JPS6358003A - Metallic ionization detector - Google Patents

Metallic ionization detector

Info

Publication number
JPS6358003A
JPS6358003A JP20144386A JP20144386A JPS6358003A JP S6358003 A JPS6358003 A JP S6358003A JP 20144386 A JP20144386 A JP 20144386A JP 20144386 A JP20144386 A JP 20144386A JP S6358003 A JPS6358003 A JP S6358003A
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
ionization detector
liquid metal
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20144386A
Other languages
Japanese (ja)
Inventor
一司 山中
本永 哲司
天田 達雄
昇 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20144386A priority Critical patent/JPS6358003A/en
Publication of JPS6358003A publication Critical patent/JPS6358003A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二重管型熱交換器の伝熱管破損による液体金属
漏洩の検出方法に係り、特に、高速増殖炉のナトリウム
と水、蒸気用の二重管型蒸気発生器に対して好適な伝熱
管液体金属漏洩検出器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for detecting liquid metal leakage due to heat exchanger tube breakage in a double-tube heat exchanger, particularly for sodium, water, and steam in fast breeder reactors. The present invention relates to a heat exchanger tube liquid metal leak detector suitable for double-tube steam generators.

〔従来の技術〕[Conventional technology]

従来の二重管型熱交換器については、ヌークリアテクノ
ロジ、ボリューム55、ヌークリア2(1981年11
月)第270頁から第279頁(NU−CLEARTE
CNOLO(EY、 VOLUMH55,NLICLE
AR2NOVEMBIER1981PP270−279
)において論じられている。この例を第6図に示す。
For conventional double tube heat exchangers, see Nuclear Technology, Volume 55, Nuclear 2 (November 1981).
Month) pages 270 to 279 (NU-CLEARTE
CNOLO(EY, VOLUMH55, NLICLE
AR2NOVE MBIER1981PP270-279
) is discussed. An example of this is shown in FIG.

外壁の内側に多数の二重管が縦方向に設置されている。A large number of double pipes are installed vertically inside the outer wall.

1から液体金属が3から水がそれぞれ流入する。水は多
数の二重管内管内部を下から上へ。
Liquid metal flows in from 1 and water flows in from 3. Water flows from the bottom to the top inside the many double-walled pipes.

液体金属は二重管外管外部を上から下へ流動する。The liquid metal flows from top to bottom outside the double outer tube.

水は液体金属との熱交換により水蒸気となる。そして水
蒸気は4より、冷却された液体金属は2より流出する。
Water becomes water vapor through heat exchange with liquid metal. The water vapor flows out from 4, and the cooled liquid metal flows out from 2.

二重管内管7と外管6の間には不活性ガス9が封入して
あり、万一の内管7.あるいは、外管6の破損時に、直
接、液体金属8と水。
An inert gas 9 is sealed between the inner tube 7 and the outer tube 6, so that in the unlikely event that the inner tube 7. Alternatively, when the outer tube 6 is damaged, the liquid metal 8 and water are directly released.

蒸気10が接触し、反応しないようにしている。The steam 10 contacts and prevents reaction.

万一、二重管外管6が破損した場合、液体金属8がこの
不活性ガス9中に混入する。この混入液体金属を早期に
検出すれば、熱交換器内伝熱管の破損の進展による大規
模な液体金属、水反応事故を未然に防ぐことができる。
If the double outer tube 6 were to break, the liquid metal 8 would be mixed into the inert gas 9. If this mixed liquid metal is detected early, it is possible to prevent a large-scale liquid metal-water reaction accident due to the progression of damage to the heat transfer tubes in the heat exchanger.

金属イオン化検出器の原理を第7図に示す。液体金属の
エアロゾル14を高温に保たれたフィラメント16によ
り電離、イオン化し、フィラメントとコレクタ17の間
にイオン電流を流す。このイオン電流を検知することに
より微小液体金属漏洩を検出する。
The principle of a metal ionization detector is shown in FIG. A liquid metal aerosol 14 is ionized and ionized by a filament 16 kept at a high temperature, and an ionic current is passed between the filament and a collector 17. By detecting this ionic current, minute liquid metal leakage is detected.

第8図に、二重管型熱交換器に従来の液体金属イオン化
検出器を設置した例を示す。また、第9図に液体金属イ
オン化検出器構造概略図を示す。
FIG. 8 shows an example in which a conventional liquid metal ionization detector is installed in a double-tube heat exchanger. Further, FIG. 9 shows a schematic diagram of the structure of the liquid metal ionization detector.

第8図において熱交換器内伝熱管内管と外管の間(以下
中間層と呼ぶ)にある不活性ガスは、配管25を通し、
ブロワ23によりイオン化検出器24へ導かれる。配管
及び検出器内部は高圧に保たれている。そのため、第9
図の検出器ハウジング29を密封耐圧構造とする必要が
ある。
In FIG. 8, the inert gas between the inner tube and the outer tube of the heat exchanger (hereinafter referred to as the intermediate layer) passes through the pipe 25,
The ionization detector 24 is guided by the blower 23 . The interior of the piping and detector is kept at high pressure. Therefore, the 9th
The detector housing 29 shown in the figure needs to have a sealed pressure-resistant structure.

〔発明が解決しようとする間厘点〕[The problem that the invention attempts to solve]

(1)従来技術では、第8図に示したように、伝熱管破
損による液体金属漏洩検出のために、熱交換器内不活性
ガスを配管25、ブロワ23によりイオン化検出器24
へ導く必要があった。この方法には、漏洩液体金属検出
設備の規模が大きくなるという問題があった。
(1) In the prior art, as shown in FIG. 8, in order to detect leakage of liquid metal due to heat exchanger tube breakage, inert gas inside the heat exchanger is supplied to the ionization detector 24 via piping 25 and blower 23.
I needed to lead to. This method has the problem of increasing the scale of the leakage liquid metal detection equipment.

(2)また、伝熱管外管破損による液体金属漏洩開始か
ら検出までの時間についても、従来技術では第8図に示
すように熱交換器からイオン化検出器まで配管ひきまわ
しのため検出に時間がかかるという問題があった。
(2) Also, regarding the time from the start of liquid metal leakage due to damage to the outer tube of the heat transfer tube to detection, in the conventional technology, as shown in Figure 8, it takes time to detect because the piping is routed from the heat exchanger to the ionization detector. There was a problem that it took a while.

(3)さらに従来技術では、第9図に示すように、イオ
ン化検出器内部が高圧になるため、その外被29は密封
耐圧構造を必要とするという欠点があった。
(3) Furthermore, the prior art had the disadvantage that, as shown in FIG. 9, the pressure inside the ionization detector was high, so the jacket 29 needed to have a hermetically sealed pressure-resistant structure.

(4)従来技術では、破損伝熱管の位置同定が困難であ
り、万一、伝r!!8管外管破損が起きた場合、熱交換
器内の多数の伝熱管全部の中から破損伝熱管を調べ出さ
なければならないという問題があった。
(4) With the conventional technology, it is difficult to identify the location of a damaged heat exchanger tube, and in the unlikely event that a problem occurs, it is difficult to locate the damaged heat transfer tube. ! 8 When an outer tube breaks, there is a problem in that the damaged heat transfer tube must be found among all of the many heat transfer tubes in the heat exchanger.

本発明の目的は、配管、ブロワを削除し液体金属漏洩検
出設備の規模を小さくするとともに、液体金属の漏洩開
始からそれを検出するまでの時間を短縮すること、そし
て同時に、金属イオン化検出器の密封耐圧外被を削除す
ることにある。
The purpose of the present invention is to reduce the scale of liquid metal leakage detection equipment by eliminating piping and blowers, and to shorten the time from the start of liquid metal leakage to its detection. The purpose is to remove the hermetic pressure envelope.

さらに、破損伝熱管を早期に摘出するためにその位置同
定を可能にする。
Furthermore, it is possible to identify the position of a damaged heat exchanger tube in order to remove it at an early stage.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的の二重管壁型熱交換器における液体金属漏洩検
出設備の規模の縮小、液体金属の漏洩開始からそれを検
出するまでの時間の短縮、及び金属イオン化検出器の密
封耐圧外被の削除に関しては、金属イオン化検出器を第
1図の熱交換器中間層内へ内蔵させることにより達成さ
れる。
Reducing the scale of liquid metal leakage detection equipment in double tube wall heat exchangers for the above purposes, shortening the time from the start of liquid metal leakage to detecting it, and eliminating the sealed pressure-resistant jacket of the metal ionization detector. This can be accomplished by incorporating a metal ionization detector into the intermediate layer of the heat exchanger shown in FIG.

また、破損伝熱管位置の同定については、第6図の熱交
換器内の中間層領域を仕切板で数ブロックに分割するこ
とにより、ブロック別の位置同定が可能となる。なお、
このとき、仕切板は完全な密封構造を必要としない。
Further, regarding the identification of the position of the damaged heat exchanger tube, by dividing the intermediate layer region in the heat exchanger shown in FIG. 6 into several blocks with partition plates, it becomes possible to identify the position of each block. In addition,
At this time, the partition plate does not require a completely sealed structure.

〔作用〕[Effect]

金属イオン化検出器の熱交換器中間層内への内蔵化は5
熱交換器から検出部までのサンプルガスの運搬を不要と
し、配管、ブロワ等の付属設備を不要とする。そのため
、検出設備の規模を従来よりもはるかに縮小できる。そ
して、熱交換器内に直接金属イオン化検出器を設置する
ことは、漏洩液体金属のエアロゾルが金属イオン化検出
器まで到達する時間を短縮することにもなる。
The metal ionization detector is built into the heat exchanger intermediate layer.
Eliminates the need to transport sample gas from the heat exchanger to the detection unit, and eliminates the need for attached equipment such as piping and blowers. Therefore, the scale of detection equipment can be much smaller than before. Furthermore, installing the metal ionization detector directly within the heat exchanger also shortens the time it takes for the leaked liquid metal aerosol to reach the metal ionization detector.

また、金属イオン化検出器の熱交換器中間層内への内蔵
化は、金属イオン化検出器内部、及び。
In addition, the metal ionization detector can be built into the heat exchanger intermediate layer.

外部を同じ圧力の場に置くことになるため、検出部の密
封耐圧構造が不要となり、検出器密封耐圧外被が削除で
きる。
Since the outside is placed in the same pressure field, there is no need for a pressure-tight sealed structure for the detection section, and the pressure-tight envelope for the detector can be eliminated.

さらに、金属イオン化検出器の内蔵化は、中間層内の不
活性ガスを非強制循環とすることができるため1強制循
環流路に乗らない不活性ガスの淀みをなくし、均一なサ
ンプリングを可能にする。
Furthermore, the built-in metal ionization detector enables non-forced circulation of the inert gas in the intermediate layer, eliminating stagnation of inert gas that does not enter the forced circulation flow path and enabling uniform sampling. do.

そして、中間府内に仕切を設け、多数の伝熱管群をブロ
ック分けすることにより、万一の伝熱管破損時に、破損
伝熱管の位置同定が可能となる。
By providing a partition in the intermediate chamber and dividing a large number of heat exchanger tube groups into blocks, it becomes possible to identify the position of the damaged heat exchanger tube in the unlikely event that the heat exchanger tube breaks.

〔実施例〕〔Example〕

本発明の一実施例を高速増殖炉(以下FBRと略す)の
二重管蒸気発生器(以下、二重管SGと略す)を例にと
り、第1図、第2図、第3図、第4図、第5図を用いて
説明する。
An example of an embodiment of the present invention is a double tube steam generator (hereinafter referred to as double tube SG) of a fast breeder reactor (hereinafter referred to as FBR). This will be explained using FIGS. 4 and 5.

第1図は、本発明に関する二重管SGを用いたFBRの
熱交換システム系統図、第2図及び第3図は二重管SG
不活性ガス室内に取り付けられたイオン化検出器概略図
、第4図及び第5図は不活性ガス室のブロック分は概略
図である。
Figure 1 is a system diagram of an FBR heat exchange system using double pipe SG according to the present invention, and Figures 2 and 3 are diagrams of double pipe SG.
A schematic diagram of an ionization detector installed in an inert gas chamber, FIGS. 4 and 5 are schematic diagrams of blocks of the inert gas chamber.

第1図において、加熱源30内ナトリウム(以下Naと
略す)は主循環ポンプ31により二重管5G32内へ導
かれる。Naは二重管5G32内の外管外側をとりまく
。二重’l?5G32内の内管内側を流れる水との熱交
換により冷えたNaは5G32を出て再び加熱源30に
導かれて加熱される。一方、二重管5G32内でNaと
の熱交換により加熱、気化された水蒸気は5G32上部
からタービン33、復水器34へと導かれ、復水後、ポ
ンプ35によって再び二重管5G32下部へ流入する。
In FIG. 1, sodium (hereinafter abbreviated as Na) in the heating source 30 is guided into the double pipe 5G32 by the main circulation pump 31. Na surrounds the outside of the outer tube inside the double tube 5G32. Double 'l? The Na cooled by heat exchange with the water flowing inside the inner tube inside the 5G32 exits the 5G32 and is led to the heating source 30 again to be heated. On the other hand, the steam heated and vaporized by heat exchange with Na in the double pipe 5G32 is guided from the upper part of the 5G32 to the turbine 33 and the condenser 34, and after condensation, it is returned to the lower part of the double pipe 5G32 by the pump 35. Inflow.

ところで、第6図で示したように、伝熱管内管と外管の
間は不活性ガス空間となっていて、熱交換器上部の不活
性ガス室(中間層領域の別称)につながっている。第2
図に、本発明による漏洩ナトリウムイオン化検出器の取
り付は位置を示す。
By the way, as shown in Figure 6, there is an inert gas space between the inner and outer heat exchanger tubes, which is connected to the inert gas chamber (another name for the intermediate layer region) at the top of the heat exchanger. . Second
In the figure, the mounting position of a leak sodium ionization detector according to the invention is shown.

本図は第6図に示した中間層領域の断面図であり。This figure is a sectional view of the intermediate layer region shown in FIG. 6.

イオン化検出器39の取り付は状態をも示す。検出器本
体を不活性ガス室に内蔵したことにより、検出器内部と
外部の圧力差が0となり、検出器の密封耐圧外被を必要
としなくなる。密封耐圧外被を削除した金属イオン化検
出器の熱交換器中間層内取り付は状態を第3図に示す。
The attachment of the ionization detector 39 also indicates the condition. By housing the detector main body in an inert gas chamber, the pressure difference between the inside and outside of the detector becomes zero, eliminating the need for a hermetically sealed pressure-resistant jacket. FIG. 3 shows how the metal ionization detector is installed in the intermediate layer of the heat exchanger without the sealed pressure-resistant jacket.

万一、第2図で伝熱管外管が破損し、Naが漏洩した場
合、Naは不活性ガス室内に拡散しイオン化検出器39
で検出されるが、直接不活性ガス室内で検出できるため
、その応答性が早い。
In the unlikely event that the outer tube of the heat transfer tube is damaged and Na leaks as shown in Figure 2, Na will diffuse into the inert gas chamber and the ionization detector 39
However, since it can be detected directly in an inert gas chamber, its response is quick.

第4図は、不活性ガス室内を仕切Fj、41でブロック
に区分し、伝熱1140群をグループ分けした例を示す
。各ブロックには検出器39を設置する。
FIG. 4 shows an example in which the inside of the inert gas chamber is divided into blocks by partitions Fj, 41, and heat transfer 1140 groups are divided into groups. A detector 39 is installed in each block.

二重により、万一の伝熱管外管破損時に、ナトリウム漏
洩を早期に検出できる。この場合、仕切板41は完全な
密封構造を必要としない。なぜなら、第5図に示すよう
に、数ケ所のイオン検出器が漏洩を検知したとしても、
その検出量によってどこの伝熱管壁が破損したものかを
知ることができる。
Due to the double structure, sodium leakage can be detected early in the unlikely event that the outer tube of the heat transfer tube is damaged. In this case, the partition plate 41 does not require a complete sealing structure. This is because, as shown in Figure 5, even if several ion detectors detect leakage,
Based on the detected amount, it is possible to know which heat transfer tube wall is damaged.

また、同検出器の内蔵化は、中間層内不活性ガスを非強
制循環とすることができるので、強制循環流路に乗らな
い不活性ガスの淀みをなくすことができ、均一なサンプ
リングを可能にする。さらに、金属イオン化検出器検出
部の密封耐圧構造を不要とし、検出器の密封耐圧外被を
削除できる。
In addition, the built-in detector enables non-forced circulation of the inert gas in the intermediate layer, eliminating stagnation of inert gas that does not enter the forced circulation flow path, enabling uniform sampling. Make it. Furthermore, a hermetically sealed pressure-resistant structure of the metal ionization detector detection section is not required, and the hermetically sealed pressure-resistant jacket of the detector can be omitted.

中間層内に仕切板を設け、多数の伝熱管群をブロック分
けすることは、万一の伝熱管破損時に、破損伝熱管の位
置同定を可能とし、破損伝熱管検出を速く行なうことが
できる。
Providing a partition plate in the intermediate layer and dividing a large number of heat exchanger tube groups into blocks makes it possible to identify the position of the damaged heat exchanger tube in the event of breakage of the heat exchanger tube, and to quickly detect the broken heat exchanger tube.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、配管ブロワ等の付属設備を削除でき、
漏洩液体金属のエアロゾルがイオン化検出器まで到達す
る時間を短縮でき、伝熱管が破損したことを早期に検知
できる。
According to the present invention, accessory equipment such as a piping blower can be removed,
This can shorten the time it takes for leaked liquid metal aerosol to reach the ionization detector, allowing early detection of damage to the heat exchanger tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第6図は二重管壁型熱交換器構造概略図、第7図はイオ
ン化検出器検出原理説明図、第8図は従来の液体金属漏
洩検出設備システム系統図、第9図は従来のイオン化検
出器構造概略図である。第1図は本発明の一実施例のF
BRの熱交換システム系統図、投2図は本発明の熱交換
器内内蔵型熱交換器の概略図、第3図は本発明の不活性
ガス室分割例図、第4図、第5図は不活性ガス室のブロ
ック分は概略図。
Figure 6 is a schematic diagram of the structure of a double tube wall heat exchanger, Figure 7 is a diagram explaining the detection principle of an ionization detector, Figure 8 is a system diagram of a conventional liquid metal leakage detection equipment, and Figure 9 is a diagram of a conventional ionization detector. FIG. 2 is a schematic diagram of a detector structure. FIG. 1 shows F of an embodiment of the present invention.
BR's heat exchange system system diagram, Figure 2 is a schematic diagram of the built-in heat exchanger of the present invention, Figure 3 is an example diagram of the inert gas chamber division of the present invention, Figures 4 and 5. is a schematic diagram of the inert gas chamber block.

Claims (1)

【特許請求の範囲】 1、伝熱管壁部が内管と外管より成る二重管型熱交換器
の、内管と外管との間の隙間に通じる中間層領域に金属
設置したことを特徴とする金属イオン化検出器。 2、特許請求の範囲の第1項において、 電極間部の外被を非密封構造としたことを特徴とする金
属イオン化検出器。 3、特許請求の範囲の第1項において、 前記中間層領域を分割する仕切を設け、漏洩伝熱管のブ
ロック別位置同定を可能としたことを特徴とする金属イ
オン化検出器。
[Claims] 1. Metal is installed in the intermediate layer region communicating with the gap between the inner tube and the outer tube of a double tube heat exchanger in which the heat exchanger tube wall portion is composed of an inner tube and an outer tube. A metal ionization detector featuring: 2. A metal ionization detector according to claim 1, characterized in that the outer covering between the electrodes has a non-sealed structure. 3. The metal ionization detector according to claim 1, characterized in that a partition is provided to divide the intermediate layer region, thereby making it possible to identify the position of each block of the leaky heat exchanger tube.
JP20144386A 1986-08-29 1986-08-29 Metallic ionization detector Pending JPS6358003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20144386A JPS6358003A (en) 1986-08-29 1986-08-29 Metallic ionization detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20144386A JPS6358003A (en) 1986-08-29 1986-08-29 Metallic ionization detector

Publications (1)

Publication Number Publication Date
JPS6358003A true JPS6358003A (en) 1988-03-12

Family

ID=16441171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20144386A Pending JPS6358003A (en) 1986-08-29 1986-08-29 Metallic ionization detector

Country Status (1)

Country Link
JP (1) JPS6358003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179252A (en) * 2007-01-24 2008-08-07 Fuji Heavy Ind Ltd Brake device for truck

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179252A (en) * 2007-01-24 2008-08-07 Fuji Heavy Ind Ltd Brake device for truck

Similar Documents

Publication Publication Date Title
US3969077A (en) Alkali metal leak detection method and apparatus
JPS60249879A (en) Thermoelectric generator
GB1584922A (en) Heat exchanger/pump assembly
JP3652635B2 (en) Heat exchanger with intermediate heat medium
EP0268939A1 (en) Heat exchanger using heat pipes
CN109841289A (en) Experimental rig for the passive guiding system of containment heat
JPH06201866A (en) In-pile apparatus of nuclear fusion reactor
US3520356A (en) Vapor generator for use in a nuclear reactor
US3108053A (en) Heat transfer systems for nuclear reactors
JPS6358003A (en) Metallic ionization detector
JPS60244891A (en) Fast neutron reactor
US3805890A (en) Helical coil heat exchanger
JPH10132994A (en) Graphie deceleration reactor for thermoelectric power generation
JPH0350161B2 (en)
US4515748A (en) Apparatus for detection of losses in a vapor generator
US4886111A (en) Heat pipe type heat exchanger
JPS58135313A (en) Heat recovery apparatus for engine exhaust
US3440455A (en) Nuclear reactor with thermionic converters
JPS6383692A (en) Heat pipe type reactor
JPS603160B2 (en) Heat exchanger repair method
US4096885A (en) Method for sealing leaking pipes and repair unit for use in the method
JPS62177427A (en) Leak detecting method for double heat conduction tube vapor generator
JPS6358001A (en) Steam generator
JPH0740801Y2 (en) Steam generator
SU670864A1 (en) Unit for investigating heat-exchange of cryogenic liquids or gases moving throcgh ducts in field of centrifugal forces