JPS6359442B2 - - Google Patents

Info

Publication number
JPS6359442B2
JPS6359442B2 JP3276981A JP3276981A JPS6359442B2 JP S6359442 B2 JPS6359442 B2 JP S6359442B2 JP 3276981 A JP3276981 A JP 3276981A JP 3276981 A JP3276981 A JP 3276981A JP S6359442 B2 JPS6359442 B2 JP S6359442B2
Authority
JP
Japan
Prior art keywords
mark
detected
time
detection
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3276981A
Other languages
Japanese (ja)
Other versions
JPS57147007A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3276981A priority Critical patent/JPS57147007A/en
Publication of JPS57147007A publication Critical patent/JPS57147007A/en
Publication of JPS6359442B2 publication Critical patent/JPS6359442B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B11/043Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring length

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 この発明は、平角エナメル線、裸銅線のような
連続走行物体の表面にマークを印記して尺取り計
尺する方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for measuring a length by marking marks on the surface of a continuously running object such as a rectangular enamelled wire or a bare copper wire.

連続走行物体、例えば、電線の表面にマークを
印記して尺取り計尺を行う方式では、マークは電
気化学的に無害であつても、計尺時に拭取ること
が望ましいことや、計尺精度の面からマークその
ものは小さく、微量としている為、マークを光学
的に拡大して検出を行なつている。この場合、光
学系の倍率を上げすぎると、マークをボケなく検
出できる範囲、即ち、被写界深度が倍率の2乗に
逆比例して小さくなる為、電線の光軸方向の振動
に対して検出感度の低下を招き、マークを見逃す
可能性が生ずる。また電線の表面にマークと同様
の大きさの傷やごみが付着している場合は、マー
ク検出信号の誤検出となり、計尺精度を著しく悪
化する傾向があつた。このことは、マークの大き
さが検出センサのエレメントの大きさに較べて小
さい程背景の影響が大きくなる。
In the method of measuring a length by marking marks on the surface of a continuously running object, such as an electric wire, even though the marks are electrochemically harmless, it is desirable to wipe them off when measuring, and the precision of the measurement may be affected. Because the mark itself is small and has a very small amount, detection is performed by optically enlarging the mark. In this case, if the magnification of the optical system is increased too much, the range in which the mark can be detected without blurring, that is, the depth of field, will decrease in inverse proportion to the square of the magnification, which will prevent vibrations in the direction of the optical axis of the electric wire. This results in a decrease in detection sensitivity and the possibility of missing marks. Furthermore, if there are scratches or dust of the same size as the mark on the surface of the wire, the mark detection signal will be erroneously detected, which tends to significantly deteriorate the measuring accuracy. This means that the smaller the size of the mark compared to the size of the element of the detection sensor, the greater the influence of the background.

電線の振動に対しては通常機械的に短かい区間
で電線の両端を支持する方法を採つているが、さ
らに検出系の倍率を下げ、かつセンサエレメント
の大きさを検出マークの大きさに小さくすること
により多少の振動に対しても良好なS/Nを得て
検出する方法も行なわれている。
Normally, a method of mechanically supporting both ends of the wire in a short section is used to deal with the vibration of the wire, but it is also necessary to lower the magnification of the detection system and reduce the size of the sensor element to the size of the detection mark. There is also a method of obtaining a good S/N ratio and detecting even some vibrations by doing so.

一方電線表面上の背景の影響、特にごみや傷の
影響を除去する方法として、計尺前の工程でごみ
等の汚れのブラシングを完全に行なつているが、
二列に並んだ複数個の並列出力型センサを電線の
進行方向に垂直に配置して、電線の進行方向に対
する各エレメント間の差動(空間微分)信号を得
ると共に、背景の平均信号を用いてマーク信号パ
ルスを得る方法をとつている。
On the other hand, as a method to remove the background effects on the wire surface, especially the effects of dust and scratches, dust and dirt are completely brushed off in the process before measuring.
A plurality of parallel output type sensors lined up in two rows are arranged perpendicular to the traveling direction of the wire to obtain differential (spatial differential) signals between each element with respect to the traveling direction of the wire, and the average signal of the background is used. A method is used to obtain mark signal pulses.

また、この他にも検出器そのものに特定波長の
光に感応するセンサを使用したり、スリツト状の
光源で照明することにより背景の影響の範囲を限
定して検出する方法等が知られている。
In addition, other methods are known, such as using a sensor that is sensitive to light of a specific wavelength in the detector itself, or using illumination with a slit-shaped light source to limit the range of background influence. .

しかし、実際の電線表面上の背景には種々の大
きさのごみや傷等があり、100〜200μm程度のマ
ークと同等程度のごみ等があつた場合、マークの
誤検出は避けられず、延いては実用的な計尺精度
が悪化する欠点を有していた。
However, there are dust and scratches of various sizes on the background of the actual wire surface, and if there is dust of the same size as a mark of about 100 to 200 μm, erroneous detection of the mark is unavoidable and it will be delayed. However, it has the disadvantage that practical measuring accuracy deteriorates.

この発明は、上記従来技術におけるマーク検出
方法の欠点を解消せんとするもので、その目的と
するところは、表面上の傷やごみ等が背景信号に
含まれても誤検出することなくマークのみを確実
に検出し、精度の高い計尺を行うことのできる方
法を提供するにある。
The present invention aims to eliminate the drawbacks of the mark detection method in the prior art described above.The purpose of this invention is to detect only marks without erroneously detecting them even if scratches, dust, etc. on the surface are included in the background signal. The object of the present invention is to provide a method that can reliably detect and perform highly accurate measurement.

この目的を達成する為に、この発明では、表面
上の傷、ごみ等が不規則に分布することを利用し
て、計尺時に一定距離間で検出されるマーク間隔
の計測時間から演算して求められる物体の走行速
度に応じたマーク間隔にほぼ等しいマーク検出用
タイミングゲート信号を発生させ、このマーク到
来区間においてのみ検出器からの差動入力信号を
取入れる回路構成とすることにより、確実にマー
ク検出パルスを得るようにしている。
In order to achieve this objective, the present invention takes advantage of the irregular distribution of scratches, dirt, etc. on the surface and calculates it from the measurement time of the mark interval detected at a certain distance when measuring. By generating a timing gate signal for mark detection that is approximately equal to the mark interval corresponding to the traveling speed of the object being sought, and using a circuit configuration that receives the differential input signal from the detector only in this mark arrival section, it is possible to The mark detection pulse is obtained.

以下この発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明におけるマーク検出方式を示
すブロツク図である。
FIG. 1 is a block diagram showing a mark detection method according to the present invention.

先ず、計尺方法は、スタート信号により連続走
行物体、例えば、電線1の表面に、マーク塗布機
3により100〜200μm程度のインクマーク2が印
記され、このマーク2が電線1の走行と共に、進
行方向と直角な方向に置いた2ライン並列出力型
リニアセンサ7―aの直下を通過した際、光学系
(ハーフミラ4、光学レンズ5)を介していずれ
かのエレメントに受光され、リニアセンサの対向
する2ライン間の差動信号によりマーク信号を検
出する。さらに、第2の検出器7―bの直下を通
過したときも同様の手段を用いてマークを検出
し、以下に詳述するマーク検出用ゲート17―
a、17―bに入力され、検出器7―a,7―b
間の一定距離ls及びマーク間隔li(スタート信号は
第2の検出器7―bでマークが検出されてから次
のマークが第2の検出器7―bで検出される迄)
に相当する各々の時間ts,tiを時間間隔測定器9
により求める。マーク塗布機3の印記タイミング
は、電線1の走行速度にかかわらず、検出器7―
bでマーク2が検出される毎にほぼ一定間隔li
(インクの飛翔時間を含む)でマークコントロー
ラ12により高圧制御される。
First, in the measurement method, an ink mark 2 of about 100 to 200 μm is printed on the surface of a continuously running object, for example, an electric wire 1, by a mark applicator 3 in response to a start signal, and this mark 2 advances as the electric wire 1 runs. When the light passes directly under the 2-line parallel output type linear sensor 7-a placed in the direction perpendicular to the direction, it is received by one of the elements via the optical system (half mirror 4, optical lens 5), and the light is sent to the opposite side of the linear sensor. The mark signal is detected by the differential signal between the two lines. Furthermore, when the mark passes directly under the second detector 7-b, the mark is detected using the same means, and the mark detection gate 17-b, which will be described in detail below, detects the mark.
a, 17-b, and detectors 7-a, 7-b.
constant distance ls between and mark interval li (start signal is from when a mark is detected by the second detector 7-b until the next mark is detected by the second detector 7-b)
The time interval measuring device 9 calculates the respective times ts and ti corresponding to
Find it by The marking timing of the mark applicator 3 is determined by the detector 7, regardless of the running speed of the electric wire 1.
Every time mark 2 is detected in b, approximately constant interval li
(including the flight time of the ink) is controlled at high pressure by the mark controller 12.

以上の時間データts,tiを、マーク2が第2の
検出器7―bを通過する毎に計算器10で線速μ
(=ls/ts)及びマーク間隔li(=μ・ti)を演算
し、それが計尺値∠(=oi=1 li)となるまで計尺を
行う。
The above time data ts, ti are calculated by the calculator 10 at a linear velocity μ every time the mark 2 passes the second detector 7-b.
(=ls/ts) and mark interval li (=μ·ti) are calculated, and the measurement is performed until it becomes the measurement value ∠ (= oi=1 li).

ここで、マーク検出の確実性を期す為、マーク
2のバラツキや、電線1の横振れに対しては、ラ
インセンサの絵素数を多くとることによりマーク
2の見逃しを防止でき、±1.6mm程度のバラツキ及
び横振れを吸収できる。また、電線1の表面の
傷、ごみ等の誤検出の影響を除去する為に、計尺
時に求めたマーク間隔li毎の速度データを利用し
て、DA変換器13及びVFコンバータ(電圧―
周波数変換器)14により周波数変換して周波数
選別IC15により周波数(または速度)変化の
範囲を例えば、第2図のように、設定値f1,f2
より三段階に分類して速度による出力ゲート信号
を、第2図a,b,cのように得ることができ
る。
Here, in order to ensure the reliability of mark detection, by increasing the number of picture elements of the line sensor, it is possible to prevent mark 2 from being missed due to variations in mark 2 and lateral vibration of wire 1, which is approximately ±1.6 mm. It is possible to absorb variations and lateral vibrations. In addition, in order to eliminate the influence of erroneous detection of scratches, dust, etc. on the surface of the electric wire 1, the speed data for each mark interval li obtained during measurement is used to
The frequency converter) 14 converts the frequency, and the frequency selection IC 15 classifies the range of frequency (or speed) changes into three stages based on the set values f 1 and f 2 as shown in Figure 2, and then outputs the output gate based on the speed. Signals can be obtained as shown in Fig. 2a, b, c.

周波数選別IC15の速度ゲート出力信号は、
同時に出力されることはなく、入力信号受信から
出力動作までの応答時間は20msecであり、最大
速度のマークの通過時間tiは60msec以下である。
また各出力のスイツチング時間は、立上り、立下
り共約2μsecであり、ゲートタイミングの切換わ
り時の問題はない。このゲートパルスは、検出器
7―a及び7―bで検出されるマーク信号から次
のマーク検出用ゲート信号を得るためのワンシヨ
ツト回路(第1図16)からのマーク検出用ゲー
トパルスと、ANDゲート17でANDがとられ
る。
The speed gate output signal of the frequency selection IC 15 is
They are not output simultaneously, the response time from input signal reception to output operation is 20 msec, and the maximum speed mark passing time ti is 60 msec or less.
Furthermore, the switching time for each output is approximately 2 μsec for both rise and fall, so there is no problem when switching the gate timing. This gate pulse is ANDed with the mark detection gate pulse from the one-shot circuit (FIG. 1 16) for obtaining the next mark detection gate signal from the mark signals detected by the detectors 7-a and 7-b. AND is taken at gate 17.

この結果、周波数(または速度)に応じたマー
ク検出用ゲートパルスの何れか1つが選択され
る。マーク検出用ゲートパルスの幅は、検出され
るマークパルスより余裕をもつて数十倍長くして
あり、また各々の中を可変でき、第3図のような
速度によつてマーク検出用ゲートパルスの間隔を
D0,D1,D2,D3と切換えながらマーク検出用ゲ
ートパルスを発生させることができる。
As a result, one of the mark detection gate pulses depending on the frequency (or speed) is selected. The width of the gate pulse for mark detection is several tens of times longer than the mark pulse to be detected, and can be varied within each width. interval of
The mark detection gate pulse can be generated while switching between D 0 , D 1 , D 2 , and D 3 .

D0は最初のスタート信号により作られるゲー
トパルスの遅延時間である。
D 0 is the delay time of the gate pulse created by the first start signal.

ここでは、速度変化を三段階に分けたが、さら
に細かく速度変化を検出するためには、周波数選
別IC15及びワンシヨツト回路16等を追加し
て、並列に使用することも可能である。
Here, speed changes are divided into three stages, but in order to detect speed changes more finely, it is also possible to add a frequency selection IC 15, a one-shot circuit 16, etc., and use them in parallel.

従来、背景にごみ等が混入している場合、例え
ば、500mの計尺Lに於て、200mm間隔liで単純な
尺取り計尺した場合、マークと同様なごみnが10
ケ所で検出されると、計尺誤差は(n―1)li/
L×100=0.36%となり、また、前述した2点間
で速度μを求めてからマーク間隔liをli=μ・tiよ
り求める方式においても、同一条件で、ワースト
ケースで(1―n)li/L×100=−0.36%の誤差
を生じ、ごみ等の密度が高くなるほど計尺精度が
悪化する。
Conventionally, when there is dust mixed in the background, for example, when a simple measuring scale is taken at 200mm intervals li on a 500m measuring scale L, the number of dust n similar to the mark is 10.
If it is detected at these locations, the measurement error will be (n-1) li/
L x 100 = 0.36%, and even in the method described above where the speed μ is determined between two points and then the mark interval li is determined from li = μ・ti, (1−n) li is obtained in the worst case under the same conditions. An error of /L×100=-0.36% occurs, and the higher the density of dust, etc., the worse the measuring accuracy becomes.

これに対して、以上説明したようなこの発明に
よれば、背景のごみ等に無関係に検出マークのみ
を確実に検出できるため、高精度の計尺を行うこ
とができ、線速の立上り、立下り時における変度
変化に応じた検出ゲートパルスを得ることができ
るため、確実なマーク検出が可能となり、計尺精
度を向上させることができる。
On the other hand, according to the present invention as explained above, only the detection mark can be reliably detected regardless of background dust, etc., so highly accurate metering can be performed, and the rise and rise of linear velocity can be Since it is possible to obtain a detection gate pulse that corresponds to the change in displacement during descent, reliable mark detection is possible and measurement accuracy can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る計尺方法の一例を示す
ブロツク図、第2図はこの発明に係る方法の速度
(周波数)切替タイミングを説明する図、第3図
は同じくマーク検出ゲートタイミングを説明する
図である。 1:走行物体、2:マーク、3:マーク塗布
機、4:ハーフミラ、5:光学レンズ、6:照明
器、7:2ライン並列出力型リニアセンサ、8:
差動増幅器、9:時間間隔測定器、10:計算
器、11:表示器、12:クークコントローラ、
13:DA変換器、14:VFコンバータ、1
5:周波数選別IC、16―a〜d:ワンシヨツ
ト回路、17:ANDゲート、18:ORゲート。
FIG. 1 is a block diagram showing an example of the measuring method according to the present invention, FIG. 2 is a diagram explaining the speed (frequency) switching timing of the method according to the present invention, and FIG. 3 also explains the mark detection gate timing. This is a diagram. 1: Running object, 2: Mark, 3: Mark applicator, 4: Half mirror, 5: Optical lens, 6: Illuminator, 7: 2-line parallel output type linear sensor, 8:
Differential amplifier, 9: Time interval measuring device, 10: Calculator, 11: Display device, 12: Cook controller,
13: DA converter, 14: VF converter, 1
5: Frequency selection IC, 16-a to d: One-shot circuit, 17: AND gate, 18: OR gate.

Claims (1)

【特許請求の範囲】[Claims] 1 連続走行物体に、マークを検出する毎にほぼ
一定長毎にマークを付し、そのマークを一定距離
離れた2点間で検出し、2点間のマーク通過時間
及びマーク間隔に相当する時間を測定してマーク
間隔をマーク検出毎に演算して求め、このマーク
間隔を加算して行くことにより計尺を行う方法に
於いて、計尺時に求められる走行物体の速度か
ら、マークが検出される時間にほぼ等しいマーク
検出用ゲートパルスを、スタート信号及び1つ前
のマーク検出パルスから作り出し、これと検出マ
ーク信号とのANDをとることを特徴とする連続
走行物体の計尺方法。
1 Marks are attached to a continuously moving object at approximately constant lengths each time a mark is detected, and the marks are detected between two points a certain distance apart, and the time corresponding to the mark passing time between the two points and the mark interval is calculated. In this method, the marks are detected from the speed of the moving object determined at the time of measuring. A method for measuring a continuously running object, characterized in that a gate pulse for mark detection, which is approximately equal to the time required for detecting a mark, is generated from a start signal and a previous mark detection pulse, and this is ANDed with the detected mark signal.
JP3276981A 1981-03-06 1981-03-06 Method for measurement of length of continuously running material Granted JPS57147007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3276981A JPS57147007A (en) 1981-03-06 1981-03-06 Method for measurement of length of continuously running material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3276981A JPS57147007A (en) 1981-03-06 1981-03-06 Method for measurement of length of continuously running material

Publications (2)

Publication Number Publication Date
JPS57147007A JPS57147007A (en) 1982-09-10
JPS6359442B2 true JPS6359442B2 (en) 1988-11-18

Family

ID=12368041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3276981A Granted JPS57147007A (en) 1981-03-06 1981-03-06 Method for measurement of length of continuously running material

Country Status (1)

Country Link
JP (1) JPS57147007A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194306A (en) * 1984-03-15 1985-10-02 Matsuya Sangyo Kk Length measuring method and apparatus for wire rod
JPS62282209A (en) * 1986-05-31 1987-12-08 Nec Home Electronics Ltd Encoder
KR950013780B1 (en) * 1990-05-22 1995-11-16 후루까와 뗀끼 고요교오 가부시끼가이샤 Apparatus and method for measuring length of moving elongated object
FR2867998B1 (en) * 2004-03-23 2007-06-15 Laselec Sa METHOD FOR MARKING A CABLE, IN PARTICULAR A LASER MARKING, AND CORRESPONDING MARKING DEVICE
GB0507465D0 (en) * 2005-04-13 2005-05-18 Renishaw Plc Method of scale manufacture

Also Published As

Publication number Publication date
JPS57147007A (en) 1982-09-10

Similar Documents

Publication Publication Date Title
KR890005522A (en) Space filter type speed measuring device
US5911161A (en) Apparatus and method for binocular measurement system
JPS6359442B2 (en)
GB2091418A (en) Contact-free sensing of a moving mass of material
EP0093890B1 (en) Apparatus for detecting the irregularities on the surface of a linear material
JPS63128890A (en) Image detector for surface region of travelling goods route
WO1982002094A1 (en) Apparatus for measuring the flow rate of molten material
JP3602226B2 (en) Method and apparatus for measuring the number of passing vehicles
KR910010155A (en) Width measuring device
US4077723A (en) Method of measuring thickness
JPH0519940B2 (en)
SU697932A1 (en) Sensor of speed of moving surface image
JPH0854214A (en) Gap measuring method
JPS62233712A (en) Method for measuring sharpness
JPS6346362B2 (en)
JPH1038901A (en) Noncontact speedometer
JPH0316602B2 (en)
KR830001566B1 (en) A weighing device
JPH03272469A (en) Speed detection
JPS62192610A (en) Noncontact displacement measuring instrument
JPS61283855A (en) Defect detecting device
JPH06258051A (en) Mark detecting method
KR960029770A (en) Photo detector using multiple light receivers
JPS59111001A (en) Bending discriminator for lead of parts
JPS56125671A (en) Measuring method for moving speed of continuous object