the power converter 12 according to a primary current reference 1 * obtained by combining 1 q and a field current component 1 d uses the current reference and the feedback from the current detection circuit 21. This is a circuit that generates a control signal by amplifying the error of the signal. On the other hand, the signal obtained from the arithmetic circuit 22 which calculates according to equation (4) from the torque reference T* and the secondary magnetic flux reference Φ 2 * is the slip angular velocity ω S , and the frequency control circuit 23 calculates ω 1 =
A control signal for supplying a frequency corresponding to ω nS from the power conversion device 12 is generated. Therefore, the induction motor can be operated at an operating angular velocity and secondary magnetic flux that match the operating angular velocity reference ω n * and the secondary magnetic flux reference Φ 2 *. A logic circuit 51 that supplies a signal to the current control circuit 20 has a function of operating or disabling the current control circuit 20 according to a switch 52 that commands the operation or stop of the power conversion device 12. When stopped, the current flowing to the induction motor 13 is throttled so as not to flow, and when the power conversion device 12 is in operation, the current is controlled to flow to the induction motor 13.

いま第4図に示される制御回路において、第5
図に示されるパターンにて運転した場合を考え
る。同図において時刻t1に運転を開始し、加速―
加速完了―定速―減速のパターンで時刻t2に停止
する。時刻t2から時刻t3までは運転停止期間で時
刻t3から再び運転を開始するパターンである。こ
のような運転パターンでは頻繁に運転と運転停止
が繰返されるが、第4図の制御回路においては停
止時にはスイツチ52が開路状態となり、ロジツ
ク回路51により電流制御回路20を絞つている
ため、時刻t1の運転開始時に誘導電動機13の界
磁を立ち上げるため過大な電流を流さなければな
らない。この電流は第3図のT2P〓2のベクトル
に相当する電流であり、負荷となる誘導電動機が
大容量になる程一般に時定数T2が大きくなるの
で必要な電流が大きくなる。また、時刻t1は加速
開始時であるので充分な加速トルクを得るために
はトルク電流成分も必要となり、負荷となる誘導
電動機の容量に対し運転開始時の容量を確保する
だけで過大な容量を持つ電力変換装置が必要とな
る欠点があつた。
In the control circuit shown in FIG.
Consider the case of driving in the pattern shown in the figure. In the same figure, operation starts at time t 1 and accelerates -
It stops at time t 2 with a pattern of acceleration completion - constant speed - deceleration. The pattern is that the operation is stopped from time t 2 to time t 3 and operation starts again from time t 3 . In such an operation pattern, operation and stop are frequently repeated, but in the control circuit shown in FIG. 1 , an excessive current must be passed to start up the field of the induction motor 13 at the start of operation. This current corresponds to the vector T 2 P〓 2 in FIG. 3, and the larger the capacity of the induction motor serving as the load, the larger the time constant T 2 and therefore the larger the required current. In addition, since time t 1 is the start of acceleration, a torque current component is also required in order to obtain sufficient acceleration torque. The disadvantage was that it required a power converter with

この発明は上述した欠点を除去するためになさ
れたものであり、負荷となる誘導電動機の運転停
止時にも界磁電流成分の電流だけは供給すること
より、運転開始時にだけ必要な過大容量を抑えて
負荷の容量に対応した経済的で信頼性の高い誘導
電動機の制御方式を提供することにある。
This invention was made to eliminate the above-mentioned drawbacks, and by supplying only the field current component even when the induction motor serving as a load is stopped, the excessive capacity required only at the start of operation can be suppressed. The object of the present invention is to provide an economical and highly reliable control method for an induction motor that is compatible with the load capacity.

第6図にこの発明の一実施例を示す。第6図が
第4図と異なる点は、電流制御回路20へ信号を
供給するロジツク回路51に通常の電力変換装置
12の運転停止を指令するスイツチ52と並列に
短時間の停止期間或いは決められた運転、停止パ
ターンの中の停止期間等及び負荷誘導電動機の加
速時刻以前に界磁電流成分の電流を流す期間例え
ば第5図のt2〜t3の期間に電流制御回路20
の絞り解除を指令するスイツチ53を追加した点
と、スイツチ53に応動して運転角速度基準ω※
を入切するスイツチ54を設けた点である。同図
の作用は次のように説明される。通常の運転停止
はスイツチ52によつて行なわれるが、上述のよ
うに界磁電流成分の電流のみ流す期間TPにはス
イツチ53が開路することによつて電流制御回路
20の絞りが解除されると共に、運転角速度基準
ω※が切り離されて零速度指令と同等の指令とな
る。又、電動機が運転停止にあるときは通常、図
示しないブレーキがかかつているため速度帰還信
号も零である。従つて、トルク電流成分の電流は
トルク基準T※が零指令となるため流れず、界磁
電流成分のみの電流を流すことになる。
FIG. 6 shows an embodiment of the present invention. The difference between FIG. 6 and FIG. 4 is that a logic circuit 51 that supplies a signal to the current control circuit 20 is connected in parallel with a switch 52 that instructs the normal power converter 12 to stop operating for a short period of time or for a predetermined period. The current control circuit 20 is operated during a period during which the current of the field current component flows before the acceleration time of the load induction motor, for example, during the period from t2 to t3 in FIG.
The addition of a switch 53 that commands the release of the throttle, and the operation angular velocity reference ω* in response to the switch 53
The point is that a switch 54 is provided to turn on and off. The operation of the figure can be explained as follows. Normal operation is stopped by the switch 52, but as mentioned above, during the period TP in which only the field current component current flows, the switch 53 opens to release the throttling of the current control circuit 20. , the driving angular velocity reference ω* is separated and becomes a command equivalent to the zero speed command. Further, when the electric motor is stopped, the speed feedback signal is also zero because a brake (not shown) is normally applied. Therefore, the current of the torque current component does not flow because the torque reference T* becomes a zero command, and only the current of the field current component flows.

第7図にはこの発明の別の実施例を示す。同図
において第6図と異なる点は、速度センサー15
からの運転角速度ωnを入力として誘導電動機1
3の停止時にスイツチ切換指令S3を発生し、2次
磁束基準を切換える切換回路24、誘導電動機1
3の停止時の2次磁束基準25及び上述切換回路
24のスイツチ切換指令S3に従つて動作し2次磁
束基準を切換えるスイツチ26を追加した点であ
る。同図の作用は第6図の作用に停止時の界磁電
流成分の電流を下げるために2次磁束基準を切換
えることを追加したことである。この実施例で
は、停止時に下げた2次磁束を加速時に増加させ
る成分の電流(第3図にT2P〓2に対応)だけの
容量増加は必要であるが、停止時の界磁電流を下
げることが出来るメリツトがある。
FIG. 7 shows another embodiment of the invention. The difference between this figure and FIG. 6 is that the speed sensor 15
Induction motor 1 using the operating angular velocity ω n from
A switching circuit 24 generates a switch switching command S3 when motor 3 stops and switches the secondary magnetic flux reference, and an induction motor 1
This is because a switch 26 is added which operates in accordance with the secondary magnetic flux reference 25 at the time of stop of No. 3 and the switch switching command S3 of the above-mentioned switching circuit 24 to switch the secondary magnetic flux reference. The effect shown in FIG. 6 is the addition of switching the secondary magnetic flux reference in order to lower the field current component current during stoppage to the effect shown in FIG. In this example, it is necessary to increase the capacity by the component current (corresponding to T 2 P 〓 2 in Fig. 3) that increases the secondary magnetic flux that is lowered when stopped when accelerating, but the field current when stopped is There is an advantage that it can be lowered.

以上説明したように、負荷となる誘導電動機の
停止時にも界磁電流成分の電流だけを供給するこ
とにより以下の特長を持つた誘導電動機の制御方
式を供給することができる。
As explained above, by supplying only the field current component even when the induction motor serving as a load is stopped, it is possible to provide an induction motor control system having the following features.

(1) 負荷の誘導電動機の加速開始時に2次磁束を
立ち上げるための界磁電流成分の電流を流す必
要がないので、負荷の誘導電動機の容量に対応
した電力変換装置の容量を充分に加速トルクと
して使用でき、経済的でしかも応答の速い誘導
電動機の制御が可能となる。
(1) Since it is not necessary to flow the field current component current to raise the secondary magnetic flux when the induction motor of the load starts accelerating, the capacity of the power converter corresponding to the capacity of the induction motor of the load can be sufficiently accelerated. It can be used as torque, making it possible to control an induction motor economically and with quick response.

(2) 更に負荷となる誘導電動機の停止時に2次磁
束を弱めることにより、わずかな界磁電流成分
の増加はあるが経済的にメリツトのある誘導電
動機の制御が可能となる。
(2) Furthermore, by weakening the secondary magnetic flux when the induction motor serving as a load is stopped, it becomes possible to control the induction motor economically, although there is a slight increase in the field current component.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は誘導電動機の一次周波数制御のブロツ
ク図、第2図は第1図における電力変換装置の一
例を示す構成図、第3図は誘導電動機に供給する
電流のベクトル図、第4図は従来の制御ブロツク
図、第5図は運転パターンの説明図、第6図はこ
の発明の一実施例を示すブロツク図、第7図はこ
の発明の他の実施例を示すブロツク図である。 11…交流電源、12…電力変換装置、13…
誘導電動機、14…運転角速度基準、15…速度
センサー、16…速度制御回路、17…演算回
路、18…2次磁束基準、19…演算回路、20
…電流制御回路、21…電流検出回路、22…演
算回路、23…周波数制御回路、24…切換回
路、25…2次磁束基準、26…スイツチ、51
…ロジツク回路、52,53,54…スイツチ。
Fig. 1 is a block diagram of primary frequency control of an induction motor, Fig. 2 is a configuration diagram showing an example of the power conversion device in Fig. 1, Fig. 3 is a vector diagram of the current supplied to the induction motor, and Fig. 4 is a block diagram of the primary frequency control of an induction motor. FIG. 5 is an explanatory diagram of an operation pattern, FIG. 6 is a block diagram showing one embodiment of the present invention, and FIG. 7 is a block diagram showing another embodiment of the present invention. 11...AC power supply, 12...power converter, 13...
Induction motor, 14... Operating angular velocity reference, 15... Speed sensor, 16... Speed control circuit, 17... Arithmetic circuit, 18... Secondary magnetic flux reference, 19... Arithmetic circuit, 20
...Current control circuit, 21...Current detection circuit, 22...Arithmetic circuit, 23...Frequency control circuit, 24...Switching circuit, 25...Secondary magnetic flux reference, 26...Switch, 51
...Logic circuit, 52, 53, 54...switch.

Claims (1)

【特許請求の範囲】 1 負荷となる誘導電動機の界磁電流成分とトル
ク電流成分をそれぞれ独立に制御する電力変換装
置を用いて誘導電動機を運転と運転停止が繰返さ
れるように駆動されるものにおいて、前記誘導電
動機の運転停止時にも、界磁電流成分の電流を流
すことを特徴とする誘導電動機の制御方式。 2 負荷となる誘導電動機の界磁電流成分とトル
ク電流成分をそれぞれ独立に制御する電力変換装
置を用いて誘導電動機を運転と運転停止が繰返さ
れるように駆動されるものにおいて、前記誘導電
動機の運転停止時において、高速域の界磁電流成
分より少ない界磁電流成分の電流を流すことを特
徴とする誘導電動機の制御方式。
[Scope of Claims] 1. In an induction motor that is driven to repeatedly start and stop using a power conversion device that independently controls the field current component and torque current component of the induction motor serving as a load. . A control method for an induction motor, characterized in that a field current component current is caused to flow even when the induction motor is stopped. 2. In an induction motor that is driven to repeatedly start and stop using a power conversion device that independently controls the field current component and torque current component of the induction motor serving as a load, the operation of the induction motor A control method for an induction motor characterized by flowing a current having a field current component smaller than a field current component in a high-speed range when stopped.
JP10292279A 1979-08-13 1979-08-13 Controlling system for induction motor Granted JPS5629486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10292279A JPS5629486A (en) 1979-08-13 1979-08-13 Controlling system for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10292279A JPS5629486A (en) 1979-08-13 1979-08-13 Controlling system for induction motor

Publications (2)

Publication Number Publication Date
JPS5629486A JPS5629486A (en) 1981-03-24
JPS635998B2 true JPS635998B2 (en) 1988-02-06

Family

ID=14340339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10292279A Granted JPS5629486A (en) 1979-08-13 1979-08-13 Controlling system for induction motor

Country Status (1)

Country Link
JP (1) JPS5629486A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162988A (en) * 1981-03-31 1982-10-06 Fanuc Ltd Ac motor control system
JPS61170288A (en) * 1985-01-23 1986-07-31 Hitachi Ltd Controller of induction motor

Also Published As

Publication number Publication date
JPS5629486A (en) 1981-03-24

Similar Documents

Publication Publication Date Title
US4078191A (en) Control system for regulating the torque and speed of an electric motor
US4815567A (en) Apparatus for controlling an A.C. powered elevator
US4627370A (en) Sewing machine drive device
JPH0612954B2 (en) Synchronous motor control method
US4321478A (en) Auxiliary power supply with kinetic energy storage
JPS635998B2 (en)
JPH0336757B2 (en)
JPS6120236B2 (en)
JP3362830B2 (en) Crane traveling device and inverter for crane traveling device
JPH04119408A (en) Inverter device
JPH0340590B2 (en)
JPH0585470B2 (en)
JPH0357717B2 (en)
JPH0736402Y2 (en) Induction motor pole number switching device
JP3061939B2 (en) Elevator control device
JPH11356074A (en) Controller of induction motor
JPS6315697A (en) Controlling method for ac spindle motor
JPS585439Y2 (en) Acceleration/deceleration compensation circuit for squirrel cage motor using inverter
JPS6323586A (en) Sepeed controller for induction motor
JPS63314193A (en) Method of controlling flux of motor
JPH11191999A (en) Control device of induction motor
JPS61147787A (en) Vector controller for induction motor
JPS5915267Y2 (en) Slip frequency control device for induction motor using current source inverter
JPH059353B2 (en)
JPH0530747B2 (en)