JPS6359962B2 - - Google Patents

Info

Publication number
JPS6359962B2
JPS6359962B2 JP56187161A JP18716181A JPS6359962B2 JP S6359962 B2 JPS6359962 B2 JP S6359962B2 JP 56187161 A JP56187161 A JP 56187161A JP 18716181 A JP18716181 A JP 18716181A JP S6359962 B2 JPS6359962 B2 JP S6359962B2
Authority
JP
Japan
Prior art keywords
gas
oxygen
permeable membrane
air
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56187161A
Other languages
Japanese (ja)
Other versions
JPS5888101A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56187161A priority Critical patent/JPS5888101A/en
Publication of JPS5888101A publication Critical patent/JPS5888101A/en
Publication of JPS6359962B2 publication Critical patent/JPS6359962B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ナフサ、LPG、NG、重質油、軽質
油等の炭化水素と酸素富化空気及び水を原料とし
て、部分燃焼法により燃料ガスを製造する方法に
関する。 炭化水素の部分燃焼によるガス製造方法として
は、すでにいくつかの方法が実用化されている。
しかしながら、これらの方法に於ては、酸素源と
して空気が用いられている為、以下の如き問題点
が存在する。即ち、生成ガスの発熱量が低く且つ
燃焼性が悪く、製造工程における熱効率が低く、
又製造装置内でガムが生成する傾向も大きい。酸
素源として純酸素を使用する試みもなされている
が、この場合には、生成ガスのコストが高くな
る、貯蔵が困難で且つ安全性にも問題点がある等
の新たな難点がある。本発明者は、これ等の問題
点を解消若しくは大巾に軽減すべく種々研究を重
ねた結果、空気を吸引下に選択性酸素透過膜を通
過させることにより得られる酸素濃度25〜35%程
度の酸素富化空気を使用する場合には、その目的
を達成し得ることを見出し、更に研究を重ねて遂
に本発明を完成するにいたつたものである。即
ち、本発明は、炭化水素を酸素含有ガス及び水蒸
気により部分燃焼ガス化した後、CO変成して燃
料ガスを製造する方法において、選択性酸素透過
膜を通過させることにより酸素濃度を25〜35%と
した酸素富化空気を酸素含有ガスとして使用する
ことを特徴とする部分燃焼法によるガス製造方法
を提供するものである。 以下図面にフローダイヤフラムとして示す実施
態様を参照しつつ、本発明を更に詳細に説明す
る。 第1図において、ライン1を通過する空気をラ
イン3、選択性酸素透過膜7及びライン9を介し
てブロワー11により吸引することにより酸素富
化空気を得た後、これをライン13からの水と併
せてライン15を経て第一の熱交換器17に送
り、後述の変成ガスと熱交換させて酸素富化空気
−水蒸気混合物を得る。選択性酸素透過膜として
は、酸素濃度を約25〜35%とし得る限りにおいて
は、公知のものを使用することが出来る。この様
な選択性酸素透過膜としては、例えば特開昭56−
24019号、特開昭56−26504号、特開昭56−26505
号、特開昭56−26506号、特開昭56−26507号、特
開昭56−26508号、特開昭56−28604号、特開昭56
−28605号、特開昭56−28606号等に開示されてい
るポリシロキサン系、その他セルローズアセテー
ト系、ポリプロピレン系、ポリエーテル系、ポリ
カーボネート系のものがある。酸素富化空気中の
酸素濃度が25%未満の場合には、最終生成ガスの
発熱量が低く且つ燃焼性に劣り、製造工程におけ
る熱効率があまり改善されない。一方、酸素濃度
が35%を上回る場合には、酸素透過膜の効率が低
下したり、或いは透過処理を2回以上繰り返す必
要を生じたりするので、経済的に不利である。一
方、ナフサ、LPG、NG、軽質油、重質油等の炭
化水素は、ライン19を経て第二の熱交換器21
に送られ、変成ガスとの熱交換により加熱され
る。第一の熱交換器17により加熱された酸素富
化空気−水蒸気混合物はライン23から、又第二
の熱交換器21により加熱された炭化水素はライ
ン25から夫々改質炉27に供給される。改質炉
内は、圧力0.3Kg/cm2.G以下、液空間速度0.15
〜0.30Kl/m3程度で且つ出口温度が750〜900℃と
なる反応条件に保持することが好ましい。本発明
における改質反応は、原料の種類等によつても異
なるが、通常700℃以上の高温で行なわれるので、
強度、活性等の高温特性に優れたNiO−MgO系
触媒を使用するのが好ましい。この様な触媒の好
ましい一例として特開昭46−43363号公報に開示
された触媒を挙げることが出来る。改質炉27か
らの高温ガスは、ライン29を経て、必要ならば
クーラー31により冷却された後、ライン33か
ら水を加えられ、改質ガスと水蒸気との混合物と
なる。該混合物は、CO変成器35に入り、CO変
成が行なわれる。CO変成器35内での反応条件
は、公知方法のそれと特に異なるところはなく、
例えば触媒として酸化鉄系の変成触媒等を使用
し、圧力0.1〜0.3Kg/cm2・G程度、温度400〜500
℃程度、空間速度700〜1000Nm3/m3程度の条件
を採用する。CO変成器35内での反応熱を有効
に利用する為、本発明では、CO変成器35から
の出ガスをライン37から第一の熱交換器17に
送り、次いでライン39から第二の熱交換器21
に送つて、酸素富化空気、水及び炭化水素原料の
予熱に使用する。熱交換器21を出た生成ガス
は、ライン41から水封スクラバー43に送ら
れ、冷却される。更に必要ならば、生成ガスに
は、ライン45上でライン47からの増熱用の
LPG等が混合される。 尚、本発明改質工程におけるS/C(水蒸気−
カーボンモル比)は0.5〜0.7程度、O/C(原子
比)は1.2〜1.6程度であり、CO変成工程における
S/CO(水蒸気−COモル比)は2.8〜3.2程度とす
ることが好ましい。 又、選択性酸素透過膜7の酸素透過係数は、温
度が上昇するにつれて増大するので、透過膜7へ
の供給が先立ち、プロセス中のいずれかの時点に
おいて高温ガスにより、例えばライン37からの
変成ガスにより空気を予熱することが好ましい。
空気の最高予熱温度は、透過膜の材質によつても
異なるが通常150℃程度までである。 本発明は、炭化水素の低圧接触分解分燃焼によ
るガス製造方法において、以下の如き顕著な効果
を奏する。 (i) 空気を酸素源とする従来法に比して、生成ガ
スの発熱量が高く、且つ生成ガスの燃焼性に優
れている。 (ii) 空気を酸素源とする従来法に比して、製造装
置内でのガム生成傾向も少ない。 (iii) 純酸素を酸素源とする方法に比して、生成ガ
スのコストが低く、安全性にも優れている。 実施例 1 第1図に示す装置を使用して本発明を実施す
る。ナフサ(C5.93H13.34)177/hrを熱交換器
21により180℃に加熱して改質炉27に供給す
る。改質炉27には、熱交換器17により加熱さ
れた水蒸気75Kg/hrと選択性酸素透過膜7により
酸素濃度25%とされた酸素富化空気335Nm3/hr
との混合物(262℃)が更に供給されている。改
質炉27には、特公昭46−43363号公報の使用例
で得たマグネシア担持NiO系触媒が充填されてい
る。改質炉内の条件は、圧力0.2Kg/cm2.G、液
空間速度0.2Kl/m3で出ガス温度が810℃となる様
に制御されている。改質炉27からのガス692N
m3/hrは、ライン33からの水311Kg/hrと接触
して水蒸気を発生させ、350℃のガス−水蒸気混
合物としてCO変成器35に入る。CO変成器35
には、酸化鉄系触媒が充填されており、圧力0.1
Kg/cm2.G、ガス空間速度900Nm3/m3で出ガス
温度が446℃となる様に制御されている。CO変成
器35からの出ガス787Nm3/hrは、熱交換器1
7で酸素富化空気及び水に熱を与えて280℃まで
冷却され、更に熱交換器21で原料に熱を与えて
180℃まで冷却される。 製造ガス787Nm3/hrの発熱量は1599Kcal/N
m3、比重は0.656であり、ガス化効率は92.5%に
も達する。 熱交換器21を出たガスは、水封スクラバー4
3により更に冷却される。 尚、水封スクラバー43からの出ガスに増熱用
LPGを混合し、発熱量4500Kcal/Nm3とした最
終ガスの比重は0.768であり、第2図から明らか
な如く、都市ガスとしては燃焼速度指数(CP)
とウオツペ指数(WI)とにより定まるガスグル
ープ5A,5B及び5Cに属するものであつた。 改質炉出ガス組成、CO変成後のガス組成、最
終ガスの組成等を第1〜3表に夫々示す。 実施例 2〜3 選択性酸素透過膜7により酸素濃度を30%(実
施例2)又は35%(実施例3)とした酸素富化空
気を使用する以外は実施例1と同様の操作方法に
より燃料ガスを製造する。尚、酸素濃度が実施例
1と異なるので、改質炉温度及びCO変成器温度
もそれに応じて変更することは言うまでもない。 結果は、第1〜3表及び第2図に示す通りであ
る。 比較例 1 空気を使用する以外は、実施例1と同様の操作
方法により燃料ガスを製造する。 結果は、第1〜3表及び第2図に示す通りであ
る。 実施例 4 ナフサに代えてブタンを使用する以外は実施例
2と同様にして燃料ガスを製造する。 結果は、第1〜3表及び第2図に示す通りであ
る。 比較例 2 ナフサに代えてブタンを使用する以外は比較例
1と同様にして燃料ガスを製造する。 結果は、第1〜3表及び第2図に示す通りであ
る。
The present invention relates to a method for producing fuel gas by a partial combustion method using hydrocarbons such as naphtha, LPG, NG, heavy oil, light oil, oxygen-enriched air, and water as raw materials. Several methods have already been put into practical use as methods for producing gas through partial combustion of hydrocarbons.
However, in these methods, since air is used as an oxygen source, the following problems exist. That is, the generated gas has a low calorific value and poor combustibility, and the thermal efficiency in the manufacturing process is low.
There is also a strong tendency for gum to form within the manufacturing equipment. Attempts have also been made to use pure oxygen as an oxygen source, but in this case there are new drawbacks such as increased cost of the produced gas, difficulty in storage, and safety issues. As a result of various studies aimed at eliminating or significantly reducing these problems, the present inventor has found that an oxygen concentration of approximately 25 to 35% can be obtained by passing air through a selective oxygen permeable membrane under suction. The inventors discovered that the purpose could be achieved by using oxygen-enriched air, and after further research, they finally completed the present invention. That is, the present invention is a method for partially combustion gasifying hydrocarbons with an oxygen-containing gas and water vapor, and then converting the hydrocarbons into CO to produce fuel gas. % of oxygen-enriched air is used as the oxygen-containing gas. The invention will now be explained in more detail with reference to an embodiment shown as a flow diaphragm in the drawings. In FIG. 1, oxygen-enriched air is obtained by suctioning the air passing through line 1 through line 3, selective oxygen permeable membrane 7 and line 9 by blower 11, and then this is replaced with water from line 13. Together with the gas, it is sent to the first heat exchanger 17 via the line 15, where it is heat exchanged with a modified gas, which will be described later, to obtain an oxygen-enriched air-steam mixture. As the selective oxygen permeable membrane, any known selective oxygen permeable membrane can be used as long as it can maintain an oxygen concentration of about 25 to 35%. As such a selective oxygen permeable membrane, for example, JP-A-56-
No. 24019, JP-A-56-26504, JP-A-56-26505
No., JP-A-56-26506, JP-A-56-26507, JP-A-56-26508, JP-A-56-28604, JP-A-56
-28605, JP-A No. 56-28606, etc., there are polysiloxane-based materials, as well as cellulose acetate-based, polypropylene-based, polyether-based, and polycarbonate-based materials. When the oxygen concentration in the oxygen-enriched air is less than 25%, the final product gas has a low calorific value and poor combustibility, and the thermal efficiency in the manufacturing process is not improved much. On the other hand, when the oxygen concentration exceeds 35%, the efficiency of the oxygen permeable membrane decreases or the permeation treatment becomes necessary to be repeated two or more times, which is economically disadvantageous. On the other hand, hydrocarbons such as naphtha, LPG, NG, light oil, and heavy oil pass through line 19 to second heat exchanger 21.
The gas is sent to and heated by heat exchange with the converted gas. The oxygen-enriched air-steam mixture heated by the first heat exchanger 17 is fed to the reforming furnace 27 from line 23, and the hydrocarbon heated by the second heat exchanger 21 is fed from line 25. . The pressure inside the reforming furnace is 0.3Kg/cm 2 . G or less, liquid space velocity 0.15
It is preferable to maintain reaction conditions such that the reaction temperature is approximately 0.30 Kl/m 3 and the outlet temperature is 750 to 900°C. The reforming reaction in the present invention differs depending on the type of raw material, etc., but it is usually carried out at a high temperature of 700°C or higher.
It is preferable to use a NiO-MgO catalyst that has excellent high-temperature properties such as strength and activity. A preferred example of such a catalyst is the catalyst disclosed in JP-A-46-43363. The high-temperature gas from the reformer 27 passes through a line 29 and is cooled by a cooler 31 if necessary, and then water is added through a line 33 to form a mixture of reformed gas and steam. The mixture enters the CO converter 35 and undergoes CO conversion. The reaction conditions within the CO converter 35 are not particularly different from those of known methods,
For example, using an iron oxide-based shift catalyst as a catalyst, the pressure is about 0.1 to 0.3 Kg/cm 2 G, and the temperature is 400 to 500.
Conditions of approximately ℃ and a space velocity of approximately 700 to 1000 Nm 3 /m 3 are adopted. In order to effectively utilize the reaction heat within the CO shift converter 35, in the present invention, the output gas from the CO shift converter 35 is sent to the first heat exchanger 17 from the line 37, and then the second heat is sent from the line 39 to the first heat exchanger 17. exchanger 21
and used for preheating oxygen-enriched air, water and hydrocarbon feedstock. The generated gas leaving the heat exchanger 21 is sent through a line 41 to a water ring scrubber 43 and cooled. Additionally, if necessary, the product gas may be supplied with a heat booster from line 47 on line 45.
LPG etc. are mixed. In addition, S/C (steam -
The carbon molar ratio) is preferably about 0.5 to 0.7, the O/C (atomic ratio) is about 1.2 to 1.6, and the S/CO (steam-CO molar ratio) in the CO modification step is preferably about 2.8 to 3.2. Moreover, since the oxygen permeability coefficient of the selective oxygen permeable membrane 7 increases as the temperature rises, the oxygen permeability coefficient of the selective oxygen permeable membrane 7 increases as the temperature rises. Preferably, the air is preheated by gas.
The maximum preheating temperature of air varies depending on the material of the permeable membrane, but is usually up to about 150°C. INDUSTRIAL APPLICABILITY The present invention provides the following remarkable effects in a gas production method by low-pressure catalytic cracking combustion of hydrocarbons. (i) Compared to the conventional method using air as an oxygen source, the generated gas has a higher calorific value and is superior in combustibility. (ii) Compared to conventional methods using air as an oxygen source, there is less tendency to form gum within the manufacturing equipment. (iii) Compared to a method using pure oxygen as an oxygen source, the cost of the generated gas is lower and it is also safer. Example 1 The invention is practiced using the apparatus shown in FIG. Naphtha (C 5.93 H 13.34 ) 177/hr is heated to 180° C. by a heat exchanger 21 and supplied to a reforming furnace 27 . The reforming furnace 27 contains 75 kg/hr of steam heated by the heat exchanger 17 and 335 Nm 3 /hr of oxygen-enriched air with an oxygen concentration of 25% by the selective oxygen permeable membrane 7.
A mixture of (262°C) is also supplied. The reforming furnace 27 is filled with a magnesia-supported NiO catalyst obtained in the example of use disclosed in Japanese Patent Publication No. 46-43363. The conditions inside the reforming furnace are a pressure of 0.2Kg/cm 2 . G, the liquid hourly velocity is 0.2 Kl/m 3 and the exit gas temperature is controlled to be 810°C. Gas from reformer 27 692N
m 3 /hr is contacted with 311 Kg/hr of water from line 33 to generate steam and enters CO converter 35 as a gas-steam mixture at 350°C. CO transformer 35
is filled with iron oxide catalyst and has a pressure of 0.1
Kg/ cm2 . G, the gas space velocity is controlled to be 900Nm 3 /m 3 and the exit gas temperature is 446°C. The gas output from the CO transformer 35 is 787Nm 3 /hr, which is the same as the heat exchanger 1
In step 7, heat is applied to oxygen-enriched air and water to cool it to 280°C, and heat is further applied to the raw material in heat exchanger 21.
Cooled to 180℃. The calorific value of manufactured gas 787Nm 3 /hr is 1599Kcal/N
m 3 , specific gravity is 0.656, and gasification efficiency reaches 92.5%. The gas exiting the heat exchanger 21 is passed through the water ring scrubber 4
3 for further cooling. In addition, the gas emitted from the water seal scrubber 43 is used for heating.
The specific gravity of the final gas mixed with LPG and having a calorific value of 4500 Kcal/ Nm3 is 0.768, and as is clear from Figure 2, the combustion rate index (CP) of the city gas is
These gases belonged to gas groups 5A, 5B, and 5C determined by the Wotsupe index (WI). The gas composition from the reformer, the gas composition after CO conversion, the final gas composition, etc. are shown in Tables 1 to 3, respectively. Examples 2 to 3 The same operating method as in Example 1 was used except that oxygen enriched air with an oxygen concentration of 30% (Example 2) or 35% (Example 3) was used by the selective oxygen permeable membrane 7. Produce fuel gas. Note that since the oxygen concentration is different from Example 1, it goes without saying that the reformer temperature and CO shift converter temperature are also changed accordingly. The results are shown in Tables 1 to 3 and FIG. Comparative Example 1 Fuel gas is produced in the same manner as in Example 1, except that air is used. The results are shown in Tables 1 to 3 and FIG. Example 4 A fuel gas is produced in the same manner as in Example 2 except that butane is used instead of naphtha. The results are shown in Tables 1 to 3 and FIG. Comparative Example 2 A fuel gas is produced in the same manner as Comparative Example 1 except that butane is used instead of naphtha. The results are shown in Tables 1 to 3 and FIG.

【表】【table】

【表】【table】

【表】 第1〜3表及び第2図に示す結果から、本発明
方法は熱効率に優れており、又生成ガスは発熱量
が高く、燃焼性にも優れていることが明らかであ
る。
[Table] From the results shown in Tables 1 to 3 and FIG. 2, it is clear that the method of the present invention has excellent thermal efficiency, and the generated gas has a high calorific value and is excellent in combustibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施態様の一例を示すフロー
ダイヤフラムであり、第2図は、本発明実施例に
より得られた燃料ガスに増熱用LPGを加えた最
終ガスのウオツベ指数と燃焼速度指数による都市
ガスとしての互換域を示すグラフである。 7……選択性酸素透過膜、11……ブロワー、
17……熱交換器、21……第二の熱交換器、2
7……改質炉、31……クーラー、35……CO
変成器、43……水封スクラバー。
Fig. 1 shows a flow diaphragm showing an example of an embodiment of the present invention, and Fig. 2 shows the Wotsube index and burning rate index of the final gas obtained by adding LPG for heat increase to the fuel gas obtained according to the embodiment of the present invention. This is a graph showing the compatibility range as city gas. 7...Selective oxygen permeable membrane, 11...Blower,
17...Heat exchanger, 21...Second heat exchanger, 2
7...Reforming furnace, 31...Cooler, 35...CO
Transformer, 43... Water seal scrubber.

Claims (1)

【特許請求の範囲】 1 炭化水素を酸素含有ガス及び水蒸気により部
分燃焼ガス化した後、CO変成して燃料ガスを製
造する方法において、選択性酸素透過膜を通過さ
せることにより酸素濃度を25〜35%とした酸素富
化空気を酸素含有ガスとして使用することを特徴
とする部分燃焼法によるガス製造方法。 2 特許請求の範囲第1項に記載の部分燃焼法に
よるガス製造方法において、プロセスのいずれか
の個所において生成する高温ガスと空気とを熱交
換させ、加熱された空気を選択性酸素透過膜に供
給する方法。
[Claims] 1. A method for producing fuel gas by partially combustion gasifying hydrocarbons with an oxygen-containing gas and water vapor, and then converting the hydrocarbons into CO by passing through a selective oxygen permeable membrane to reduce the oxygen concentration to 25 to 25%. A gas production method using a partial combustion method characterized by using 35% oxygen-enriched air as the oxygen-containing gas. 2. In the gas production method using the partial combustion method as set forth in claim 1, heat exchange is performed between high-temperature gas generated at some point in the process and air, and the heated air is passed through a selective oxygen permeable membrane. How to supply.
JP56187161A 1981-11-20 1981-11-20 Production of gas by partial combustion method Granted JPS5888101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56187161A JPS5888101A (en) 1981-11-20 1981-11-20 Production of gas by partial combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187161A JPS5888101A (en) 1981-11-20 1981-11-20 Production of gas by partial combustion method

Publications (2)

Publication Number Publication Date
JPS5888101A JPS5888101A (en) 1983-05-26
JPS6359962B2 true JPS6359962B2 (en) 1988-11-22

Family

ID=16201186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187161A Granted JPS5888101A (en) 1981-11-20 1981-11-20 Production of gas by partial combustion method

Country Status (1)

Country Link
JP (1) JPS5888101A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137806A (en) * 1983-12-23 1985-07-22 Toyobo Co Ltd Control of oxygen concentration
DE10119083C1 (en) * 2001-04-19 2002-11-28 Joachim Alfred Wuenning Compact steam reformer
KR100786462B1 (en) 2006-05-17 2007-12-17 삼성에스디아이 주식회사 reformer with oxygen supplier and fuel cell system using the same

Also Published As

Publication number Publication date
JPS5888101A (en) 1983-05-26

Similar Documents

Publication Publication Date Title
KR102596324B1 (en) Method for producing synthesis gas
US3278452A (en) Production of hydrogen-containing gases
CA1144099A (en) Catalytic steam reforming of hydrocarbons
EP0437059B2 (en) Steam reforming
KR20200031633A (en) Synthetic gas production method
JP2008512336A (en) Method for producing hydrogen and / or carbon monoxide
JP4105786B2 (en) Steam reforming method
JPS5953245B2 (en) Methane gas
JP3302363B2 (en) Method for producing high-purity carbon monoxide
KR20220041007A (en) Process for producing pure hydrogen with low steam export
WO2006041133A1 (en) Method and apparatus for producing synthesis gas
RU2664526C2 (en) Energy-saving unified method for generating synthesis gas from hydrocarbons
EP0207620B1 (en) Energy recovery
JPS5938161B2 (en) Method for producing synthesis gas for ammonia production
JPS6359962B2 (en)
US6216464B1 (en) Process and unit for the combined production of ammonia synthesis gas and power
US3582296A (en) Gasifying process
JPS6232227A (en) Method of recovering energy from low heating value fuel gas
US4005986A (en) Device for making high temperature reformed gas
JP2023549531A (en) Green methanol production
JPS6039050B2 (en) Methanol manufacturing method
CN114988360B (en) Method for preparing synthesis gas by natural gas partial oxidation and carbon dioxide self-heating reforming
JPH0317762B2 (en)
US1905326A (en) Process of producing mixtures of carbon monoxide and hydrogen
JPS5891001A (en) Production of city gas