JPS6359640B2 - - Google Patents

Info

Publication number
JPS6359640B2
JPS6359640B2 JP13829982A JP13829982A JPS6359640B2 JP S6359640 B2 JPS6359640 B2 JP S6359640B2 JP 13829982 A JP13829982 A JP 13829982A JP 13829982 A JP13829982 A JP 13829982A JP S6359640 B2 JPS6359640 B2 JP S6359640B2
Authority
JP
Japan
Prior art keywords
honeycomb
surface material
polypropylene
diaphragm
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13829982A
Other languages
Japanese (ja)
Other versions
JPS5928798A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13829982A priority Critical patent/JPS5928798A/en
Publication of JPS5928798A publication Critical patent/JPS5928798A/en
Publication of JPS6359640B2 publication Critical patent/JPS6359640B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • H04R7/10Plane diaphragms comprising a plurality of sections or layers comprising superposed layers in contact

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はスピーカ振動板の改良、特にハニカ
ム振動板の改良に関するものである。 ハニカム振動板は第1図および第2図に示すよ
うにハニカム状に形成された芯材2の両表面に薄
板の表面材1を接着剤3で貼着したものである。
このように構成されたハニカム振動板は芯材2の
みかけ密度が極めて小さいため芯材として大きな
厚みが得られることと、表面材として剛性の高い
材料が使用できるので、従来のコーン紙に比べ振
動板として重要な物性の一つである比弾性率E/
ρ(cm2/sec2)は約3〜4倍と高くなる等の利点
がある。従つて、このハニカム振動板を用いたス
ピーカはコーン紙を用いたスピーカに比べ、高域
の再生限界が約2倍のびる他、振動板自身の曲げ
剛性は厚みが大きなため極めて高く、再生帯域が
広がつた分と合わせ高調波ひずみが大きく低減で
きる利点等を有していた。 ところが従来のハニカム振動板は芯材1にアル
ミニウムの箔を、表面材1にアルミニウムまたは
強化繊維と熱硬化性樹脂で構成されたFRP(繊維
強化プラスチツクス)など高い剛性を有するもの
を用いていた。従つてアルミニウムで表面材と芯
材を構成したものは振動板自身の内部損失が極め
て小さいため高域共振が鋭く現われ、使用可能な
再生帯域が制限される欠点があつた。 またFRP(繊維強化プラスチツクス)を表面材
とし、アルミニウムを芯材とした振動板も上述の
アルミニウムに比べれば大きな内部損失を有する
がまだ十分ではなく、プラスチツクスとして熱硬
化性樹脂を用いているため成形に時間がかゝる欠
点があつた。 さらに上記欠点を対策するものとして、ポリプ
ロピレンのように極めて大きな内部損失を有する
熱可塑性樹脂にカーボン短繊維を混入する方法も
考えられるが、ポリプロピレンが接着性、延伸性
が悪く実用が困難であつた。このポリプロピレン
の接着性を改善する方法としてタルク、マイカ、
ガラス等の充填剤を入れることが考えられるが、
これらは重量の増加を伴う欠点がある。 さらにまた接着性の優れた他のプラスチツク
ス、例えばナイロン、ポリカーボネート等とカー
ボン繊維を組合せた材料を用いることも考えられ
るが、これらは内部損失ηが0.02〜0.03と小さ
く、かつ密度も大きくなる欠点がある。 この発明者らは上記のように従来のハニカム振
動板の欠点を除去し、重量が増加せず接着性、延
伸性を改善し、大きな内部損失を有するハニカム
振動板材料について鋭意検討した結果、不飽和カ
ルボン酸でポリプロピレンを変性させる方法を用
いた変性ポリプロピレンにカーボン繊維を組合せ
たものが最適であることを見い出した。 この発明は上記知見に基づいてなされたもの
で、表面材もしくは表面材と芯材に不飽和カルボ
ンを反応せしめて得られる変性ポリプロピレンと
カーボン繊維を組合せて得られる材料、または該
変性ポリプロピレンと未変性ポリプロピレンの混
合物にカーボン繊維を組合せて得られる材料を用
いてハニカム振動板を形成し、ポリプロピレンの
持つ大きな内部損失を有し、高いE/ρを持つと
同時に接着性を大幅に改善し、しかも容易に成形
できる振動板を提供することを目的としている。 以下この発明を実施例により説明する。 実施例 1 極限粘度1.5のポリプロピレン粉末100重量部
に、不飽和カルボン酸として無水マレイン酸を
0.2重量部、過酸化物として過酸化ベンゾイルを
0.3重量部を加え、これを混合したのち押出機に
供給し、230℃、7分間の滞在条件で押出を行な
つた。こうして得られた変性ポリプロピレンに長
さ6mmのカーボン繊維を20重量%添加し、押出機
にて0.2mm厚のシートを得た。 同様の条件にて変性していないポリプロピレン
に20重量%のカーボン繊維を添加した0.2mm厚の
シートを比較用に比較例1として作成した。 上記のようにして得られた実施例1および比較
例1のシートについて、ハニカム振動板としての
必要な各種定数および接着強度(せん断強さ)を
調べた。なお接着剤としては軽量化が可能なホツ
トメルト不織布接着剤を選んだ。上記試験結果を
第1表に示す。
This invention relates to improvements in speaker diaphragms, particularly honeycomb diaphragms. As shown in FIGS. 1 and 2, the honeycomb diaphragm is made by pasting thin plate surface materials 1 on both surfaces of a core material 2 formed in a honeycomb shape with an adhesive 3.
In the honeycomb diaphragm constructed in this way, the apparent density of the core material 2 is extremely low, so a large thickness can be obtained as the core material, and a material with high rigidity can be used as the surface material, so it has less vibration than conventional corn paper. The specific elastic modulus E/ is one of the important physical properties of a plate.
There is an advantage that ρ (cm 2 /sec 2 ) is about 3 to 4 times higher. Therefore, speakers using this honeycomb diaphragm have approximately twice the high-frequency reproduction limit compared to speakers using cone paper, and the flexural rigidity of the diaphragm itself is extremely high due to its large thickness, making the reproduction band narrower. It had the advantage of being able to greatly reduce harmonic distortion as well as the spread. However, conventional honeycomb diaphragms use aluminum foil for the core material 1 and materials with high rigidity such as aluminum or FRP (fiber reinforced plastics) made of reinforcing fibers and thermosetting resin for the surface material 1. . Therefore, when the surface material and the core material are made of aluminum, the internal loss of the diaphragm itself is extremely small, resulting in sharp high-frequency resonance, which limits the usable reproduction band. Furthermore, diaphragms with FRP (fiber-reinforced plastics) as the surface material and aluminum as the core material have a large internal loss compared to the aluminum mentioned above, which is still insufficient, and thermosetting resin is used as the plastic. Therefore, there was a drawback that molding took time. Furthermore, as a countermeasure to the above-mentioned drawbacks, a method of mixing short carbon fibers into a thermoplastic resin that has an extremely large internal loss such as polypropylene can be considered, but polypropylene has poor adhesiveness and stretchability, making it difficult to put it into practical use. . Talc, mica,
It is possible to add a filler such as glass, but
These have the disadvantage of increased weight. Furthermore, it is also possible to use materials that combine carbon fiber with other plastics with excellent adhesiveness, such as nylon or polycarbonate, but these have the disadvantage of having a small internal loss η of 0.02 to 0.03 and high density. There is. As a result of intensive research into honeycomb diaphragm materials that eliminate the drawbacks of conventional honeycomb diaphragms as described above, improve adhesion and stretchability without increasing weight, and have large internal losses, the inventors found that We have discovered that a combination of carbon fiber and modified polypropylene, which is obtained by modifying polypropylene with a saturated carboxylic acid, is optimal. The present invention was made based on the above findings, and includes a material obtained by combining carbon fiber with modified polypropylene obtained by reacting a surface material or a surface material with a core material with unsaturated carbon, or a material obtained by combining the modified polypropylene and unmodified polypropylene. A honeycomb diaphragm is formed using a material obtained by combining carbon fiber with a mixture of polypropylene, which has the large internal loss of polypropylene, has a high E/ρ, and at the same time greatly improves adhesion and is easy to use. The purpose is to provide a diaphragm that can be formed into This invention will be explained below with reference to Examples. Example 1 Maleic anhydride was added as an unsaturated carboxylic acid to 100 parts by weight of polypropylene powder with an intrinsic viscosity of 1.5.
0.2 parts by weight, benzoyl peroxide as peroxide
After adding 0.3 parts by weight and mixing, the mixture was fed to an extruder and extruded at 230°C for 7 minutes. 20% by weight of carbon fibers having a length of 6 mm were added to the modified polypropylene thus obtained, and a sheet having a thickness of 0.2 mm was obtained using an extruder. A 0.2 mm thick sheet was prepared as Comparative Example 1 by adding 20% by weight of carbon fiber to unmodified polypropylene under similar conditions. The sheets of Example 1 and Comparative Example 1 obtained as described above were examined for various constants and adhesive strength (shear strength) required as a honeycomb diaphragm. As the adhesive, we selected a hot melt nonwoven adhesive that can be made lightweight. The above test results are shown in Table 1.

【表】 第1表の結果のようにハニカム振動板のE/
ρ、ηに大きな影響を与える表面材としてのシー
トの定数では、実施例1が比較例1を何れも上廻
つた。これはポリプロピレンを変性させたことに
よりカーボン繊維との接着性が改善されたためで
ある。さらに接着強度に対応したせん断強さは実
施例1が比較例1の5倍の値を得た。 次に上記実施例1のシートを用いてハニカム構
造体を作成した。 実施例 2 第1図および第2図における表面材1に上記実
施例1のシート、即ち変性ポリプロピレンにカー
ボン繊維を20%混入した0.2mm厚のシートを、芯
材2は箔厚18μmのアルミニウムにより、3/16イ
ンチのセルサイズを有し、厚さ3mmのハニカムコ
ア、このハニカムコア2と表面材1を接着する接
着材3は短時間で接着可能な熱溶融性の不織布接
着剤を用いて構成した。 この実施例2と比較するためそれぞれ第2表に
示すような材質のハニカム構造体を比較例2、
3、4、5、6と計5種類作用した。 以上のように作成したハニカム構造体からそれ
ぞれ短冊形試料切り出し振動リード法を用いて比
弾性率E/ρおよび内部損失ηを測定した。その
結果を第2表に示す。
[Table] As shown in Table 1, the E/
In terms of the constant of the sheet as a surface material, which has a large effect on ρ and η, Example 1 exceeded Comparative Example 1. This is because the adhesion to carbon fibers was improved by modifying the polypropylene. Furthermore, the shear strength corresponding to the adhesive strength in Example 1 was five times that of Comparative Example 1. Next, a honeycomb structure was created using the sheet of Example 1 above. Example 2 The sheet of Example 1 above, that is, a 0.2 mm thick sheet made of modified polypropylene mixed with 20% carbon fiber, was used as the surface material 1 in FIGS. 1 and 2, and the core material 2 was made of aluminum foil with a thickness of 18 μm. , a honeycomb core with a cell size of 3/16 inch and a thickness of 3 mm, and the adhesive 3 that adheres the honeycomb core 2 and the surface material 1 is a heat-melting nonwoven fabric adhesive that can be bonded in a short time. Configured. For comparison with this Example 2, honeycomb structures made of materials shown in Table 2 were prepared in Comparative Example 2,
A total of five types, 3, 4, 5, and 6, worked. The specific elastic modulus E/ρ and internal loss η were measured by cutting out a rectangular sample from each of the honeycomb structures produced as described above and using a vibrating reed method. The results are shown in Table 2.

【表】 第2表の結果から実施例2は従来のハニカム振
動板である比較例5、および6に比べ内部損失が
約2.5〜3倍の極めて大きな値を得た。また比較
例2は表面材と芯材との接着が十分でなく、比較
例3は溶液タイプの接着剤を用いているため重量
が増加していることと、接着強度が十分でないこ
と、および比較例4は熱接着するため表面材にデ
インプルを発生するとともに接着強度が十分でな
いことなどから、何れもE/ρが実施例2より低
下することが明らかになつた。 以上のように単にポリプロピレンとカーボン繊
維を組合せることは、ハニカム構造の接着性の点
で問題を生じる。 実施例 3 実施例2のハニカム構造体を外径φ220mm、内
径φ60mm、高さ80mmのコーン状ハニカム振動板に
成形し、スピーカを組立てた。なお比較用に第2
表の比較例2、3、4、5、6の各ハニカム構造
体についても同様の方法で振動板を成形、スピー
カを組立てた。この成形方法としては表面材を上
記コーン状に成形し、さらに金型を用いてサンド
イツチする方法をとつたが比較例2、3、4は何
れも延伸性が悪く、コーンに成形することが困難
であり、かつスピーカに組立てるときにもエツ
ジ、スパイダーとの接着において同様の問題が生
じた。 第3図は実施例3のスピーカと比較例5、6の
ハニカム構造体のスピーカの音圧−周波数特性を
示したものである。 第2図より実施例3では内部損失ηが比較例に
比べ極めて大きく高域のピークが大幅に低減され
ていることがわかる。 なお上記実施例では表面材に変性したポリプロ
ピレンにカーボン繊維を混入したものを用いてい
るが芯材と表面材に用いてもよく、この場合、ピ
ークの低減により効果がある。 以上述べたようにこの発明はカーボン繊維で強
化した変性ポリプロピレンをハニカムスピーカ用
振動板の表面材あるいは表面材と芯材に用いるこ
とで、大きな内部損失とE/ρを有し、しかも接
着性と成形性に優れたハニカムスピーカ用振動板
を提供するものである。
[Table] From the results in Table 2, Example 2 obtained an extremely large value of internal loss, about 2.5 to 3 times that of Comparative Examples 5 and 6, which are conventional honeycomb diaphragms. In addition, in Comparative Example 2, the adhesion between the surface material and the core material was insufficient, and in Comparative Example 3, a solution-type adhesive was used, which increased the weight, and the adhesive strength was insufficient. In Example 4, dimples were generated in the surface material due to thermal bonding, and the adhesive strength was insufficient, so it was revealed that E/ρ was lower than that in Example 2. As described above, simply combining polypropylene and carbon fiber causes a problem in terms of adhesiveness of the honeycomb structure. Example 3 The honeycomb structure of Example 2 was molded into a cone-shaped honeycomb diaphragm having an outer diameter of 220 mm, an inner diameter of 60 mm, and a height of 80 mm, and a speaker was assembled. For comparison, the second
Vibration plates were molded and speakers were assembled in the same manner for each of the honeycomb structures of Comparative Examples 2, 3, 4, 5, and 6 shown in the table. The molding method used was to mold the surface material into the above-mentioned cone shape, and then perform sand germination using a mold, but Comparative Examples 2, 3, and 4 all had poor stretchability and were difficult to mold into cones. Moreover, when assembling it into a speaker, similar problems occurred in adhesion to edges and spiders. FIG. 3 shows the sound pressure-frequency characteristics of the speaker of Example 3 and the honeycomb structure speakers of Comparative Examples 5 and 6. From FIG. 2, it can be seen that in Example 3, the internal loss η is extremely large compared to the comparative example, and the high-frequency peak is significantly reduced. In the above embodiments, modified polypropylene mixed with carbon fiber is used as the surface material, but it may also be used for the core material and the surface material, and in this case, it is more effective in reducing the peak. As described above, this invention uses modified polypropylene reinforced with carbon fiber as the surface material or surface material and core material of a diaphragm for a honeycomb speaker, which has a large internal loss and E/ρ, and has excellent adhesive properties. The present invention provides a honeycomb speaker diaphragm with excellent moldability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はハニカムスピーカ振動板の一部を切欠
いた平面図、第2図はその要部拡大縦断面図、第
3図はスピーカの音圧−周波数特性図である。 図中同一符号は同一または相当部分を示し、1
は表面材、2は芯材、3は接着材である。
FIG. 1 is a partially cutaway plan view of a honeycomb speaker diaphragm, FIG. 2 is an enlarged vertical cross-sectional view of the main part thereof, and FIG. 3 is a sound pressure-frequency characteristic diagram of the speaker. The same reference numerals in the figures indicate the same or corresponding parts, 1
2 is a surface material, 2 is a core material, and 3 is an adhesive material.

Claims (1)

【特許請求の範囲】[Claims] 1 ハニカム状芯材の表面に表面材を接着してな
る材料により構成されるスピーカ振動板におい
て、上記表面材をポリプロピレンに不飽和カルボ
ン酸を反応せしめて得られる変性ポリプロピレン
にカーボン繊維を混入したものを用いたことを特
徴とするスピーカ振動板。
1. A speaker diaphragm made of a material made by adhering a surface material to the surface of a honeycomb-shaped core material, in which the surface material is a modified polypropylene obtained by reacting polypropylene with an unsaturated carboxylic acid and carbon fibers are mixed therein. A speaker diaphragm characterized by using.
JP13829982A 1982-08-09 1982-08-09 Speaker diaphragm Granted JPS5928798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13829982A JPS5928798A (en) 1982-08-09 1982-08-09 Speaker diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13829982A JPS5928798A (en) 1982-08-09 1982-08-09 Speaker diaphragm

Publications (2)

Publication Number Publication Date
JPS5928798A JPS5928798A (en) 1984-02-15
JPS6359640B2 true JPS6359640B2 (en) 1988-11-21

Family

ID=15218629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13829982A Granted JPS5928798A (en) 1982-08-09 1982-08-09 Speaker diaphragm

Country Status (1)

Country Link
JP (1) JPS5928798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427920U (en) * 1990-06-30 1992-03-05

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701359A (en) * 1995-04-06 1997-12-23 Precision Power Flat-panel speaker
ES2131953T3 (en) * 1995-09-02 1999-08-01 New Transducers Ltd SPEAKERS WHICH ARE COMPOSED OF PANEL SHAPED ACOUSTIC RADIATION ELEMENTS.
US9332352B2 (en) 2013-02-25 2016-05-03 Apple Inc. Audio speaker with sandwich-structured composite diaphragm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427920U (en) * 1990-06-30 1992-03-05

Also Published As

Publication number Publication date
JPS5928798A (en) 1984-02-15

Similar Documents

Publication Publication Date Title
US8284967B2 (en) Electrostatic speaker having ventilative diaphragm
CN108551641A (en) Loud speaker
CN108566608A (en) A kind of loud speaker
JPS6359640B2 (en)
CN206674183U (en) A kind of top dome and loudspeaker applied to the diaphragm of loudspeaker
JPS6359639B2 (en)
CN113709633B (en) Vibrating plate and sound producing device
JP3606492B2 (en) Diaphragm for electroacoustic transducer
JP3317052B2 (en) Speaker diaphragm and manufacturing method thereof
JPS5838038B2 (en) Cone-shaped honeycomb diaphragm
CN113709634B (en) Vibrating plate and sound producing device
CN113709635B (en) Vibrating plate and sound producing device
JPS5928795A (en) Speaker diaphragm
JPS5896492A (en) Diaphragm for electroacoustic transducer
JPS6052639B2 (en) acoustic diaphragm
CN213108475U (en) High-toughness carbon fiber ball top
JPS5822000B2 (en) Cone-shaped honeycomb diaphragm
JPS584394Y2 (en) Loudspeaker diaphragm
WO2008002049A1 (en) Electrostatic speaker having ventilative diaphragm
JPS59103497A (en) Diaphragm for speaker
JPH0129360B2 (en)
JPS58194496A (en) Speaker diaphragm
JPH01223899A (en) Acoustic diaphragm member
JPS584393Y2 (en) Loudspeaker diaphragm
JPH01292998A (en) Diaphragm for loudspeaker