JPS6358115A - Detection and diagnosis for mechanical deterioration in insulator by acoustic emission - Google Patents

Detection and diagnosis for mechanical deterioration in insulator by acoustic emission

Info

Publication number
JPS6358115A
JPS6358115A JP20137586A JP20137586A JPS6358115A JP S6358115 A JPS6358115 A JP S6358115A JP 20137586 A JP20137586 A JP 20137586A JP 20137586 A JP20137586 A JP 20137586A JP S6358115 A JPS6358115 A JP S6358115A
Authority
JP
Japan
Prior art keywords
insulator
load
deterioration
relationship
insulators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20137586A
Other languages
Japanese (ja)
Inventor
Takamasa Imaeda
今枝 敬昌
Seiji Kato
加藤 征二
Sukeji Hosoya
細谷 助司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Kansai Electric Power Co Inc
Original Assignee
Central Research Institute of Electric Power Industry
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Kansai Electric Power Co Inc filed Critical Central Research Institute of Electric Power Industry
Priority to JP20137586A priority Critical patent/JPS6358115A/en
Publication of JPS6358115A publication Critical patent/JPS6358115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable proper judgement of the life of an insulator to be inspected due to mechanical deterioration, by a method wherein a tension load is applied to the insulator being inspected to detect acoustic emission (AE) generated, and reference is made to the relationship between a load and deterioration as obtained for a sound insulator. CONSTITUTION:Acousto-electric converters 4 are stuck, for example, on the surface of a ceramic part 2 near a support pin 1 fastened at the center of an insulator by a cement 3 to detect AE (for example, means of the results of four converters 4 is obtained). As for a sound insulator experiencing not load, a tension load led to cause a damage to the insulator and progress in the deterioration in the cement portion 3 are examined to determine the relationship of the activity of the AE to these factors with constant loading conditions such as tension speed. Then, the relationship thus obtained is compared to the relationship between total activity of AE and applied loads for a desired number of insulators removed from a power transmission system. This enables to inform the previous loads applied on the insulators in the service, thereby finding the degree of progress in mechanical deterioration.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は音響放出による碍子の機械的劣化検出診断方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a method for detecting and diagnosing mechanical deterioration of an insulator due to acoustic emission.

(発明の技術的背景) 送電線を鉄塔に支持する碍子の電気的劣化および電線に
よる引張荷重にもとづく機械的劣化の検出診断法の確立
は、送電系統を常に健全な状態に維持して安定な電力需
給を可能とするために欠くことのできないものである。
(Technical Background of the Invention) Establishment of a diagnostic method for detecting electrical deterioration of insulators that support power transmission lines on steel towers and mechanical deterioration based on tensile loads caused by electric wires is an important way to maintain stable power transmission systems by always maintaining them in a healthy state. It is indispensable to enable electricity supply and demand.

ところで電気的劣化の検出診断については、劣化の機会
も多いことから古くから研究が行われ、例えば碍子連の
電圧分布を自動的に測定して診断する方法などのすぐれ
た方法が確立され、信転性の向上に寄与している。しか
し機械的劣化のそれについての研究は大きく遅れており
、現在のところこれと云ったものは見られない。
By the way, since there are many opportunities for electrical deterioration, research has been conducted for a long time regarding the detection and diagnosis of electrical deterioration. Contributes to improved conversion. However, research into mechanical deterioration has lagged far behind, and there is currently no evidence of this.

そこで例えば碍子のもつべき引張荷重を硬銅線において
は最大使用荷重の2.2倍、その他の電線に対しては2
.5倍として安全係数をもたせると共に、経験により定
められた使用期間を経過したとき、対象送電系統の碍子
群を一斉に交換するなどの手段をとり、劣化にもとづく
事故の発生を防ぐことが行われている。
Therefore, for example, the tensile load that an insulator should have is 2.2 times the maximum working load for hard copper wire, and 2.2 times the maximum working load for other wires.
.. In addition to providing a safety factor of 5 times, measures are taken to prevent accidents due to deterioration by replacing all insulators in the target power transmission system all at once after a period of use determined by experience. ing.

しかし電線により碍子に与えられる引張荷重は、電線の
重量のみによって一義的に定まるものではなく、電線に
付着する氷雪の重量、風による振動、更には温度変化に
もとづく電線の伸び縮みなど、不確定な各種の気象条件
によって変化する。このため確かな最大使用荷重を具体
的に与えることは難しく、しかも現在までのところ碍子
が過去に受けた最大引張荷重についての実測方法および
実測データも得られていない。従って最大使用荷重の設
定に当っては多くを経験に頼らざるを得ないため、例え
ば必要とする以上の引張荷重をもった碍子が使用されて
経済的合理性が損なわれる場合があり、また経験に顧る
碍子の一斉交換も劣化のない碍子を交換してしまうおそ
れがあり、これまた経済的合理性を欠くおそれがある。
However, the tensile load applied to the insulator by the wire is not determined solely by the weight of the wire; it is also subject to uncertain factors such as the weight of ice and snow adhering to the wire, vibrations caused by the wind, and even the expansion and contraction of the wire due to temperature changes. It changes depending on various weather conditions. For this reason, it is difficult to specifically give a reliable maximum working load, and to date, there has been no actual measuring method or actual measuring data available for the maximum tensile load that an insulator has received in the past. Therefore, when setting the maximum working load, it is necessary to rely largely on experience. For example, an insulator with a tensile load higher than necessary may be used, which may impair economic rationality. Even if all insulators are replaced at once, there is a risk that insulators that have not deteriorated will be replaced, and this may also lack economic rationality.

そこで近年電力コストの一層の低減と送電設備の信頼性
の一層の向上、更には保守の効率化などの面から、碍子
の引張荷重による機械的劣化への合理的対策に目が向け
られ始め、これに伴い有効な機械的劣化の検出診断方法
の実現が求められている。
Therefore, in recent years, attention has begun to be paid to rational countermeasures against mechanical deterioration caused by tensile loads on insulators, in order to further reduce power costs, further improve the reliability of power transmission equipment, and improve maintenance efficiency. Accordingly, there is a need for an effective method for detecting and diagnosing mechanical deterioration.

(発明の目的) 本発明は碍子が過去に受けた最大引張荷重の実測方法を
実現して、少なくとも同一条件にある送電系統について
最大使用荷重に実測的根拠を与えると共に、更にこれを
発展させて碍子の劣化による寿命を適切に判定しうる劣
化の検出診断方法を提供するものである。次に図面を用
いてその詳細を説明する。
(Object of the invention) The present invention realizes a method for actually measuring the maximum tensile load that an insulator has received in the past, provides an actual measurement basis for the maximum working load at least for power transmission systems under the same conditions, and further develops this method. The present invention provides a deterioration detection and diagnosis method that can appropriately determine the lifespan due to deterioration of an insulator. Next, the details will be explained using the drawings.

(発明の原理) 金属、岩石などの固体材料に荷重を与えたとき、固体材
中から第1図(alに示すような音響を放出することが
知られている(Acoustic Emition略し
てAE)。
(Principle of the Invention) It is known that when a load is applied to a solid material such as metal or rock, sound as shown in FIG. 1 (al) is emitted from the solid material (Acoustic Emission (abbreviated as AE)).

本発明はこのABを利用してなされたものであって、こ
れを送電系統において現在上として使用されてしするク
リストツマライト質の2501冒ボールソケット型懸垂
碍子について調査したところ、次に示す如き特徴的な現
象を呈することが明らかになり、この現象はクレビス型
などの他の懸垂碍子或いはアルミナ質の碍子についても
同様に得られることが判明した。即ち ■ 成る載荷荷重まではAEの発生は小さく、この荷重
を越えると急激に大となる傾向を呈し、これを荷重と各
荷重毎にそれまで発生したAEの発生数の総和(以下こ
れを活動度の総和と称す)との関係を調べると第2図の
へ曲線のように折線となる。なお図中のSIはそのAE
発生数の変換点を示す。またこれに加えて ■ AEの履歴のある碍子の場合には第1表および第3
図に示すように、過去に受けた荷重が大きい程AEの発
生数が小さくなり、かつAE発生数の急激な変換点は荷
重の大きい方に移動する。そして第2図中のBおよびC
曲線のような折線となり、しかも変換点S、における荷
重は第1表に示すように過去に受けた最大載荷荷重をほ
ぼ示すことが明らかにされた。
The present invention was made by utilizing this AB, and when this was investigated on the cristothumarite 2501 ball and socket type suspension insulator currently used in power transmission systems, the following results were found. It has become clear that a characteristic phenomenon is exhibited, and that this phenomenon can be similarly obtained with other suspension insulators such as clevis type or alumina insulators. In other words, the occurrence of AE is small up to a load of ■, but once this load is exceeded, it tends to increase rapidly. When examining the relationship with the sum of degrees (referred to as the sum of degrees), it becomes a broken line like the curve shown in Figure 2. Note that SI in the figure is its AE.
Indicates the conversion point for the number of occurrences. In addition, in the case of insulators with a history of AE, please refer to Tables 1 and 3.
As shown in the figure, the larger the load received in the past, the smaller the number of AE occurrences, and the sharp transition point of the number of AE occurrences moves toward the larger load. And B and C in Figure 2
It was revealed that the curved line was a broken line, and that the load at the conversion point S was approximately the maximum load that had been applied in the past, as shown in Table 1.

このような実験的事実におけるAE活動度の低下は、過
去に碍子が受けた荷重によりAEが解放されることによ
るものと考えられ、また変換点の荷重が過去に受けた荷
重を示すことについてはカイザ効果(Keiser効果
)によるものと考えられるが、何れにしろこの事実によ
って碍子が過去に受けた荷重(応力)の履歴を知ること
ができる。
The decrease in AE activity in this experimental fact is thought to be due to the release of AE due to the load applied to the insulator in the past, and the fact that the load at the conversion point indicates the load applied in the past. This is thought to be due to the Keiser effect, but in any case, this fact allows us to know the history of loads (stress) that the insulator has received in the past.

第   1   表 一方懸垂碍子においては一般に引張荷重によっては磁器
部分に破損が発生せず、載荷荷重の増大に伴い遂には第
4図に示す支持ビン(1)を磁器部分(2)の中心に固
着するセメント部分(3)に損傷を生ずるようなことに
なる。従ってこれから碍子に与えた荷重とピン損傷の前
兆であるセメント部分の劣化状況との関係を知ることが
できる。
Table 1 On the other hand, in suspension insulators, the porcelain part generally does not break due to tensile loads, and as the applied load increases, the support bottle (1) shown in Figure 4 is finally fixed at the center of the porcelain part (2). This would cause damage to the cement part (3). Therefore, it is possible to know the relationship between the load applied to the insulator and the state of deterioration of the cement part, which is a sign of pin damage.

従って例えば第5図の如く碍子の中心にセメント(3)
によって固着されている支持ピン(11の近傍例えば磁
器部分(2)の表面に音響−電気変換器(4)を貼着し
てAEを検出する方法をとり(図では4箇の変換器(4
)の結果の平均値をとるようにしている)、予め荷重を
受けたことのない健全碍子について、引張速度など載荷
条件を同一としてビン損傷に至るまでの引張荷重とセメ
ント部分の劣化の進展状況と、これに関係するAEの活
動度の関係を調べて置く。そしてこれと例えば送電系統
から取りはずして来た任意数の碍子に載荷したときの荷
重とA Eの活動度の総和の関係とを対比することによ
り、使用時碍子に与えられた過去の荷重を知ることがで
き、これから機械的劣化の進展の度合を知ることができ
る。即ち ■ 健全碍子と送電系統に使用されていた被劣化試験碍
子とにおける、前記第2図のAおよび3曲線に示される
荷重とAEの活動度の総和との関係を対比したとき、過
去に荷重を受けた碍子のAEの活動度が荷重を受けない
ものに比べて低下することから、被劣化試験碍子が過去
に荷重を受けたか否かを確認できる。
Therefore, for example, as shown in Figure 5, cement (3) is placed in the center of the insulator.
For example, a method is used to detect AE by attaching an acoustic-electrical transducer (4) to the surface of the porcelain part (2) near the support pin (11) fixed by the support pin (11) (in the figure, four transducers (4)
), the progress of the tensile load and deterioration of the cement part until the bottle is damaged under the same loading conditions such as the tensile speed for a sound insulator that has not been subjected to any load beforehand. We will investigate the relationship between this and the activity level of AE related to this. Then, by comparing this with the relationship between the load applied to an arbitrary number of insulators removed from the power transmission system and the sum of the AE activities, we can find out the past load applied to the insulators during use. From this, the degree of progress of mechanical deterioration can be determined. That is, ■ When comparing the relationship between the load and the sum of the AE activities shown in curves A and 3 in Figure 2 above for a sound insulator and a deteriorated test insulator used in the power transmission system, it is found that the past load Since the AE activity level of the insulator subjected to the test is lower than that of the insulator that is not subjected to the load, it can be confirmed whether or not the deteriorated test insulator has been subjected to the load in the past.

■ 被劣化試験碍子に加えた荷重とAE活動度の総和の
関係図(第2図のB曲線参照)から、傾斜の変化点の荷
重S、を求めて過去に受けた荷重の大きさを知り、これ
を予め健全碍子について求めたビン損傷に至るまでの引
張荷重とセメント部分の劣化の進展状況の関係に当て嵌
めることにより、どの程度劣化が進行しているかを具体
的に知ることができる。
■ From the relationship diagram between the load applied to the deteriorated test insulator and the total AE activity (see curve B in Figure 2), find the load S at the point of change in slope and find out the magnitude of the load it has received in the past. By applying this to the relationship between the tensile load up to bottle damage and the progress of deterioration of the cement part, which was determined in advance for a sound insulator, it is possible to know specifically how much deterioration has progressed.

(発明の効果) 従って例えば受ける気象条件が同しである(使用電線も
同一)送電系統の成る区間における任意数の碍子を標本
として取はずして、本発明により劣化の程度を診断し、
その結果の是非により対象区間内の碍子群の交換を行う
ようにすれば、従来のように経験にもとづく一定使用期
間経過後一斉交換を行う場合のように、劣化の進んでい
ない碍子を交換してしまうおそれがないので、経済的損
失を受けるおそれがなく保守を合理的かつ効率的に行う
ことができる。
(Effect of the invention) Therefore, for example, by removing an arbitrary number of insulators as samples from sections of a power transmission system that are subjected to the same weather conditions (using the same electric wires), and diagnosing the degree of deterioration using the present invention,
If the group of insulators in the target section are replaced depending on the results, it is possible to replace insulators that have not deteriorated as much as in the conventional case where all the insulators are replaced at once after a certain period of use based on experience. Since there is no risk of damage, maintenance can be performed rationally and efficiently without the risk of economic loss.

また本発明によれば対象とする送電系統の区間における
碍子の最大使用荷重を知ることができるので、碍子に持
たせるべき引張強度を適切に選定することができる。
Furthermore, according to the present invention, it is possible to know the maximum working load of the insulator in the target section of the power transmission system, so it is possible to appropriately select the tensile strength that the insulator should have.

また送電系統に実際に使用されている状態のもとに碍子
に荷重を加える適切な方法が考えられれば、予め適当数
の碍子に音響−電気変換器を取付&Jておくことにより
、随時劣化の状態を診断することができる。
Furthermore, if an appropriate method of applying load to the insulators under the conditions in which they are actually used in the power transmission system can be devised, it would be possible to prevent deterioration from time to time by attaching acoustic-electric converters to an appropriate number of insulators in advance. The condition can be diagnosed.

(その他) 以十木発明を実施例について説明したが、音響−電気変
換器によるAEの測定時外来雑音により測定誤差を/]
:する。そこで例えば第1図に示すように検出されたA
 IE波形(図(a))を検波(図(bl)したの4ノ
、闇値17以下をカットして雑音Nを除去するのがよい
。また傾斜の変換点Sを求めるに当っては、前記第5図
のように音響−電気変換器(4)の出力にプリアンプ(
5)とシグナルコンディショナ(6)およびアナログ−
ディジタル変換器(7)を設4J、これにより検出され
たAE波を電子計算機(8)に加えて求めるようにして
もよい。なお本発明では音M−電気変換器として富士セ
ラミック社製AE254S型を用い、その出力をプリア
ンプ(5)で、1odn増幅し、次いでシグナルコンデ
ィショナ(6)により20dll増幅したのちA/D変
換して磁器ディスクに記録し、これを用いて電子計算機
により処理して目的を達成した。
(Others) Although the Itogi invention has been described with reference to an embodiment, measurement errors may occur due to external noise when measuring AE using an acoustic-electrical converter.
:do. For example, as shown in Fig. 1, the detected A
It is better to remove the noise N by detecting the IE waveform (Figure (a)) (Figure (BL)) and cutting the darkness value below 17. Also, in determining the slope conversion point S, As shown in Fig. 5, a preamplifier (
5) and signal conditioner (6) and analog
A digital converter (7) may be provided, and the AE waves detected thereby may be added to the electronic computer (8) to be determined. In the present invention, the AE254S model manufactured by Fuji Ceramic Co., Ltd. is used as the sound M-electrical converter, and its output is amplified by 1odn with a preamplifier (5), then amplified by 20dll with a signal conditioner (6), and then A/D converted. The results were recorded on a porcelain disk and processed using an electronic computer to achieve the purpose.

また以上では静荷重とAEの活動度の総和の関係から劣
化の判定を行うようにした。しかし静11:i重の代り
に第6図に示すような段階的に増力lする動荷重を与え
て平均荷重を求めると同時に、その各段階の各々におけ
るAEの事象数およびそのAnの平均エネルギの間の相
関を次式により求める。
Furthermore, in the above, deterioration is determined based on the relationship between the static load and the sum of the AE activities. However, instead of the static 11: i weight, we apply a dynamic load that increases stepwise as shown in Figure 6 to find the average load, and at the same time calculate the number of AE events at each stage and the average energy of the An. The correlation between is calculated using the following formula.

Y−b X′″ Y:AEの平均エネルギ、X:八E事象数b、m:定数 これらから動荷重の平均値と上式の相関係数を求めて、
第7図のようにその変化点S、から過去に受りた荷重を
知ることもできる。
Y-b
As shown in Fig. 7, it is also possible to know the load received in the past from the change point S.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は音響放出(AE)の説明図、第2図は4;fl
ljとAE事象数の関係図、第3図はAE事象数が過去
に受けた荷重の大きさによって変化することの説明図、
第4図はボールソケット型懸垂碍子の説明図、第5図は
音響−電気変換器の配置図および測定回路図、第6図お
よび第7図は過去に受りた荷重を求める他の説明図であ
る。 (1)・・・支持ビン、(2)・・・碍子の磁器部分、
(3)・・・セメン1一部分、(4)・・・音響−電気
変換器、(5)・・・プリアンプ、(6)・・・シグナ
ルコンディショナ、(7)・・・Al1)変換器、(8
)・・・電子計算機。 く光〉―〜菅j” 工;’f<    −WギCか−1
−− 声5閃 一6閃      か7閃 手続主甫正書(自発) 昭和61年12月3日 特許庁長官 黒 1)明 雄 殿 1、事件の表示 特願昭61−201375号 2、発明の名称 音響放出(A E)による碍子の機械的劣化検出診断方
法 3、補正をする者 事件との関係  出願人 財団法人電力中央研究所 407.1カ       外1名 東京都新宿区西新宿1−23−1 5、補正の対象 明細書の「発明の詳細な説明」の欄 及び図面 6、補正の内容 1 明細書の訂正 (1)第4頁第13行(Emition)を(Emis
sion)に訂正する。 (2)第7頁、第3行および第11行〔ビン〕を〔碍子
、〕に訂正する。 (3)第8頁、第11行〔ピン〕を〔碍子〕に訂正する
。 (4)第10頁、第10行〔磁器〕を〔磁気〕に訂正す
る。 ■1  図面の訂正 第3図と第7図を別紙のように訂正する。 (第3図〔発生度〕を〔発生数〕に訂正、第7図〔相関
〕を〔相関〕に訂正) 第3図 A       BC −騎テ/1氏爪 第7図 一事力函層下の千円(直
Figure 1 is an explanatory diagram of acoustic emission (AE), Figure 2 is 4;fl
A diagram of the relationship between lj and the number of AE events. Figure 3 is an explanatory diagram of how the number of AE events changes depending on the magnitude of the load received in the past.
Figure 4 is an explanatory diagram of a ball-and-socket type suspension insulator, Figure 5 is a layout diagram and measurement circuit diagram of an acoustic-electrical converter, and Figures 6 and 7 are other explanatory diagrams for determining loads received in the past. It is. (1)...Support bottle, (2)...Porcelain part of the insulator,
(3)...Cement 1 part, (4)...Acoustic-electrical converter, (5)...Preamplifier, (6)...Signal conditioner, (7)...Al1) converter , (8
)···Electronic computer. ku light〉―〜Sugaj''工;'f< -WgiC?-1
-- Voice 5, 6, 6 or 7 Proceeding Authorization (self-motivated) December 3, 1985 Director-General of the Patent Office Kuro 1) Akio Tono 1, Indication of Case Patent Application No. 1981-201375 2, Invention Diagnosis method for detecting mechanical deterioration of insulators due to acoustic emission (AE) 3, relationship with the case of the person making the amendment Applicant: Central Research Institute of Electric Power Industry 407.1ka and 1 other person: 1- Nishi-Shinjuku, Shinjuku-ku, Tokyo 23-1 5, "Detailed Description of the Invention" column of the specification subject to amendment and drawing 6, Contents of amendment 1 Correction of the specification (1) Page 4, line 13 (Emission)
sion). (2) On page 7, lines 3 and 11, [bin] is corrected to [insulator]. (3) On page 8, line 11, [pin] is corrected to [insulator]. (4) On page 10, line 10, [porcelain] is corrected to [magnetic]. ■1 Correction of drawings Figures 3 and 7 should be corrected as shown in the attached sheet. (Figure 3 [incidence] has been corrected to [number of occurrences], Figure 7 [correlation] has been corrected to [correlation]) 1,000 yen (direct

Claims (1)

【特許請求の範囲】[Claims] 引張荷重を与えたとき碍子内に発生する音響放出(AE
)を検出し、この放出音響波と荷重の関係が過去に与え
られた荷重によって変化することを利用して履歴荷重を
求めると共に、これを健全碍子によって得られた荷重と
劣化の関係と照合して劣化程度を診断することを特徴と
する音響放出(AE)による碍子の機械的劣化検出診断
方法。
Acoustic emission (AE) that occurs within an insulator when a tensile load is applied
), and by using the fact that the relationship between the emitted acoustic waves and the load changes depending on the load applied in the past, the historical load is determined, and this is compared with the relationship between the load and deterioration obtained for a sound insulator. 1. A method for detecting and diagnosing mechanical deterioration of an insulator using acoustic emission (AE), the method comprising diagnosing the degree of deterioration using acoustic emission (AE).
JP20137586A 1986-08-29 1986-08-29 Detection and diagnosis for mechanical deterioration in insulator by acoustic emission Pending JPS6358115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20137586A JPS6358115A (en) 1986-08-29 1986-08-29 Detection and diagnosis for mechanical deterioration in insulator by acoustic emission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20137586A JPS6358115A (en) 1986-08-29 1986-08-29 Detection and diagnosis for mechanical deterioration in insulator by acoustic emission

Publications (1)

Publication Number Publication Date
JPS6358115A true JPS6358115A (en) 1988-03-12

Family

ID=16440027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20137586A Pending JPS6358115A (en) 1986-08-29 1986-08-29 Detection and diagnosis for mechanical deterioration in insulator by acoustic emission

Country Status (1)

Country Link
JP (1) JPS6358115A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215079A (en) * 1986-03-11 1987-09-21 Dynic Corp Method for molding synthetic leather
JPH01263048A (en) * 1988-04-15 1989-10-19 Goyo Shiko Kk Decorative laminate material and manufacture thereof
KR100355050B1 (en) * 1999-09-22 2002-10-05 김영진 Acoustic Emission Detector Using Digital Encoding
KR100804234B1 (en) * 2001-12-21 2008-02-18 재단법인 포항산업과학연구원 The Device of Tensile Test for The Detection of Acoustic Emission
JP2010091297A (en) * 2008-10-03 2010-04-22 Nippon Steel Corp Method for measuring modulus of elasticity of refractory and method for selecting refractory
JP2010197059A (en) * 2009-02-23 2010-09-09 Chugoku Electric Power Co Inc:The Method of evaluating electric wire and system for evaluating electric wire
JP2021096113A (en) * 2019-12-16 2021-06-24 中日本ハイウェイ・エンジニアリング東京株式会社 Anchor inspection method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215079A (en) * 1986-03-11 1987-09-21 Dynic Corp Method for molding synthetic leather
JPH0585673B2 (en) * 1986-03-11 1993-12-08 Dynic Corp
JPH01263048A (en) * 1988-04-15 1989-10-19 Goyo Shiko Kk Decorative laminate material and manufacture thereof
JPH0657439B2 (en) * 1988-04-15 1994-08-03 五洋紙工株式会社 Decorative laminated material and manufacturing method thereof
KR100355050B1 (en) * 1999-09-22 2002-10-05 김영진 Acoustic Emission Detector Using Digital Encoding
KR100804234B1 (en) * 2001-12-21 2008-02-18 재단법인 포항산업과학연구원 The Device of Tensile Test for The Detection of Acoustic Emission
JP2010091297A (en) * 2008-10-03 2010-04-22 Nippon Steel Corp Method for measuring modulus of elasticity of refractory and method for selecting refractory
JP2010197059A (en) * 2009-02-23 2010-09-09 Chugoku Electric Power Co Inc:The Method of evaluating electric wire and system for evaluating electric wire
JP2021096113A (en) * 2019-12-16 2021-06-24 中日本ハイウェイ・エンジニアリング東京株式会社 Anchor inspection method

Similar Documents

Publication Publication Date Title
Ohtsu Acoustic emission and related non-destructive evaluation techniques in the fracture mechanics of concrete: fundamentals and applications
US5821430A (en) Method and apparatus for conducting in-situ nondestructive tensile load measurements in cables and ropes
US7555931B2 (en) Non-destructive testing of the lining of a process vessel
CN112033588B (en) Vertical stress detection method of epoxy test block based on ultrasonic longitudinal wave reflection
US20150338380A1 (en) Assessing Corrosion Damage in Post-Tensioned Concrete Structures Using Acoustic Emission
Mangual et al. Acoustic-emission-based characterization of corrosion damage in cracked concrete with prestressing strand
CN110927249B (en) Lightweight high-strength composite material stress resonance fatigue test method and test system
EP0704050B1 (en) Determining metallic material fatigue or integrity of a joint by measuring damping factors
Casey et al. A review of the acoustic-emission monitoring of wire rope
JPS6358115A (en) Detection and diagnosis for mechanical deterioration in insulator by acoustic emission
JP7166426B2 (en) Apparatus and method for evaluating soundness of fiber-reinforced composite material
EP1320767B1 (en) Acoustic monitoring of concrete vessels and structures
Petro et al. Damage detection using vibration measurements
JP2006010595A (en) Method for determining degree of structure damage due to traffic load through the use of acoustic emission sound of secondary causes
Rabiei et al. A study on fracture behavior of particle reinforced metal matrix composites by using acoustic emission source characterization
Philippidis et al. Strength degradation due to fatigue-induced matrix cracking in FRP composites: An acoustic emission predictive model
Janeliukstis et al. Control of damage‐sensitive features for early failure prediction of wind turbine blades
CN109239185A (en) A kind of acoustic fatigue test part, design method, test method
Zarouchas et al. Structural Integrity Assessment of blade’s subcomponents using Acoustic Emission Monitoring.
CN112285205A (en) Defect detection method for constructing periodic structure beam
Vionis et al. Non-destructive testing of full scale w/t blade by means of acoustic emission monitoring during controlled static loading
JP2006008385A (en) Deterioration diagnosing method for handrail of escalator
Chilibon Acoustic Emission Sensing of Materials and Structures
JP2002277421A (en) Method for inspecting delayed destruction of rolling roll
AU2007203576B2 (en) Non-Destructive Testing of the Lining of a Process Vessel