JPS6358230A - Fatigue detecting method for power cable - Google Patents

Fatigue detecting method for power cable

Info

Publication number
JPS6358230A
JPS6358230A JP20428886A JP20428886A JPS6358230A JP S6358230 A JPS6358230 A JP S6358230A JP 20428886 A JP20428886 A JP 20428886A JP 20428886 A JP20428886 A JP 20428886A JP S6358230 A JPS6358230 A JP S6358230A
Authority
JP
Japan
Prior art keywords
power cable
cable
detection pipe
metallic sheath
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20428886A
Other languages
Japanese (ja)
Inventor
Takashi Matsui
松井 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP20428886A priority Critical patent/JPS6358230A/en
Publication of JPS6358230A publication Critical patent/JPS6358230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To know the fatigue degree and rest life of a metallic sheath and to attain preventive maintenance for a power cable by installing a detection pipe covering the laid power cable. CONSTITUTION:The power cable 1 which has the metallic sheath of Al, Pb, etc., is laid to a radius R of curvature. The detection pipe 2 is installed covering the power cable 1, its external diameter r2 is larger than the external diameter r1 of the metallic sheath of the power cable 1, and its material is the same metal with the metallic sheath of the power cable 1. The detection pipes 2 are so coupled by coupling device 3 like clamping bands so that the pipes deform integrally with the power cable 1. Inert gas 5 is pressurized properly and charged in the detection pipes 2 and this gas pressure is detected by a monometer 4, so that a warning is generated when the pressure drops below a prescribed value.

Description

【発明の詳細な説明】 (産業上の利用分−1f) 本発明は例えばアルミニウム、鉛等の金属シースを仔す
る電力ケーブルの金属シースの疲労による損傷程度を検
知する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application-1f) The present invention relates to a method for detecting the degree of damage due to fatigue of a metal sheath of a power cable having a metal sheath made of aluminum, lead, etc., for example.

(従来技術及び解決しようとする問題点)電力ケーブル
は通常地下の管路や旧道のトラフ内に敷設され、又最近
では橋梁上に添架敷設されるが、これらいずれの場合に
もケーブルには自身の温度変化による熱伸縮や橋桁の各
種伸縮を受けてケーブルの敷設形状が変化し曲げ半径(
R)が変ることにより金属ノースには疲労が発生する。
(Prior art and problem to be solved) Power cables are usually laid in underground conduits or troughs on old roads, and recently they are laid on bridges, but in both cases, the cables have their own The cable laying shape changes due to thermal expansion and contraction due to temperature changes and various expansion and contraction of the bridge girder, and the bending radius (
Fatigue occurs in the metal north due to the change in R).

又特に橋梁−1−に敷設したような場合には車輌の走杼
に伴って常時振動が発生し、これがケーブルに伝わって
ケーブルも微小な上下及び左右方向の変形を生じ金属シ
ースに歪を生じることになる。
In addition, especially when installed on a bridge -1-, constant vibration occurs due to the running of the vehicle, and this is transmitted to the cable, causing slight vertical and horizontal deformation of the cable, causing distortion in the metal sheath. It turns out.

ところで、金属シースがその使用期間中に疲労破壊に至
るとOFケーブルでは謡曲が生じ、プラスチック絶縁ケ
ーブルでは内部に漏気が侵入し、いずれの場合でも電気
絶縁性能の低下につながるため、このようなことの生じ
ないようシース疲労対策には細心の注意を払っている。
By the way, if the metal sheath suffers fatigue failure during its use, OF cables will suffer from sagging, and plastic insulated cables will have air leakage inside, leading to a decline in electrical insulation performance in either case. We pay close attention to measures to prevent sheath fatigue from occurring.

その対策の1つとしては、ケーブルの布設形状、支持方
法等について設計時点で理論検討及び実験を行ない、予
想されるケーブルに加わる伸縮、振動条件等に対し、金
属シースに発生する歪変化が30年間繰返し加わり続け
ても金属シースが破壊しないように形状及び支t、y方
法を定めている。
One of the countermeasures is to perform theoretical studies and experiments on the cable installation shape, support method, etc. at the design stage, and to reduce the strain change occurring in the metal sheath by 30% due to expected expansion/contraction, vibration conditions, etc. The shape and supporting methods (t, y) are determined so that the metal sheath will not break even if the metal sheath is repeatedly applied over a year.

しかし、この方法はケーブルに加わる伸縮、振動条件等
が設計時点の予想値に対して同じか又はそれ以下であれ
ば問題ないが、超えるような場合は必要なノミ命期間以
内で突然疲労破壊が1しるおそれがある。
However, there is no problem with this method as long as the expansion/contraction, vibration conditions, etc. applied to the cable are the same as or less than the expected values at the time of design, but if they exceed the expected values, sudden fatigue failure may occur within the required chisel life period. 1 may occur.

上記の対策のみでは上述のような問題点があるため、ケ
ーブルの敷設ルート中、特に問題となりそうな個所につ
いてはケーブルに併設して同サイズの測定用ケーブルを
数m〜十数m布設し、この測定用ケーブル表面の防介層
を局所的にはいで金属シースを露出し、この部分の金属
シース表面に歪ゲージを貼付し、歪変化を測定すること
により間接的に本ケーブルのシース歪変化を知り、設3
1値に対する差のイr無を把握している。
Since the above-mentioned problems arise with the above-mentioned measures alone, measurement cables of the same size are laid several meters to more than ten meters along with the cable in areas that are likely to cause particular problems during the cable installation route. The sheath strain of this cable can be indirectly changed by peeling off the anti-corrosion layer on the surface of this measurement cable locally to expose the metal sheath, attaching a strain gauge to the surface of the metal sheath in this area, and measuring the strain change. Knowing, setting 3
We understand the difference between 1 value and 1 value.

このような方法によれば、実際の布設形状、支持方法で
布設されたケーブルに実際の伸縮、振動条件等が加わっ
た時の1°〔の歪変化を知り得るので、設計値と実際値
間の差による疲労時期の推定、ズレという問題は解消出
来るが、 ■測定用ケーブルを併設する手間、費用が大きい。
According to this method, it is possible to know the strain change of 1° when actual expansion/contraction, vibration conditions, etc. are applied to the cable laid with the actual installation shape and support method, so the difference between the design value and the actual value can be determined. However, the problem of discrepancies in estimation of the fatigue period due to the difference in timing can be solved, but ■It takes a lot of effort and cost to install a measurement cable.

■伸縮と振動とでは最大歪の発生する位置、方向が5゛
(なるため、コ・ゲージの貼付枚数が多くなり、歪ゲー
ジを貼付する手間、費用が大きい。
- Due to expansion/contraction and vibration, the position and direction where the maximum strain occurs is 5° (5°), so the number of co-gauges to be attached increases, and the effort and cost of attaching strain gauges is large.

■測定期間に制限があり(通常数年間)、ケーブル布設
後30年の歪変化を測定し続けることが出来ない。従っ
てd111定時以1);i及び以後の歪変化を把握でき
ない。
■The measurement period is limited (usually several years), making it impossible to continue measuring strain changes for 30 years after cable installation. Therefore, after d111 regular time 1);i and subsequent distortion changes cannot be grasped.

という問題点があった。There was a problem.

(問題点を解決するための手段) 本発明は−L述の問題点を解消した電力ケーブルの疲労
検知方法を提供するもので、その特徴は、電力ケーブル
の金属シース外径よりも大きい外径をイrし、かつ上記
金属シースと同材質の検出パイプを電力ケーブルに抱き
合せて設置し、上記検出パイプ内には圧力ガスを封入し
ておき、該圧力ガスの圧力変化を検出することにある。
(Means for Solving the Problems) The present invention provides a method for detecting fatigue of a power cable that eliminates the problems mentioned above. A detection pipe made of the same material as the metal sheath is installed along the power cable, a pressure gas is sealed in the detection pipe, and changes in the pressure of the pressure gas are detected. be.

第1図は本発明の疲労検出方法の具体例の説明図、第2
図は検出パイプと電力ケーブルの連結状況の説明図で、
同図(イ)は検出パイプを水平方向に設置した場合、同
図(1J)は上下方向に設置した場合を示す。
FIG. 1 is an explanatory diagram of a specific example of the fatigue detection method of the present invention, and FIG.
The figure is an explanatory diagram of the connection status of the detection pipe and power cable.
The same figure (A) shows the case where the detection pipe is installed in the horizontal direction, and the same figure (1J) shows the case where the detection pipe is installed in the vertical direction.

図面において、(1)はアルミニウム、鉛等の金属シー
スをイrする電力ケーブルで曲げ半径Rを以て布設され
ている。■は上記型カケープル(+)に抱き合せて設置
した検出パイプで、その外径(r2)は電力ケーブル(
+)の金属シース外径(r+)よりも大きく、その材質
は電力ケーブル(1)の金属シースと同じ材質の金属で
構成されている。この検出パイプ■は電力ケーブル(1
)と1体になって変形するように例えば締付バンドの如
き結合装置(3)により連結されている。又検出パイプ
■の内部には不活性ガス(5)が適度に加圧されて封入
されており、このガス圧を圧力計(4)で検出し、規定
値以下になると警報を発する。
In the drawings, (1) is a power cable that penetrates a metal sheath made of aluminum, lead, etc. and is laid with a bending radius R. ■ is the detection pipe installed along with the above-mentioned type cable (+), and its outer diameter (r2) is the power cable (
+), and is made of the same metal as the metal sheath of the power cable (1). This detection pipe ■ is connected to the power cable (1
) are connected by a coupling device (3), such as a tightening band, so as to deform as one unit. In addition, an appropriately pressurized inert gas (5) is sealed inside the detection pipe (2), and this gas pressure is detected by a pressure gauge (4), and an alarm is issued when the pressure falls below a specified value.

上記検出パイプ■は波付でも平?Qでもよく、あらかじ
めケーブル(りと抱き合せ同−曲げを与えた場合にケー
ブルでの発生歪(εC)よりもパイプの方が大きい歪(
εp)を生ずるようにr+>rlとしておき、又εp/
εCの比率も別途実験室で一1定しておく。
Is the detection pipe ■ above flat even with corrugations? Q may also be used, and if the cable is tied and bent in advance, the strain (εC) in the pipe is greater than the strain (εC) generated in the cable.
εp) is set as r+>rl, and εp/
The ratio of εC is also kept constant in a separate laboratory.

又検出パイプ■を抱き合せする個所はケーブル中全長と
する必要はなく、特に布設形状、支持方法に余裕がない
個所とか、伸縮、振動等が多く加わるおそれのある個所
等にnく公的に設置すればよい。
In addition, the location where the detection pipe ■ is tied together does not have to be the entire length of the cable, and is particularly suitable for locations where there is insufficient room for the installation shape or support method, or where there is a risk of being subjected to a lot of expansion/contraction, vibration, etc. Just set it up.

(作用) 第1図において、ケーブル中の曲げ半径(R)が左右の
ケーブルの伸縮によりR−R’に変化したとすると、ケ
ーブルの金属シース及び検出パイプの歪変化は であるから、εp/εc=r2/r+となり、εpはε
。よりもr2/r+倍だけ大きい歪が生することになり
、ケーブルの金属シースより検出パイプが必ず早く破゛
壊する。
(Function) In Fig. 1, if the bending radius (R) in the cable changes to RR' due to the expansion and contraction of the left and right cables, then the strain change in the cable metal sheath and detection pipe is εp/ εc=r2/r+, and εp is ε
. This results in a strain that is r2/r+ times larger than that of the cable, and the detection pipe always breaks faster than the metal sheath of the cable.

このためその時点におけるケーブルの疲労度合及び残存
寿命を正確に知ることができる。即ち1111記のεp
/εCの比率及び第3図のシース材金属の歪(ε)〜破
壊回数(tJ)特性からケープルシースの予想破壊[1
数(Nc)が分る。なお図面においてNpは検出パイプ
■が破壊に至るまでの口数である。
Therefore, the degree of fatigue and remaining life of the cable at that point can be accurately known. That is, εp of 1111
/εC ratio and the strain (ε) to fracture number (tJ) characteristics of the sheath material metal shown in Figure 3 to predict the expected failure of the cable sheath [1
The number (Nc) is known. Note that in the drawings, Np is the number of pipes until the detection pipe (3) is destroyed.

従って、]−記時点における金属シースの残存寿命が不
足であればケーブルを補強するとか、引替えるとかの予
防保全が可能となる。
Therefore, if the remaining life of the metal sheath at the point in time is insufficient, preventive maintenance such as reinforcing the cable or replacing it becomes possible.

(発明の効果) 」一連した本発明によれば、布設されている電力ケーブ
ルに検出パイプを抱き合せて設置されているため、ケー
ブルの金属シースと検出パイプは同一の伸縮、振動を受
け、金属シースより検出/イイプは必ず早く破壊する。
(Effects of the Invention) According to the series of the present invention, since the detection pipe is installed tied to the installed power cable, the metal sheath of the cable and the detection pipe are subjected to the same expansion and contraction and vibration, and the metal Detection/Iip is always destroyed faster than the sheath.

このためその時点における金属シースの疲労度合及び残
存寿命を知ることができ、ケーブルに対する予防保全が
可能となる。
Therefore, the degree of fatigue and remaining life of the metal sheath at that point in time can be known, and preventive maintenance of the cable can be performed.

3従来のような測定ケーブルを用いる必要もな・1y く、歪測定も不用のため省力化、経済性にすぐれ、さら
に検出パイプの破壊によりガス圧が低下し警報を光する
ため検出パイプの破壊時期を正確に知ることができる等
の利点を有する。
3. There is no need to use measurement cables like in the past.・1y It is labor-saving and economical because it does not require strain measurement.Furthermore, the destruction of the detection pipe causes the gas pressure to drop and an alarm to be emitted. It has advantages such as being able to know the timing accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の疲労検出方法の具体例の説明図、第2
図(イ)及び(IJ)は電力ケーブルと検出パイプの連
結状態の説明図、第3図は本発明における金属ノースの
残存寿命把握の説明図である。 1・・・電力ケーブル、2・・・検出パイプ、3・・・
結合装置、4・・・圧力計、5・・・圧力ガス。 N     つ   −
FIG. 1 is an explanatory diagram of a specific example of the fatigue detection method of the present invention, and FIG.
Figures (A) and (IJ) are explanatory diagrams of the connection state of the power cable and the detection pipe, and Fig. 3 is an explanatory diagram of how to grasp the remaining life of the metal north in the present invention. 1... Power cable, 2... Detection pipe, 3...
Coupling device, 4...pressure gauge, 5...pressure gas. N two -

Claims (1)

【特許請求の範囲】[Claims] (1)電力ケーブルの金属シース外径よりも大きい外径
を有し、かつ上記金属シースと同材質の検出パイプを電
力ケーブルに抱き合せて設置し、上記検出パイプ内には
圧力ガスを封入しておき該圧力ガスの圧力変化を検出す
ることを特徴とする電力ケーブルの疲労検知方法。
(1) A detection pipe having an outer diameter larger than the outer diameter of the metal sheath of the power cable and made of the same material as the metal sheath is installed along the power cable, and a pressure gas is sealed in the detection pipe. A method for detecting fatigue in a power cable, comprising detecting a pressure change in the pressure gas.
JP20428886A 1986-08-29 1986-08-29 Fatigue detecting method for power cable Pending JPS6358230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20428886A JPS6358230A (en) 1986-08-29 1986-08-29 Fatigue detecting method for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20428886A JPS6358230A (en) 1986-08-29 1986-08-29 Fatigue detecting method for power cable

Publications (1)

Publication Number Publication Date
JPS6358230A true JPS6358230A (en) 1988-03-14

Family

ID=16487996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20428886A Pending JPS6358230A (en) 1986-08-29 1986-08-29 Fatigue detecting method for power cable

Country Status (1)

Country Link
JP (1) JPS6358230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083929A (en) * 2013-10-25 2015-04-30 株式会社ビスキャス Cable metal coat repeated bending test method and repeated bending test device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083929A (en) * 2013-10-25 2015-04-30 株式会社ビスキャス Cable metal coat repeated bending test method and repeated bending test device

Similar Documents

Publication Publication Date Title
US6614354B2 (en) In-ground pipeline monitoring
CA1123227A (en) Structural failure detection method
US20070284112A1 (en) Instrumented Tabular Device for Transporting a Pressurized Fluid
US4650971A (en) Energization indicator and method for heat trace cable and the like
CN113983942B (en) Fiber grating monitoring method and device for shield tunnel segment dislocation
US4826577A (en) Control system for electrochemical protection on submersible metal structures
WO2011046463A1 (en) Fluid pipe and method for detecting a deformation on the fluid pipe
JPS6358230A (en) Fatigue detecting method for power cable
EP0241440B1 (en) Control system for electrochemical protection on submersible metal structures
US20220128154A1 (en) Pipe Floor/Wall Penetration Bellows Seal
CN110596245B (en) Active guided wave array sensor for inhaul cable defects and detection method
EP0132332B1 (en) Cathodic protection system for pipes
JP3780460B2 (en) Settlement measuring method and settling meter
Makhoul et al. Structural Health Monitoring of buried pipelines under seismic hazard: A reivew of damage scenarios and sensing techniques
JP2000055748A (en) Sensor for monitoring soundness of structural member
RU212312U1 (en) Piping element
CN219368964U (en) High-voltage thermocouple with bearing beam
JPH0620976U (en) Finned pipe
RU184470U1 (en) Device for installing an overhead temperature converter
RU196206U1 (en) REINFORCED PIPE
US6807893B2 (en) Jacket-assembly and method for protecting hydraulic elevator jacks
JP3947504B2 (en) Lightning mounting hardware
CN216923686U (en) Pipeline valve flange multilayer cladding anticorrosion antiknock device
RU2215927C2 (en) Device to protect strain gauges on main lines and method of its mounting
RU2161789C2 (en) Unit of indicators of corrosion rate of underground metal structures