JPS635938B2 - - Google Patents

Info

Publication number
JPS635938B2
JPS635938B2 JP54073966A JP7396679A JPS635938B2 JP S635938 B2 JPS635938 B2 JP S635938B2 JP 54073966 A JP54073966 A JP 54073966A JP 7396679 A JP7396679 A JP 7396679A JP S635938 B2 JPS635938 B2 JP S635938B2
Authority
JP
Japan
Prior art keywords
signal
flag
data signal
unit block
modulated data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54073966A
Other languages
Japanese (ja)
Other versions
JPS55166358A (en
Inventor
Yotaro Hachitsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP7396679A priority Critical patent/JPS55166358A/en
Publication of JPS55166358A publication Critical patent/JPS55166358A/en
Publication of JPS635938B2 publication Critical patent/JPS635938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/206Arrangements for detecting or preventing errors in the information received using signal quality detector for modulated signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は被変調データ信号の検出装置に関す
る。 被変調データ信号とは、デジタルデータ信号で
搬送波を変調してなるもので、1例をあげると音
声帯域を使用する音声級データ信号がある。この
音声級データ信号は、4.8kb/sや9.6kb/sのデ
ータ信号をQAMあるいは4相PSKなどの変調方式
で例えば2KHzのアナログ搬送波に乗せるもので
ある。 デジタル信号処理技術の進歩に伴つてデジタル
通信化が進み、且つ経済化のための伝送路の有効
利用のためにデジタル音声挿入方式(Digital
Speech Interpolation;DSI)が採用されている
現在、通常の電話回線に音声級データ信号が伝送
された場合はDSIのフリーズアウト多発という問
題が生ずる。 DSI方式は元来、電話の会話にあつては相手の
話を聞く必要があるため個々の通話者が実際に話
をする平均時間は通話時間の略半分であること、
及び話をしている間でも音節,単語あるいは句の
間毎にポーズがあること、など音声として伝送す
る必要のない時間が通話に存在するという冗長性
に着目して開発されている。即ち、通話が成立し
ている多数の電話回線を瞬時的に観察すると、そ
の半分以下にだけしか音声信号が存在しないので
ある。そこでDSI方式では、各回線(入力トラン
ク)のデジタル化されている音声信号を所定個数
の一定の標本値群である単位ブロツク(時間的に
は数ms)に区分し、各単位ブロツク毎に当該単
位ブロツク内に音声が存在するか否かを音声検出
器で判定して音声が存在する単位ブロツクを抽出
し、抽出した各入力トランクの単位ブロツクだけ
を相互の空部分に挿入して所定数のDSI出力チヤ
ネルに再編成したうえで伝送するのである。この
ようにして上記冗長性を除くことによつてDSI出
力チヤネル数が入力トランク総数の半分以下で済
み、伝送路を2倍以上に活用できる。 しかし、音声信号の代りに音声級データ信号が
電話回線で伝送されると、音声級データ信号は会
話と違つて一方的に送出され、しかも音声の如き
ポーズがないので、音声検出器はその全送出期間
に亘つて全単位ブロツクに音声が存在すると判定
してしまう。この結果、アクテイブな入力トラン
ク数がDSI出力チヤネル数を超え、いずれかのア
クテイブな入力トランクの情報が瞬時的に伝送さ
れなくなるというフリーズアウトが生ずるのであ
る。このフリーズアウトに際し、音声信号が瞬断
される場合と音声級データ信号が瞬断される場合
とでは事情が大きく異なる。即ち、音声信号の瞬
断は音声品質上多少の異和感を受けるが、受話者
は通話内容を殆んど理解できる。これに対し音声
級データ信号の瞬断は、情報としての用をなさな
くなるのである。 そこで通常の電話回線に音声級データ信号が伝
送された場合は、DSIを通さずに専用回線で伝送
させるか、あるいは瞬断されることなくDSIを通
すかのいずれかの処置が必要となる。この場合重
要なことは、入力信号が音声級データ信号である
か否かをできる限り正確且つ素早く検出すること
である。この検出にはDSIの各入力トランクの信
号を復調することによつても行えるが、音声級デ
ータ信号の変調方式が特定しきれないこと等によ
つて実用的ではなかつた。 以上DSI方式の採用にからんで音声級データ信
号の検出の必要性を述べたが、音声信号と被変調
データ信号とを識別することは通信の分野におい
てしばしば必要とされることは言うまでもない。 本発明はこのような要望に応えた被変調データ
信号の検出装置を提供することを目的とする。斯
かる目的を達成する本発明の構成は、デジタル化
された入力信号が音声信号であるかスペクトラム
整形された被変調データ信号であるかを判定する
装置において、前記入力信号を一定区間毎に区分
した単位ブロツク毎に、当該単位ブロツクの自己
相関値を1次及び所定の高次について算出する自
己相関器と、各次の自己相関値が各次毎に定めた
特定領域内に全て在るかを判定する相関値域判定
器と、前記入力信号の単位ブロツク当りの電力を
計算して規準値以上にあるか否かを比較する電力
計算器と、前記入力信号を前記一定区間若しくは
これより長い区間に区分したブロツク毎に、該ブ
ロツク内の零交叉数を計数して特定範囲内に在る
か否かを判定する零交叉数計数器と、この零交叉
数計数器に在りと判定され且つ電力計算器に規準
値以上と判定され且つ相関値域判定器に在りと判
定された単位ブロツクが連続する複数個の単位ブ
ロツクのうち所定数以上を占めることを、入力信
号を被変調データ信号と判定する条件とした信号
判定器とを備えたことを特徴とする。 以下、図面を参照して本発明の一実施例を説明
する。なお、本実施例においては、音声信号及び
被変調データ信号はともに8KHz・13bitのリニア
PCM信号で与えられているものとし、更に被変
調データ信号は搬送波が約2KHzの音声級データ
信号として説明する。 実施例装置の説明に先立ち、本発明の基礎とな
つた被変調データ信号の諸特性、即ちスペクトラ
ム、零交叉数及びブロツク内電力について触れて
おく。 (a) 被変調データ信号は伝送路の帯域幅にスペク
トラムを整合させるため変調後に必らずスペク
トラム整形フイルタを通されているので、被変
調データ信号はこの整形フイルタに起因した固
有の自己相関を標本値間に有し、また最適の予
測を与える予測係数はこの整形フイルタの定数
に依存する。本発明は前者の性質を利用してい
る。 (b) 被変調データ信号は特定の搬送波(例えば
2KHz)を変調した後に上記整形フイルタに通
されているため、スペクトラムは帯域内でほぼ
平坦であり、単位ブロツク当りの零交叉数は音
声信号と違つて上記搬送波に基づく一定範囲内
の値しかとり得ない。 (c) 被変調データ信号は通常−12dBnO程度の電
力で送出され、しかも電力変動は比較的少な
い。なお、4相PSK変調を受けたものは電力
は略完全に一定であるが、QAM変調を受けたも
のは振幅変調が入るので若干の変動はある。し
かしその程度は音声信号に比較すれば非常に小
さい。上記(b)項及び(c)項の性質を利用して検出
性能を向上させることができる。なお、第1図
a,b及びcに夫々、4.8kb/sの音声級デー
タ信号、9.6kb/sの音声級データ信号及び音
声信号の電力スペクトラムを示してある。 第2図は本発明の実施例装置を示すブロツク図
であり、図中、1は入力端子、2,3は出力端
子、4は零交叉数計数器、5は自己相関器、6は
相関値域判定器、7は電力計算器、8は観測時間
設定器、9は信号判定器である。入力端子1には
デジタル入力信号Sがドリフト補償されて入力さ
れる。 零交叉数計数器4は、デジタル入力信号Sを32
サンプル毎のブロツク(4ms)に区分してブロツ
ク毎の零交叉数Zcを計数し、下式(1)が成立する時
に当該ブロツクの零交叉数判定フラツグとしてZ
―Flag“1”を立て、それ以外ではZ―Flag“0”
を立てて信号判定器9に送出する。 7≦Zc≦20 ……(1) 但し(1)式でのスレツシヨルドは、サンプリング
周波数が8KHzで且つブロツク長が32サンプルの
場合である。 電力計算器7は、デジタル入力信号Sを細かい
判定のために16サンプル毎の単位ブロツク
(2ms)に区分して次式(2)式あるいは(3)に基づい
てブロツク内電力Pwを計算し、例えば第1表に
示す電力レベルの区分によつて電力区分フラツグ
としてP―Flag“0”,“1”,“2”を立てて信号
判定器9、観測時間設定器8及び自己相関器5に
送出する。但し、式(2),(3)において、Nは単位ブ
ロツク長でこの場合N=16、またxjは各サンプル
の振幅値である。
The present invention relates to a detection device for modulated data signals. The modulated data signal is obtained by modulating a carrier wave with a digital data signal, and one example is a voice-grade data signal that uses a voice band. This voice-grade data signal is a 4.8 kb/s or 9.6 kb/s data signal carried on, for example, a 2 KHz analog carrier wave using a modulation method such as Q AM or 4-phase PSK. With the advancement of digital signal processing technology, digital communication is progressing, and in order to make effective use of transmission paths for economical purposes, digital voice insertion method (Digital
Speech Interpolation (DSI) is currently being adopted, and when voice-grade data signals are transmitted over regular telephone lines, the problem arises that DSI frequently freezes out. Originally, the DSI method was based on the fact that during a telephone conversation, it is necessary to listen to what the other party is saying, so the average time each caller actually speaks is about half of the call time.
It has been developed focusing on the redundancy that there are times in a call that do not need to be transmitted as voice, such as pauses between syllables, words, or phrases even while speaking. That is, if you instantaneously observe a large number of telephone lines on which calls are being made, you will find that voice signals are present on only less than half of them. Therefore, in the DSI method, the digitized audio signal of each line (input trunk) is divided into unit blocks (several ms in time), which are a predetermined number of fixed sample value groups, and each unit block is divided into A voice detector determines whether or not a voice exists in a unit block, extracts a unit block in which voice exists, and inserts only the extracted unit blocks of each input trunk into each other's empty spaces to create a predetermined number of blocks. It is then reorganized into a DSI output channel and then transmitted. By eliminating the above-mentioned redundancy in this manner, the number of DSI output channels can be reduced to less than half of the total number of input trunks, and the transmission path can be more than doubled. However, when a voice-grade data signal is transmitted over a telephone line instead of a voice signal, the voice-grade data signal is transmitted unilaterally unlike a conversation, and there are no pauses like voice, so the voice detector is It is determined that audio exists in all unit blocks throughout the transmission period. As a result, the number of active input trunks exceeds the number of DSI output channels, causing a freeze-out in which information on any active input trunk is momentarily no longer transmitted. At the time of this freeze-out, the circumstances differ greatly depending on whether the audio signal is momentarily interrupted or when the voice-grade data signal is momentarily interrupted. That is, although a momentary interruption of the audio signal causes some discomfort in terms of audio quality, the receiver can understand most of the content of the call. On the other hand, a momentary interruption of the voice-class data signal renders it useless as information. Therefore, when a voice-grade data signal is transmitted over a normal telephone line, it is necessary to either transmit it on a dedicated line without passing through DSI, or to pass it through DSI without momentary interruption. What is important in this case is to detect as accurately and quickly as possible whether the input signal is a voice-grade data signal or not. This detection can also be done by demodulating the signals of each input trunk of the DSI, but this is not practical because the modulation method of the voice-class data signal cannot be specified. The necessity of detecting voice-grade data signals has been described above in connection with the adoption of the DSI method, but it goes without saying that distinguishing between voice signals and modulated data signals is often required in the field of communications. An object of the present invention is to provide a modulated data signal detection device that meets such demands. The configuration of the present invention to achieve such an object is such that, in an apparatus for determining whether a digitized input signal is an audio signal or a spectrum-shaped modulated data signal, the input signal is divided into fixed intervals. For each unit block, there is an autocorrelator that calculates the autocorrelation value of the unit block for the first order and a predetermined higher order, and whether all the autocorrelation values of each order are within a specific area determined for each order. a power calculator that calculates the power per unit block of the input signal and compares the power per unit block of the input signal to see if it exceeds a reference value; For each block divided into blocks, there is a zero-crossing counter that counts the number of zero-crossings in the block and determines whether it is within a specific range. The input signal is determined to be a modulated data signal if the unit blocks determined by the calculator to be equal to or greater than a reference value and determined by the correlation range determiner to exist occupy a predetermined number or more of the plurality of consecutive unit blocks. The present invention is characterized by comprising a signal determiner as a condition. Hereinafter, one embodiment of the present invention will be described with reference to the drawings. In this example, both the audio signal and the modulated data signal are 8KHz/13bit linear.
It is assumed that the modulated data signal is given as a PCM signal, and the modulated data signal will be explained as a voice-grade data signal with a carrier wave of about 2 KHz. Before explaining the embodiment device, let us touch on various characteristics of the modulated data signal, which are the basis of the present invention, ie, the spectrum, the number of zero crossings, and the power within the block. (a) Since the modulated data signal is always passed through a spectrum shaping filter after modulation in order to match the spectrum to the bandwidth of the transmission path, the modulated data signal has inherent autocorrelation caused by this shaping filter. The prediction coefficient that exists between the sample values and provides the optimal prediction depends on the constant of this shaping filter. The present invention utilizes the former property. (b) The modulated data signal is transmitted over a specific carrier (e.g.
2KHz) and then passes it through the above shaping filter, so the spectrum is almost flat within the band, and unlike an audio signal, the number of zero crossings per unit block can only take values within a certain range based on the above carrier wave. I don't get it. (c) The modulated data signal is typically transmitted with a power on the order of -12 dB n O, and the power fluctuations are relatively small. It should be noted that the power that has undergone 4-phase PSK modulation is almost completely constant, but the power that has undergone QAM modulation has some fluctuations because amplitude modulation is included. However, the degree of this is very small compared to the audio signal. Detection performance can be improved by utilizing the properties of items (b) and (c) above. Note that FIGS. 1a, b, and c show the power spectra of a 4.8 kb/s voice-grade data signal, a 9.6 kb/s voice-grade data signal, and a voice signal, respectively. FIG. 2 is a block diagram showing an embodiment of the present invention. In the figure, 1 is an input terminal, 2 and 3 are output terminals, 4 is a zero-crossing counter, 5 is an autocorrelator, and 6 is a correlation value range. 7 is a power calculator, 8 is an observation time setter, and 9 is a signal determiner. A digital input signal S is drift-compensated and inputted to the input terminal 1 . The zero-crossing counter 4 receives the digital input signal S by 32
Divide each sample into blocks (4 ms), count the number of zero crossings Z c for each block, and set Z as the zero crossing number judgment flag for the block when the following formula (1) holds.
- Set Flag “1”, otherwise set Z-Flag “0”
is set and sent to the signal judger 9. 7≦Z c ≦20 (1) However, the threshold in equation (1) is when the sampling frequency is 8 KHz and the block length is 32 samples. The power calculator 7 divides the digital input signal S into unit blocks (2 ms) of every 16 samples for detailed judgment, and calculates the intra-block power P w based on the following equation (2) or (3). For example, P-Flag "0", "1", and "2" are set as power classification flags according to the power level classification shown in Table 1, and the signal judger 9, observation time setter 8, and autocorrelator 5 Send to. However, in equations (2) and (3), N is the unit block length, in this case N=16, and x j is the amplitude value of each sample.

【表】 自己相関器5は、デジタル入力信号Sの自己相
関を1次相関から任意の高次相関まで求めるもの
であるが、本実施例では、16サンプルの単位ブロ
ツク(2ms)毎に当該単位ブロツク内での自己相
関値Rを次式(4)によつて1次から15次まで演算す
るようにしてある。但し、nは1〜15の次数、N
はサンプル数の16である。 この自己相関器5の動作はP―Flagによつて
制御され、P―Flag“0”の時は非動作であり、
P―Flagが“0”→“1”あるいは“0”→
“2”の遷移をした時にスタートするものとして
ある。 相関値域判定器6は、自己相関器5で得られた
各単位ブロツク毎の各次自己相関値Roについて
次式(5)がn=1〜15の全てに亘つて満足する場合
に、当該単位ブロツクがスペクトラム整形フイル
タ固有の相関を持つているとして相関判定フラツ
グC―Flag“1”を立てて信号判定器9に送出す
る。 RTH1o≦Ro≦RTh2o ……(5) 但し、式(5)中のスレツシヨルドRTh1o及びRTh2o
の値は、音声級データ信号が通されるスペクトラ
ム整形フイルタの特性及び単位ブロツクを構成す
るサンプル数によつて略一意的に定まる。 信号判定器9は、Z―Flag,P―Flag及びC
―Flagを入力とし、16サンプルの単位ブロツク
(2me)内にデータがある可能性を示す一時検出
フラツグd―Flag“1”を次式(6)の判定ロジツク
によつて立て、基本的にはこのd―Flag“1”が
連続する4単位ブロツク(8ms)内で3回以上立
つ時に、入力信号Sが音声級データ信号であると
するデータ判定フラツグD―Flag“1”を立て出
力端子2に送出する。 但し、d―Flagの“1”,“0”をもとにして
D―Flag“1”を立てる条件は上述の〔3回以
上/4単位ブロツク〕には限らず適宜定められる
が、この条件は、音声は有声音や無声音など種々
のスペクトラムを持つため音声信号の相関値が連
続する数単位ブロツクに亘つて特定の領域内に留
まることが希であるという事実に基づくものであ
る。 ところで上記本実施例の信号判定器9は、判定
に際し更に次のような機能を有する。第1の機能
は、データ検出の判定を短時間で結着させるもの
で、観測時間設定器8の出力tによつて制御され
る。この観測時間設定器8はタイムカウンタであ
り、P―Flag“2”が一度立つてから例えば
20ms、即ち10単位ブロツクまでをカウントし、
これを超えた時はカウントしない。そこでP―
Flag“2”が立つてから20ms以内にD―Flag
“1”の成立条件が満足されない場合は、以降少
なくともP―Flagが“0”又は“1”となるま
で出力端子3にV―Flag“1”を立て、その間の
入力信号Sは音声信号と見なして判定を打ち切
り、次回の判定を待機する。第2の機能は、デー
タ検出の判定確度を向上させるもので、Z―
Flag“0”によつて制御される。即ち、上記した
P―Flag“2”の立上り20ms以内で少なくとも1
つのブロツク(4ms)にでもZ―Flag“0”が存
在すれば、D―Flag“1”の成立条件が満たされ
てもこれは無視され、そのブロツク以降少なくと
もP―Flagが“0”又は“1”となるまで出力
端子3にV―Flag“1”を立て、その間は音声信
号と見なし、誤判定を避ける。 ところで本発明に用いる信号判定器9は、基本
的にはZ―Flag“1”とP―Flag“2”とC―
Flag“1”との論理積で立つ一時検出フラツグd
―Flag“1”発生の連続性をもとに入力信号Sが
被変調データ信号であるか否かを判定するもので
あれば良いが、Z―Flag“0”をデータ信号否定
の優先条件とする機能を持たせることによつて誤
判定がなくなる。また、実施例では自己相関器5
をP―Flagの内容によつてその動作(スター
ト/ストツプ)が制御されるものとしたことによ
つて、C―Flag“1”の信頼度が高まる。なお、
零交叉数Zc計数のブロツク長を他の単位ブロツク
より長くしてあるが、これは計数精度を上げるた
めであり、ブロツク長及び単位ブロツク長とも適
宜に定めて良い。また電力区分フラツグP―
Flagは“0”,“1”,“2”の3値としたが、こ
れも例えば“0”と“1”を一緒にするなどした
2値に設定しても良い。更に各種のスレツシヨル
ド、判定条件が実施例にて示した数値あるいは規
準に限定されないことは言うまでもない。また音
声検出器と同様に、一旦被変調データ信号が検出
された後の一定時間内であれば検出が途切れても
被変調データ信号が継続しているとするハングオ
ーバ時間を設けても良い。 以上実施例とともに具体的に説明したように、
本発明によれば、スペクトラム整形フイルタに着
目して自己相関器を用いると共に零交叉数計数器
及び電力計算器を用いて検出装置を構成したの
で、変調方式に拘らず動作開始後例えば20msと
いう短時間で被変調データ信号であるか否かを検
出できる。また本発明装置はDSI方式における前
述した用途以外にもデジタル通信の分野において
被変調データ信号を音声信号と識別するに用いて
非常に有用である。
[Table] The autocorrelator 5 calculates the autocorrelation of the digital input signal S from a first-order correlation to an arbitrary higher-order correlation. The autocorrelation values R within a block are calculated from the 1st to the 15th order using the following equation (4). However, n is the order of 1 to 15, N
is the sample number of 16. The operation of this autocorrelator 5 is controlled by P-Flag, and it is inactive when P-Flag is “0”.
P-Flag is “0” → “1” or “0” →
It is assumed to start when the transition is "2". The correlation value range determiner 6 determines whether the following equation (5) is satisfied for all of n=1 to 15 for each order autocorrelation value R o for each unit block obtained by the autocorrelator 5. Assuming that the unit block has a correlation unique to the spectrum shaping filter, a correlation determination flag C-Flag "1" is set and sent to the signal determiner 9. R TH1o ≦R o ≦R Th2o ...(5) However, the thresholds R Th1o and R Th2o in equation (5)
The value of is almost uniquely determined by the characteristics of the spectrum shaping filter through which the voice-class data signal is passed and the number of samples forming a unit block. The signal judger 9 detects Z-Flag, P-Flag and C
-Flag is input, and the temporary detection flag d-Flag "1" indicating the possibility that there is data in a unit block (2me) of 16 samples is set by the judgment logic of the following equation (6), basically. When this d-Flag "1" stands three or more times within a continuous 4-unit block (8ms), the data judgment flag D-Flag "1" is set to indicate that the input signal S is a voice-grade data signal, and the output terminal 2 Send to. However, the conditions for setting D-Flag "1" based on d-Flag "1" and "0" are not limited to the above-mentioned [3 or more times/4 unit block], but can be determined as appropriate. This is based on the fact that since speech has various spectra such as voiced and unvoiced sounds, the correlation value of a speech signal rarely remains within a specific region over several consecutive unit blocks. By the way, the signal determiner 9 of the present embodiment described above further has the following functions upon determination. The first function is to conclude data detection decisions in a short time, and is controlled by the output t of the observation time setter 8. This observation time setter 8 is a time counter, and after P-Flag "2" is set once, for example,
Count up to 20ms, i.e. 10 unit blocks,
If this is exceeded, it will not be counted. So P-
D-Flag within 20ms after Flag “2” is set.
If the condition for establishing "1" is not satisfied, V-Flag "1" is set at output terminal 3 at least until P-Flag becomes "0" or "1", and during that time the input signal S is not an audio signal. The judgment is terminated and the next judgment is waited. The second function is to improve the judgment accuracy of data detection.
Controlled by Flag “0”. In other words, at least 1 within 20ms of the rise of P-Flag “2” mentioned above.
If Z-Flag “0” exists in even one block (4ms), this will be ignored even if the condition for D-Flag “1” is met, and after that block, at least P-Flag will be “0” or “0”. V-Flag "1" is set at the output terminal 3 until it becomes "1", and during that time it is regarded as an audio signal to avoid misjudgment. By the way, the signal determiner 9 used in the present invention basically uses Z-Flag "1", P-Flag "2" and C-
Temporary detection flag d that is set by logical AND with Flag “1”
- It is sufficient to determine whether the input signal S is a modulated data signal based on the continuity of occurrence of Flag “1”, but Z-Flag “0” may be used as a priority condition for negating the data signal. By providing a function to do this, false judgments will be eliminated. In addition, in the embodiment, the autocorrelator 5
By controlling the operation (start/stop) of C-Flag according to the contents of P-Flag, the reliability of C-Flag "1" is increased. In addition,
Although the block length for zero-crossing number Zc counting is longer than the other unit blocks, this is to improve counting accuracy, and both the block length and unit block length may be determined as appropriate. Also, the power classification flag P-
Flag is set to three values of "0", "1", and "2", but it may also be set to two values, such as combining "0" and "1". Furthermore, it goes without saying that the various thresholds and judgment conditions are not limited to the numerical values or criteria shown in the embodiments. Further, similar to the audio detector, a hangover time may be provided in which the modulated data signal continues even if detection is interrupted within a certain period of time after the modulated data signal is detected. As specifically explained above with the examples,
According to the present invention, since the detection device is configured by focusing on a spectrum shaping filter and using an autocorrelator, a zero-crossing counter, and a power calculator, the detection device can be configured in a short time of, for example, 20 ms after the start of operation, regardless of the modulation method. It is possible to detect whether the signal is a modulated data signal or not based on the time. In addition to the above-mentioned applications in the DSI system, the device of the present invention is also very useful in the field of digital communications for distinguishing modulated data signals from voice signals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,cは各種信号の電力スペクトラ
ムを示す図、第2図は本発明の一実施例を示すブ
ロツク図である。 図面中、4は零交叉数計数器、5は自己相関
器、6は相関値域判定器、7は電力計算器、9は
信号判定器である。
FIGS. 1a, b, and c are diagrams showing power spectra of various signals, and FIG. 2 is a block diagram showing an embodiment of the present invention. In the drawing, 4 is a zero-crossing number counter, 5 is an autocorrelator, 6 is a correlation range judge, 7 is a power calculator, and 9 is a signal judge.

Claims (1)

【特許請求の範囲】[Claims] 1 デジタル化された入力信号が音声信号である
かスペクトラム整形された被変調データ信号であ
るかを判定する装置において、前記入力信号を一
定区間毎に区分した単位ブロツク毎に、当該単位
ブロツクの自己相関値を1次及び所定の高次につ
いて算出する自己相関器と、各次の自己相関値が
各次毎に定めた特定領域内に全て在るか否かを判
定する相関値域判定器と、前記入力信号の単位ブ
ロツク当りの電力を計算して規準値以上にあるか
否かを比較する電力計算器と、前記入力信号を前
記一定区間若しくはこれより長い区間に区分した
ブロツク毎に、該ブロツク内の零交叉数を計数し
て特定範囲内に在るか否かを判定する零交叉数計
数器と、この零交叉数計数器に在りと判定され且
つ電力計算器に規準値以上と判定され且つ相関値
域判定器に在りと判定された単位ブロツクが連続
する複数個の単位ブロツクのうち所定数以上を占
めることを、入力信号を被変調データ信号と判定
する条件とした信号判定器とを備えたことを特徴
とする被変調データ信号の検出装置。
1. In a device that determines whether a digitized input signal is an audio signal or a spectrum-shaped modulated data signal, for each unit block in which the input signal is divided into fixed intervals, an autocorrelator that calculates correlation values for the first order and a predetermined higher order; a correlation range determiner that determines whether all the autocorrelation values of each order are within a specific region determined for each order; a power calculator that calculates the power per unit block of the input signal and compares the power per unit block to see if it exceeds a standard value; A zero-crossing number counter that counts the number of zero-crossings within and determines whether or not it is within a specific range; and a signal determiner that determines that the input signal is a modulated data signal under the condition that the unit block determined to be present by the correlation range determiner occupies a predetermined number or more of the plurality of consecutive unit blocks. A detection device for a modulated data signal, characterized in that:
JP7396679A 1979-06-14 1979-06-14 Detector for modulated data signal Granted JPS55166358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7396679A JPS55166358A (en) 1979-06-14 1979-06-14 Detector for modulated data signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7396679A JPS55166358A (en) 1979-06-14 1979-06-14 Detector for modulated data signal

Publications (2)

Publication Number Publication Date
JPS55166358A JPS55166358A (en) 1980-12-25
JPS635938B2 true JPS635938B2 (en) 1988-02-05

Family

ID=13533318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7396679A Granted JPS55166358A (en) 1979-06-14 1979-06-14 Detector for modulated data signal

Country Status (1)

Country Link
JP (1) JPS55166358A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528659A (en) * 1981-12-17 1985-07-09 International Business Machines Corporation Interleaved digital data and voice communications system apparatus and method

Also Published As

Publication number Publication date
JPS55166358A (en) 1980-12-25

Similar Documents

Publication Publication Date Title
US6889187B2 (en) Method and apparatus for improved voice activity detection in a packet voice network
Yatsuzuka Highly sensitive speech detector and high-speed voiceband data discriminator in DSI-ADPCM systems
EP0719439B1 (en) Voice activity detector
US9412396B2 (en) Voice activity detection/silence suppression system
US4672669A (en) Voice activity detection process and means for implementing said process
US5619566A (en) Voice activity detector for an echo suppressor and an echo suppressor
Sangwan et al. VAD techniques for real-time speech transmission on the Internet
JP2512418B2 (en) Voice conditioning device
NO146521B (en) PROCEDURE AND DEVICE FOR DETECTING PRESENCE OR REQUIREMENTS OF A VOICE SIGNAL ON A VOICE CHANNEL
US5533133A (en) Noise suppression in digital voice communications systems
US7072828B2 (en) Apparatus and method for improved voice activity detection
US7318030B2 (en) Method and apparatus to perform voice activity detection
JPH06504890A (en) DTMF signal detection device
US6199036B1 (en) Tone detection using pitch period
EP0548438A1 (en) A method for detecting dual tone multi-frequency signals and device for implementing said method
JPS635938B2 (en)
Prasad et al. SPCp1-01: Voice Activity Detection for VoIP-An Information Theoretic Approach
JPS6324335B2 (en)
US7277537B2 (en) Tone, modulated tone, and saturated tone detection in a voice activity detection device
Muralishankar et al. Order statistics for voice activity detection in VoIP
US20030110029A1 (en) Noise detection and cancellation in communications systems
JP3298188B2 (en) Voice detection method
US6633847B1 (en) Voice activated circuit and radio using same
FR2817096A1 (en) Packet telephone network non intrusive fault detection having speech reconstituted/fault library compared and faults detected with calculation displayed providing degradation statistical analysis.
Hatamian Enhanced speech activity detection for mobile telephony