JPS6359936A - Standard reflector arranged in living body and its use - Google Patents
Standard reflector arranged in living body and its useInfo
- Publication number
- JPS6359936A JPS6359936A JP61203451A JP20345186A JPS6359936A JP S6359936 A JPS6359936 A JP S6359936A JP 61203451 A JP61203451 A JP 61203451A JP 20345186 A JP20345186 A JP 20345186A JP S6359936 A JPS6359936 A JP S6359936A
- Authority
- JP
- Japan
- Prior art keywords
- standard reflector
- standard
- spherical body
- substance
- vivo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000126 substance Substances 0.000 claims description 28
- 238000001727 in vivo Methods 0.000 claims description 15
- 238000009434 installation Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 239000010409 thin film Substances 0.000 claims description 9
- 231100000331 toxic Toxicity 0.000 claims description 6
- 230000002588 toxic effect Effects 0.000 claims description 6
- 229910001385 heavy metal Inorganic materials 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- 235000015110 jellies Nutrition 0.000 claims description 2
- 239000008274 jelly Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 231100000252 nontoxic Toxicity 0.000 claims description 2
- 230000003000 nontoxic effect Effects 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- 229920002379 silicone rubber Polymers 0.000 claims description 2
- 239000004945 silicone rubber Substances 0.000 claims description 2
- 244000043261 Hevea brasiliensis Species 0.000 claims 1
- 239000010408 film Substances 0.000 claims 1
- 229920003052 natural elastomer Polymers 0.000 claims 1
- 229920001194 natural rubber Polymers 0.000 claims 1
- 238000002161 passivation Methods 0.000 claims 1
- 239000006223 plastic coating Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 238000002405 diagnostic procedure Methods 0.000 description 4
- 238000002604 ultrasonography Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920006173 natural rubber latex Polymers 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
- Powder Metallurgy (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、医用超音波診断製画の補助手段に関し、更に
詳しくは、超高波診断装置で生体内のイメージをみると
き、牛体内に設置されその反射波を観測することにより
、その周りの反射特性や音速を定量測定するのに適した
生体内設置用標準反射体及びそれの使用り法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an auxiliary means for medical ultrasonic diagnostic drawing, and more specifically, to an auxiliary means for medical ultrasonic diagnostic imaging, and more specifically, when an ultra-high wave diagnostic device is used to view in-vivo images. The present invention relates to a standard reflector for in-vivo installation suitable for quantitatively measuring the reflection characteristics and speed of sound around it by observing its reflected waves, and its usage.
(従来の技術)
超音波診断法は、生体組織の性状を非侵襲に調べる手法
として良く知られでいる。ぞの手法の特徴は、部位に超
音波を照射し、そのT]−信号から(特に工]−信号の
みから)、関心領域の超音波吸収性(減衰)やその周波
数依存性を調べて診断情報を116貞にある。これは、
超音波が信号や情報の担体どじて優れた性質をイJして
いることに起因する。即ち、超音波は、自進伝搬し、伝
搬中の波形歪みが少なく、ダイナミックレンジが広くど
れ、電気信号への変換、その逆変換が効果的に行い得る
等々の特性を右していることによる。(Prior Art) Ultrasonic diagnostic method is well known as a method for non-invasively examining the properties of living tissue. The feature of this method is that ultrasound is irradiated to the area, and diagnosis is made by examining the ultrasound absorption (attenuation) and its frequency dependence of the region of interest from the T]-signal (especially from the T-signal only). Information is available on 116 Sada. this is,
This is due to the fact that ultrasonic waves have excellent properties as carriers of signals and information. In other words, ultrasonic waves are self-propagating, have little waveform distortion during propagation, have a wide dynamic range, and can be effectively converted into electrical signals and vice versa. .
(発明が解決しようとする問題点)
しかし、現実の超高波診断装置において、上記特性が理
想的に発揮されるね()ではないので、超音波診断法が
医用の万能診断法とは言い難い(極端な言い方を覆れば
、超音波診断法払は、臨床実用上、十分に信用できる状
況にはない)、、これは偏に、推測でことに当っている
ことに山来し【いると言える。この困難さを換言すれば
、生体内に、反射能の基準となる反射源が存在しないと
苦う理由に帰着する。(Problem to be solved by the invention) However, since the above characteristics are not ideally exhibited in actual ultrahigh wave diagnostic equipment, it is difficult to say that ultrasonic diagnostic method is a universal diagnostic method for medical use. (To put it in an extreme way, ultrasound diagnostic methods are not in a situation where they can be trusted enough in clinical practice.) This is a bit of a guess, and it's a shame. I can say that. In other words, this difficulty comes down to the fact that there is no reflection source in the living body that can serve as a reference for reflexivity.
本発明は、かかる点に鑑みてなされたものであり、その
目的は、超高波診断装置で生体内のイメージをみるとき
、生体内に設置され、■]−基準を得るのに適した標準
反射体及びそれの使用方法を提供することにある。The present invention has been made in view of the above points, and its purpose is to provide a standard reflectance that is installed in the living body and is suitable for obtaining standards when viewing images of the inside of the living body using an ultrahigh wave diagnostic device. The objective is to provide the body and its use.
(問題点を解決するための手段)
上記目的を達成する本発明の生体内設置用標準反射体は
、生体適合性を有し、水中での反射源特性が既知で、か
つ、生体内での音響学的特性が安定した物質で構成され
ている。又、本発明の標準反射体は、水中での反射源特
性が既知の物質からなる球状体の表面を、生体内の物理
的条件及び化学的条件に対して反射源特性が安定で、か
つ、生体に対し゛C毒性を右さ4′i:い薄い膜で被覆
するようになっている。更に、本発明の標準反射体は、
肉厚部中での反射源特性が既知の物質からなる球状体の
周りに、生体内の物理的条f4及び化学的条件に対して
反射源特性が安定で、かつ、生体に対して毒性を右さな
い物質で所定の厚みの肉厚部を備えている。そして、こ
れらの標準反射体は、所望の領域の反射特性や音速の定
量測定をするとき、該領域近傍に設置され、該標準反射
体からの■コ一が基準工]−として扱われる。(Means for Solving the Problems) The standard reflector for in-vivo installation of the present invention that achieves the above object is biocompatible, has known reflector characteristics in water, and is suitable for in-vivo installation. Constructed of materials with stable acoustic properties. In addition, the standard reflector of the present invention has a surface of a spherical body made of a substance whose reflection source characteristics in water are known, and whose reflection source characteristics are stable against the physical and chemical conditions in the living body. It is designed to be coated with a thin film that is less toxic to living organisms. Furthermore, the standard reflector of the present invention is
Around a spherical body made of a substance with known reflection source characteristics in the thick part, a material whose reflection source characteristics are stable against the physical striations and chemical conditions in the living body and which is non-toxic to the living body is placed. It has a thick part of a predetermined thickness made of a non-stick material. When these standard reflectors are used to quantitatively measure the reflection characteristics and sound speed of a desired region, they are installed near the desired region, and one piece from the standard reflector is treated as a reference work.
(実施例) 以下、図面を参照し本発明について詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to the drawings.
第1図(a) 、(b)及び(c)は、本発明の一実施
例による標準反射体を示す構成図である。図において、
標準反射体1.1b及び1cは、生体適合性を有し、水
中での反射源特性が既知で、かつ、生体内での音響学的
特性が安定した物質、例えば、ステンレススチール、金
、白金、チタン((a)図参照)、プラスデック((h
)図勿照)、又は、セラミック((C)図参照)からな
り、直径が0.5−3Mの球状となっている。FIGS. 1(a), (b), and (c) are configuration diagrams showing a standard reflector according to an embodiment of the present invention. In the figure,
Standard reflectors 1.1b and 1c are made of materials that are biocompatible, have known reflector characteristics in water, and have stable acoustic properties in vivo, such as stainless steel, gold, and platinum. , titanium (see figure (a)), plus deck ((h
) or ceramic (see figure (C)), and has a spherical shape with a diameter of 0.5-3M.
このような標準反射体1.1.又は1(:の生体内への
設d(留置)は、結石を取出寸ときと逆の手順、即ち、
生体内の関心部位の近傍(超Δ波照射領t!i)に1−
[]−力の先端を挿入し、その先端から標準反射体を強
制的に押出した後、1〜ロー力を引抜く手順で行われる
(この手順で、標準反射体を肝の奥の方に留置すること
などはr′f5甲にできる)。そして、超高波診断装置
で生体のイメージをみるどき、生体内に設置された標準
反射体からの丁」−を基準にして関心部位の組織性状(
工]1−源性状)の定量を行うことができる。定量り法
は、上記各標準反射体1.1.及び1Cを構成4る物質
の水中での反射源特性が既知(公知)なので、基本的に
は水中に標準反射体1 .11.又は1cを設置して得
られた工=」−源の見え方く波形、スペク1へラム等)
をもどに、ぞれとの比較で行えばよい。Such standard reflectors 1.1. Or 1(:) is placed in the living body by the reverse procedure of removing the stone, i.e.,
1- in the vicinity of the region of interest in the living body (ultra-Δ wave irradiation area t!i)
[] - This is done by inserting the tip of the force, forcibly pushing out the standard reflector from the tip, and then pulling out the 1-low force (this procedure pushes the standard reflector deep into the liver). Indwelling can be done at r'f5A). When viewing the image of the living body using an ultrahigh wave diagnostic device, the tissue properties of the area of interest (
1- Source properties) can be quantified. The quantification method is based on each of the standard reflectors 1.1. Since the reflection source characteristics in water of the substances constituting 4 and 1C are known (publicly known), basically the standard reflector 1 is placed in water. 11. Or the result obtained by installing 1c=”- source visibility waveform, spectrum 1 ram, etc.)
You can use this as a starting point and compare them with each other.
第2図は、本発明の他の実施例を示す構成図である。第
2図において、標準反射体は、水中での反射源特性が既
知からなる直径が0.5〜3Mの球状体2と、球状体2
の表面に被着する薄い膜であって、生体内の物理的条件
及び化学的条件に対して反射源特性が安定で、かつ、牛
体に対して毒性を右さない物質からなる膜3とで構成さ
れる。薄い膜3は、パリレーン、71ノキシ、エボ4−
シ、ポリイミド、シリ」−ン、フッ素樹脂(テフロン)
等の=]−ディングに、J:、vて構成される。又、球
状体2が、スj−ンレススチール等の重金属で構成され
る場合には、薄い膜3は、表層の酸化物の不動態化、め
)き、又は、窒素化によって構成される。FIG. 2 is a configuration diagram showing another embodiment of the present invention. In Fig. 2, the standard reflectors include a spherical body 2 with a diameter of 0.5 to 3M and a spherical body 2 whose reflection source characteristics in water are known.
A thin film that adheres to the surface of the cow and is made of a substance that has stable reflection source characteristics against the physical and chemical conditions in the living body and is not toxic to the cow body. Consists of. The thin film 3 is made of parylene, 71noxy, evo4-
Polyimide, silicone, fluororesin (Teflon)
=]-ding, J:, v. In addition, when the spherical body 2 is made of a heavy metal such as stainless steel, the thin film 3 is formed by passivating, plating, or nitriding the surface oxide. .
このような薄い膜3によって標準反射体は、生体内で物
理的条イ1及び化学的条イ1に対して反射源特性が安定
となろうλに、生体に対して毒性を♀することがないの
C安全である。Such a thin film 3 allows the standard reflector to have stable reflection source characteristics against physical and chemical conditions 1 in a living body, but not to be toxic to living organisms. No C is safe.
第3図(a) (b)及び(C)は、本発明の他の実施
例を示−4構成図である。(a)図おいて、標準反射体
は、肉厚部4の中での反射源特性が既知の物質からなる
直径が0.5〜31+11の球状体5ど、生体内の物理
的条件及び化学的条件に対して反射源特性が安定で、か
つ、生体に対して毒性を右さない物質からなる肉厚部4
とで構成される。肉厚部4は、球状体5と同心円状で、
かつ、一体的な層構造となっている。又、肉厚部4は、
水と合速や音響インピーダンスがよく似た物質、例えば
、シリコーンゴム、天然ゴム(ラテックス)、ポリビニ
ルアルコール、オイルゼリー等からなり、■コーフリー
スペースを形成するのに、必要、かつ、十分な構成、即
ら、厚さとなっている。FIGS. 3(a), 3(b) and 3(C) are block diagrams showing another embodiment of the present invention. In the figure (a), the standard reflector is a spherical body 5 with a diameter of 0.5 to 31+11 made of a substance with known reflection source characteristics in the thick part 4, and a spherical body 5 made of a substance with known reflection source characteristics in the thick part 4. Thick wall portion 4 made of a material that has stable reflection source characteristics under various conditions and is not toxic to living organisms.
It consists of The thick part 4 is concentric with the spherical body 5,
Moreover, it has an integrated layered structure. Moreover, the thick part 4 is
Consisting of substances with similar velocity and acoustic impedance to water, such as silicone rubber, natural rubber (latex), polyvinyl alcohol, oil jelly, etc., necessary and sufficient composition to form a cow-free space. , that is, the thickness.
上記構成の標準反射体が生体内に設置された場合、標準
反射体からのエコーによるイメージは、光る点の周りが
抜けたイメージ″(光る点は球状体5に、抜けた所は肉
厚部4に対応)どなって表示される(第1図や第2図の
標準反射体では、標準反射体が周りの組織にはりついC
いるのでこのようにはならない)。従って、Aスコープ
や工]−グラムにおける工]−源を、周りの組織と容易
に区別することができる。When a standard reflector with the above configuration is installed in a living body, the image resulting from the echo from the standard reflector is an image in which the area around the glowing point is missing (the glowing point is on the spherical body 5, and the missing area is on the thick wall). (Corresponding to 4)) The standard reflector shown in Figures 1 and 2 is displayed as if the standard reflector sticks to the surrounding tissue.
It won't turn out like this because there are Therefore, the A-scope and the [-gram]-source can be easily distinguished from the surrounding tissue.
(1))図は、超音波照用領域の近傍6に予め未硬化の
物質4〈生体内の物理的条イ!を及び化学的条件に対し
C反射源特性が安定で、かつ、生体に対して毒性を右さ
ない物質)を注入した後、イの物質4の中に球状体5を
挿入設置したときの構成を示す。球状体5と物質4の塊
からなる構成は、(a)図の標準反射体と実質的に同じ
構成となる。従って、この実施例におけるイメージは、
(a)図の標準反射体によるものと同一・となり、標準
反射源による■]−源と周りの組織とを容易に区別する
ことができる。(1)) The figure shows an uncured substance 4 in the vicinity of the ultrasonic irradiation area 6. A configuration in which the spherical body 5 is inserted into the substance 4 of A) after injecting a substance whose C reflection source characteristics are stable under chemical conditions and which is not toxic to living organisms. shows. The configuration consisting of the spherical body 5 and the mass of the substance 4 is substantially the same as the standard reflector shown in FIG. Therefore, the image in this example is
(a) The result is the same as that with the standard reflector shown in the figure, and ■ with the standard reflector] - The source and the surrounding tissue can be easily distinguished.
(C)図において、標準反射体は、液状又はゲル状の物
質4(生体内の物理的条イ1及び化学的条件に対して反
射源特性が安定で、かつ、生体に対して毒性を右ざない
物質)が、袋7の中に収納され、その物質4の中に球状
体5を設置して構成される。In the figure (C), the standard reflector is a liquid or gel-like substance 4 (which has stable reflector properties against the physical conditions 1 and chemical conditions in the living body and is not toxic to the living body). A spherical body 5 is placed inside the bag 7, and a spherical body 5 is placed inside the bag 7.
(C)図の標準反射体し第3図(a)の構成と実質的に
同じである。従って、この標準反射体による作用効果は
、第3図(a)に43けるものと同一に考えることかで
きる。The standard reflector shown in FIG. 3(C) has substantially the same configuration as that shown in FIG. 3(a). Therefore, the effect of this standard reflector can be considered to be the same as that shown at 43 in FIG. 3(a).
尚、上記実施例において、Ia準反射体を超高波照射領
域(生体)にiiQ置覆る方法と【ノて、1へ目−力を
用いる方法が示されているが、他の方法であってもよい
。例えば、腹腔鏡的に小切開を加えて、観面的にやるこ
とも考えられる。この場合、臓器中に標準反射体を埋め
込むよりは、臓器と臓器との間に押込み、それを撃留手
段、例えば、非吸収性部材からなる糸等で固定覆るよう
にすればよい。In the above example, the method of placing the Ia quasi-reflector over the ultrahigh wave irradiation area (living body) and the method of using force are shown, but there are other methods. Good too. For example, it may be possible to perform the procedure visually by making a small incision laparoscopically. In this case, rather than embedding the standard reflector in the organ, it may be inserted between the organs and fixed and covered with a retaining means, such as a thread made of a non-absorbable material.
(発明の効果)
以十、説明の通り本発明によれば、超音波診断装置で生
体内のイメージをみるとき、生体内から基準工]−を得
ることができる。従って、所望の領域の反射特性や高速
を定量測定づることができる。(Effects of the Invention) As described above, according to the present invention, when viewing an image of the inside of a living body with an ultrasonic diagnostic device, a reference work] can be obtained from inside the living body. Therefore, it is possible to quantitatively measure the reflection characteristics and high speed of a desired area.
第1図(a) 、(b)及び(C)は、本発明の一実施
例による構成図、第2図は、本発明の他の実施例による
構成図、第3図(a) 、(b)及び(C)は、本発明
の更に伯の実施例による構成図である。
1a、1b及び1C・・・標準反射体く球状体)、−1
1=
2・・・水中での反射源特性が既知の物質からなる球状
体、3・・・薄い膜、4・・・肉厚部、5・・・肉厚部
中での反射源特性が既知の物質からなる球状体、6・・
・超音波照射領域、7・・・袋。FIGS. 1(a), (b), and (C) are block diagrams according to one embodiment of the present invention, FIG. 2 is a block diagram according to another embodiment of the present invention, and FIGS. 3(a), ( b) and (C) are block diagrams according to further embodiments of the present invention. 1a, 1b and 1C...standard reflector (spherical body), -1
1 = 2... Spherical body made of a substance with known reflection source characteristics in water, 3... Thin film, 4... Thick part, 5... Reflection source characteristics in the thick part A spherical body made of known material, 6...
・Ultrasonic irradiation area, 7...bag.
Claims (12)
、かつ、生体内での音響学的特性が安定した物質からな
る球状体であることを特徴とする生体内設置用標準反射
体。(1) A standard for in-vivo installation characterized by being a spherical body made of a material that is biocompatible, has known reflection source characteristics in water, and has stable acoustic properties in vivo. reflector.
と、該球状体の表面に被着する薄い膜であつて、生体内
の物理的条件及び化学的条件に対して反射源特性が安定
で、かつ、生体に対して毒性を有さない物質からなる膜
とで構成されることを特徴とする生体内設置用標準反射
体。(2) A spherical body made of a substance with known reflection source characteristics in water, and a thin film attached to the surface of the spherical body, which has reflection source characteristics based on the physical and chemical conditions in the living body. 1. A standard reflector for in-vivo installation, comprising a film made of a substance that is stable and non-toxic to living organisms.
構成されることを特徴とする特許請求の範囲第2項の生
体内設置用標準反射体。(3) The standard reflector for in-vivo installation according to claim 2, wherein the spherical body is made of heavy metal such as stainless steel.
化、めつき、又は、窒素化によって構成されることを特
徴とする特許請求の範囲第2項の生体内設置用標準反射
体。(4) The standard reflection for in-vivo installation according to claim 2, characterized in that the thin film is formed by passivation, plating, or nitrogenization of the oxide on the surface of the heavy metal sphere. body.
つて構成されることを特徴とする特許請求の範囲第2項
の生体内設置用標準反射体。(5) The standard reflector for in-vivo installation according to claim 2, wherein the thin film is made of a plastic coating.
源特性が安定で、かつ、生体に対して毒性を有さない物
質で構成され、球状体の周りで所定の厚みを有する肉厚
部と、該肉厚部中での反射源特性が既知の物質からなる
球状体とで構成されることを特徴とする生体内設置用標
準反射体。(6) The body is made of a material that has stable reflectance properties against the physical and chemical conditions in the body and is not toxic to the body, and has a predetermined thickness around the spherical body. 1. A standard reflector for installation in a living body, comprising a thick part and a spherical body made of a substance whose reflection source characteristics in the thick part are known.
ビニルアルコール、オイルゼリー等の、水と音速や音響
インピーダンスがよく似た物質であることを特徴とする
特許請求の範囲第6項の生体内設置用標準反射体。(7) The thick portion is made of a material such as silicone rubber, natural rubber, polyvinyl alcohol, oil jelly, etc., which has a sound velocity and acoustic impedance similar to that of water. Standard reflector for installation inside the body.
一体的な層構造となっていることを特徴とする特許請求
の範囲第6項の生体内設置用標準反射体。(8) The thick portion is concentric with the spherical body, and
The standard reflector for in-vivo installation according to claim 6, characterized in that it has an integral layered structure.
質を注入した後、該物質中に前記球状体を挿入すること
により構成されることを特徴とする特許請求の範囲第6
項の生体内設置用標準反射体。(9) The thick portion is constructed by injecting an uncured substance into the ultrasonic irradiation area in advance, and then inserting the spherical body into the substance.
Standard reflector for in-vivo installation.
に収納すると共に、該物質中に前記球状体を設置して構
成されることを特徴とする特許請求の範囲第6項の生体
内設置用標準反射体。(10) Claim 6, characterized in that the thick portion is configured by storing a liquid or gel-like substance in a bag and installing the spherical body in the substance. Standard reflector for in-vivo installation.
ースペースを形成するのに、必要、かつ、+分な厚みを
有することを特徴とする特許請求の範囲第6項の生体内
設置用標準反射体。(11) In-vivo installation according to claim 6, wherein the thick portion has a thickness necessary and plus enough to form an echo-free space around the spherical body. Standard reflector for use.
き、該領域近傍に、水中での反射源特性が既知の物質か
らなる球状の標準反射体を設置し、該標準反射体からの
エコーを基準にすることを特徴とする標準反射体の使用
方法。(12) When quantitatively measuring the reflection characteristics and sound speed of a desired area, a spherical standard reflector made of a material with known underwater reflection source characteristics is installed near the area, and the echo from the standard reflector is A method for using a standard reflector, which is characterized by being based on.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61203451A JPS6359936A (en) | 1986-08-29 | 1986-08-29 | Standard reflector arranged in living body and its use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61203451A JPS6359936A (en) | 1986-08-29 | 1986-08-29 | Standard reflector arranged in living body and its use |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6359936A true JPS6359936A (en) | 1988-03-15 |
JPH031968B2 JPH031968B2 (en) | 1991-01-11 |
Family
ID=16474333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61203451A Granted JPS6359936A (en) | 1986-08-29 | 1986-08-29 | Standard reflector arranged in living body and its use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6359936A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018034347A1 (en) | 2016-08-19 | 2018-02-22 | 富士フイルム株式会社 | Ink for ink jet recording, ink jet recording method, infrared reading method, and printed product |
WO2019160156A1 (en) | 2018-02-19 | 2019-08-22 | 富士フイルム株式会社 | Dispersion, inkjet recording method, recorded article, and compound |
WO2020202774A1 (en) | 2019-03-29 | 2020-10-08 | 富士フイルム株式会社 | Inkjet ink for infrared absorbent image formation, method for infrared absorbent image formation, and recording material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5413688A (en) * | 1977-07-04 | 1979-02-01 | Tokyo Shibaura Electric Co | Phantom device |
JPS59174152A (en) * | 1983-03-23 | 1984-10-02 | 富士通株式会社 | Measuring system of ultrasonic medium characteristics |
-
1986
- 1986-08-29 JP JP61203451A patent/JPS6359936A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5413688A (en) * | 1977-07-04 | 1979-02-01 | Tokyo Shibaura Electric Co | Phantom device |
JPS59174152A (en) * | 1983-03-23 | 1984-10-02 | 富士通株式会社 | Measuring system of ultrasonic medium characteristics |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018034347A1 (en) | 2016-08-19 | 2018-02-22 | 富士フイルム株式会社 | Ink for ink jet recording, ink jet recording method, infrared reading method, and printed product |
WO2019160156A1 (en) | 2018-02-19 | 2019-08-22 | 富士フイルム株式会社 | Dispersion, inkjet recording method, recorded article, and compound |
WO2020202774A1 (en) | 2019-03-29 | 2020-10-08 | 富士フイルム株式会社 | Inkjet ink for infrared absorbent image formation, method for infrared absorbent image formation, and recording material |
Also Published As
Publication number | Publication date |
---|---|
JPH031968B2 (en) | 1991-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BR0007738A (en) | Equipment and imaging methods for tissue structures | |
JPH0741040B2 (en) | Imaging device | |
CA2187701A1 (en) | Photoacoustic breast scanner | |
Bhargava | Principles and practice of ultrasonography | |
Park et al. | Pulse inversion chirp coded tissue harmonic imaging (PI-CTHI) of zebrafish heart using high frame rate ultrasound biomicroscopy | |
KR102568749B1 (en) | Use of Echo Generating Coatings for Ultrasonic Imaging of Medical Devices in Deep Tissue Layers | |
JPS6359936A (en) | Standard reflector arranged in living body and its use | |
Lay et al. | Microultrasound characterisation of ex vivo porcine tissue for ultrasound capsule endoscopy | |
Martin et al. | An endoscopic Doppler probe for assessing intestinal vasculature | |
US20040102707A1 (en) | Acoustic coupler for medical imaging | |
Ahmed et al. | In vitro strain measurement in the porcine antrum using ultrasound doppler strain rate imaging | |
JP3844869B2 (en) | Needle-shaped ultrasonic probe and ultrasonic diagnostic apparatus | |
Reid | Medical ultrasonics: Diagnostic applications of ultrasound | |
WO2004062460A2 (en) | Ultrasound coupling pad | |
Erickson et al. | A hand-held, high frequency ultrasound scanner | |
Akiyama | Basic and recent applied technologies of ultrasound in the field of clinical diagnosis | |
JPS6129737B2 (en) | ||
JP7389137B2 (en) | Echogenic coatings for ultrasound imaging of medical devices in deep tissue layers | |
JP7529211B2 (en) | Ultrasound equipment | |
Lindgren | Ultrasonics in medicine | |
Thomson et al. | Effect of Freezing and fixation on quantitative ultrasound parameters in phantoms of brain and brain tumour | |
Chen et al. | Using 1 MHz pulse-echo ultrasound externally applied to detect mastoid effusion: Cadaver experiments | |
Andrėkutė et al. | Development and investigation of skin melanoma phantoms for ultrasonic examination | |
Šmoldas | Some problems of the ultrasonic diagnosis of bile stones | |
Forsberg et al. | Quantitative ultrasonic diagnosis of silicone breast implant rupture: an in vitro feasibility study |