JPS6357740B2 - - Google Patents

Info

Publication number
JPS6357740B2
JPS6357740B2 JP55066147A JP6614780A JPS6357740B2 JP S6357740 B2 JPS6357740 B2 JP S6357740B2 JP 55066147 A JP55066147 A JP 55066147A JP 6614780 A JP6614780 A JP 6614780A JP S6357740 B2 JPS6357740 B2 JP S6357740B2
Authority
JP
Japan
Prior art keywords
composite magnetic
magnetic wire
wire
magnetic field
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55066147A
Other languages
Japanese (ja)
Other versions
JPS56166479A (en
Inventor
Etsuo Ichimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Kanto Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Seiki Co Ltd filed Critical Kanto Seiki Co Ltd
Priority to JP6614780A priority Critical patent/JPS56166479A/en
Publication of JPS56166479A publication Critical patent/JPS56166479A/en
Publication of JPS6357740B2 publication Critical patent/JPS6357740B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • G01R33/0283Electrodynamic magnetometers in which a current or voltage is generated due to relative movement of conductor and magnetic field

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 本発明は特殊な加工処理によつて作られた複合
磁性線を用いて磁界変化を検出する方法とその方
法の実施に用いられる複合磁性線装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting changes in magnetic fields using composite magnetic wires made through special processing, and a composite magnetic wire device used to carry out the method.

従来から、バイカロイ(Vicalloy)又はリメン
ダ(Remendur)のいずれかにより形成されたコ
ア部と、バイカロイ又はリメンダのいずれかによ
り形成されたシエル部とからなる又は更にコア部
とシエル部との接触部にニツケル(Ni)メツキ
を施してなる2重構造の磁性体を固溶化熱処理
し、その後線引加工及び熱処理を何度か繰り返
し、最終段において90%以上の線引加工又は90%
以上の線引加工時に1メートル当り5乃至6回転
のねじり加工を施して作られた複合磁性線は、そ
の軸方向に所定の大きさ以上の磁界を印加する
と、大きなバルクハウゼンジヤンプ(Large
Barkhausen Jamp)による磁化反転現象を示
し、20mm当りの磁壁の移動時間が20ms程度とな
ることが判つている。尚、この現象はSi×tusと
Tonksの実験で知られている大きなバルクハウゼ
ンジヤンプ(このときの20mm当りの磁壁の移動時
間は20μs程度である。)とは異なる現象かも知れ
ない。そこでかかる複合磁性線の特性を利用して
複合磁性線にその磁化反転を検出する検出コイル
を巻回したものを、例えば交番磁界中に配置する
か又は複合磁性線にその磁化反転を検出する検出
コイルを巻回したものを磁界に対して例えば往復
回動することにより、前記検出コイルから前記磁
界の前記複合磁性線に対する相対的変化に応じた
対称又は非対称の両極の出力パルスを得て、これ
により磁界変化を検出することが考えられる。
Conventionally, a core part made of Vicalloy or Remendur and a shell part made of Vicalloy or Remendur, or furthermore, a contact part between the core part and the shell part. A double-structured magnetic material plated with nickel (Ni) is subjected to solid solution heat treatment, and then wire drawing and heat treatment are repeated several times, and in the final stage, wire drawing of 90% or more or 90%
When a composite magnetic wire made by twisting 5 to 6 rotations per meter during the wire drawing process described above, when a magnetic field of a predetermined magnitude or more is applied in the axial direction, a large Barkhausen jump (Large
It is known that the magnetization reversal phenomenon occurs due to the Barkhausen Jump (Barkhausen Jump), and the moving time of the domain wall per 20 mm is approximately 20 ms. Furthermore, this phenomenon is similar to Si×tus.
This may be a different phenomenon from the large Barkhausen jump known from the Tonks experiment (in which the movement time of a domain wall per 20 mm is about 20 μs). Therefore, by utilizing the characteristics of the composite magnetic wire, a detection coil wound around the composite magnetic wire to detect the magnetization reversal is placed, for example, in an alternating magnetic field, or a detection coil is used to detect the magnetization reversal of the composite magnetic wire. For example, by rotating a wound coil reciprocally with respect to a magnetic field, a symmetrical or asymmetrical bipolar output pulse is obtained from the detection coil according to a relative change in the magnetic field with respect to the composite magnetic wire. It is conceivable to detect changes in the magnetic field by

しかるにかかる構成における出力パルスの波高
値は本発明者が下記条件の複合磁性線、検出コイ
ル、印加磁界、を使用して実験的に確認したとこ
ろによると約0.5ボルト程度でありこの程度の出
力電圧ではS、N比が低く、該出力パルスにより
動作すべき次段回路がノイズにより誤動作される
欠点があつた。
However, the peak value of the output pulse in such a configuration was experimentally confirmed by the inventor using a composite magnetic wire, a detection coil, and an applied magnetic field under the following conditions. However, the S/N ratio was low, and the next stage circuit, which should be operated by the output pulse, had the disadvantage of malfunctioning due to noise.

複合磁性線:バイカロイのコア部とリメンダのシ
エル部を有し、かつコア部とシエル部の接触部
にニツケルメツキを施してなる2重構造の磁性
体を固溶化熱処理し、その後線引加工及び熱処
理を何度か繰り返し、最終段において96%の線
引加工と1メートル(m)当り5乃至6回転の
ねじり加工を施して作られたもので、コア部に
対するシエル部の断面積比が0.6であり、外径
が0.43ミリメートル(mm)のもの。
Composite magnetic wire: A double-structured magnetic material that has a Vicaloy core and a Remender shell, with nickel plating applied to the contact area between the core and shell, is solution heat treated, and then wire-drawn and heat treated. This process is repeated several times, and in the final stage, 96% wire drawing and twisting are performed at 5 to 6 turns per meter (m).The cross-sectional area ratio of the shell to the core is 0.6. Yes, with an outer diameter of 0.43 millimeters (mm).

検出コイル:外径が0.1mmのコイル線を2000ター
ン(turns)巻回したもの(34オーム(Ω))。
Detection coil: 2000 turns of coil wire with an outer diameter of 0.1 mm (34 ohms (Ω)).

印加磁界:最大波高値が約80エルステツド(Oe)
の正弦波。
Applied magnetic field: maximum peak value approximately 80 oersted (Oe)
sine wave.

本発明は上記の欠点を解消するためになされた
もので、大きな出力が得られる複合磁性線を用い
た磁界変化検出方法及び複合磁性線装置を提供す
ることを目的とするものである。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and an object of the present invention is to provide a magnetic field change detection method using a composite magnetic wire and a composite magnetic wire device that can obtain a large output.

更に本発明を具体的に述べれば、コア部とシエ
ル部とからなる2重構造の複合磁性線に引張り及
びねじりを加えることにより検出コイルより大き
な出力を得ようとするものである。
More specifically, the present invention is intended to obtain a larger output than a detection coil by applying tension and twist to a composite magnetic wire having a double structure consisting of a core part and a shell part.

以下に本発明の実施例を図面に基いて詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

先ず複合磁性線を使用した車速センサの構成を
第3図に基いて説明すると、1は例えば車速に応
じて回転する回転軸であつて、この回転軸1には
直径方向に対応する2個の永久磁石2及び3が合
成樹脂等の非磁性体からなる支持部材4を介して
回転軸1と一体的に固定されている。この双方の
永久磁石2及び3はそのいずれか一方がセツト用
に、また双方のいずれか他方がリセツト用となる
ように組合せられており、更にその永久磁石2,
3は、後述する複合磁性線の位置における磁界の
強さが約80エルステツドになるように着磁されて
いる。5は複合磁性線であつてこの複合磁性線5
はバイカロイのコア部とリメンダのシエル部を有
し、かつコア部とシエル部の接触部にニツケルメ
ツキを施してなる2重構造の磁性体を固溶化熱処
理し、その後線引加工及び熱処理を何度か繰返
し、最終段において96%の線引加工と1m当り5
乃至6回転ねじり加工を施して作られたもので、
コア部に対するシエル部の断面積比が0.6であり、
外径が0.43mmのものであつて、更に30mm当り約
20゜〜50゜のねじりと7〜9Kgの引張り荷重を付加
した状態でメツキ又は半田等の付加手段6によつ
て保持せしめたものである。7は外径が0.1mmの
銅線を2000ターン巻回せしめ(抵抗値が34オー
ム)てなる検出コイルである。
First, the configuration of a vehicle speed sensor using composite magnetic wires will be explained based on FIG. Permanent magnets 2 and 3 are integrally fixed to the rotating shaft 1 via a support member 4 made of a non-magnetic material such as synthetic resin. Both permanent magnets 2 and 3 are combined so that one of them is used for setting and the other of both is used for resetting.
No. 3 is magnetized so that the strength of the magnetic field at the position of the composite magnetic wire, which will be described later, is approximately 80 oersted. 5 is a composite magnetic wire, and this composite magnetic wire 5
The double structure magnetic material has a Vicaloy core and a Remender shell, and the contact area between the core and the shell is plated with nickel, and is solution heat treated, and then subjected to wire drawing and heat treatment several times. 96% wire drawing process and 5 per meter in the final stage.
It is made by twisting 6 turns.
The cross-sectional area ratio of the shell part to the core part is 0.6,
The outer diameter is 0.43mm, and the diameter is approximately 30mm.
It is held by applying means 6 such as plating or soldering with a twist of 20° to 50° and a tensile load of 7 to 9 kg applied. 7 is a detection coil made of 2000 turns of copper wire with an outer diameter of 0.1 mm (resistance value is 34 ohms).

次にその作用について述べると、回転軸1の回
転に伴つて永久磁石2,3が車速に応じて回転さ
れると複合磁性線5には、その車速に比例し、最
大波高値が約80エルステツドの正弦波の磁界が印
加される。ところがこの複合磁性線5には約30mm
当り約20゜〜50゜のねじりと、7Kg〜9Kgの引張り
荷重が加えられているので、検出コイル7からは
波高値が約20ボルト両極パルスが出力された。
Next, to describe its effect, when the permanent magnets 2 and 3 are rotated in accordance with the vehicle speed as the rotating shaft 1 rotates, the composite magnetic wire 5 has a maximum wave height of about 80 oersted in proportion to the vehicle speed. A sinusoidal magnetic field is applied. However, this composite magnetic wire 5 has a diameter of about 30 mm.
Since a twist of about 20° to 50° and a tensile load of 7 kg to 9 kg were applied, the detection coil 7 outputted a bipolar pulse with a peak value of about 20 volts.

尚、検出コイル7は第4図に示すように複合磁
性線5が複数個ある場合には、複数個の複合磁性
線に包絡的に巻回せしめてもよい。
Incidentally, when there are a plurality of composite magnetic wires 5 as shown in FIG. 4, the detection coil 7 may be wrapped around the plurality of composite magnetic wires.

次に上記複合磁性線5にねじりと引張り荷重を
付与せしめた場合、検出コイル7から得られる出
力について具体的に述べると、第1図は長さが
92.5mmの複合磁性線5に90度のねじりを加えた状
態で、引張り荷重0〜10Kgまで変化した時、検出
コイル7から得られる無負荷時出力の値を示した
グラフである。尚「Γ」印は正パルスの波高値、
「×」印は負パルスの波高値である。このグラフ
から明らかなように複合磁性線に4Kg〜7Kgの引
張力をかけると出力が急激に増大し、その引張力
が7Kg以上では略一定の高出力が得られる。
Next, when the composite magnetic wire 5 is subjected to torsional and tensile loads, the output obtained from the detection coil 7 will be described in detail.
It is a graph showing the value of the no-load output obtained from the detection coil 7 when the tensile load changes from 0 to 10 kg with a 90 degree twist applied to the 92.5 mm composite magnetic wire 5. The "Γ" mark is the peak value of the positive pulse,
The "x" mark is the peak value of the negative pulse. As is clear from this graph, when a tensile force of 4 kg to 7 kg is applied to the composite magnetic wire, the output increases rapidly, and when the tensile force is 7 kg or more, a substantially constant high output is obtained.

次に長さ94.5mmの複合磁性線5に7Kgの引張り
力を加えた状態でねじり角度を0゜〜180゜まで変化
した時、検出コイル7から得られる無負荷時出力
の値を測定すると第2図に示す如くねじり角度が
大である程正パルスの出力が大であることが判
る。尚「Γ」印は正パルスの波高値、「×」印は
負パルスの波高値である。
Next, when a tensile force of 7 kg is applied to the composite magnetic wire 5 with a length of 94.5 mm and the twist angle is changed from 0° to 180°, the value of the no-load output obtained from the detection coil 7 is measured. As shown in Figure 2, it can be seen that the greater the twist angle, the greater the positive pulse output. Note that the "Γ" mark is the peak value of the positive pulse, and the "x" mark is the peak value of the negative pulse.

上記実験結果から出力パルスの波高値が比較的
に良好となる条件は、複合磁性線、検出コイル及
び印加磁界が4〜5頁の条件のもとでは、該複合
磁性線に30mm当り約20゜〜50゜のねじりを加え、か
つ7〜9Kgの引張り荷重を加えたときと推測でき
る。尚、複合磁性線の径が異なる場合には、引張
り荷重を該引張り荷重による応力が上述の条件で
の応力と等しくなるように選べばよい。
From the above experimental results, the conditions under which the peak value of the output pulse is relatively good are that the composite magnetic wire, the detection coil, and the applied magnetic field are approximately 20 degrees per 30 mm under the conditions of pages 4 to 5. It can be assumed that a twist of ~50° and a tensile load of 7 to 9 kg were applied. In addition, when the diameters of the composite magnetic wires are different, the tensile load may be selected so that the stress due to the tensile load is equal to the stress under the above-mentioned conditions.

尚ねじり、引張りの付加手段として機械的な加
締手段や保形材(例えば、商品名:ニチノール)
を使用してもよい。
In addition, mechanical tightening means and shape retaining materials (for example, product name: Nitinol) can be used as a means of applying twisting and tension.
may be used.

以上述べたように本発明は、バイカロイにより
形成されたコア部と、リメンダにより形成された
シエル部とからなる2重構造の複合磁性線5を該
複合磁性線に対して相対的に変化する交番磁界の
磁気作用下に配置し、前記複合磁性線5の前記交
番磁界による磁化反転を検出コイル7を介して検
出することにより前記交番磁界の前記複合磁性線
5に対する相対的変化を検出するものにおいて、
前記複合磁性線5に引張り又は引張り及びねじり
を加えて前記交番磁界の前記複合磁性線5に対す
る相対的変化を検出する複合磁性線を用いた磁界
変化検出方法及びその複合磁性線装置であるから
本発明によれば検出コイルから得られる出力パル
スの波高値が従来のものに比して40倍程度大きく
得られ、また出力パルスの時間的な揺ぎが少なく
タイムスタビリテイが良くなる等の効果がある。
As described above, the present invention provides a composite magnetic wire 5 having a double structure consisting of a core part formed by Bicaloy and a shell part formed by Remender, in an alternating manner that changes relative to the composite magnetic wire. A device for detecting a relative change in the alternating magnetic field with respect to the composite magnetic wire 5 by disposing it under the magnetic action of a magnetic field and detecting magnetization reversal of the composite magnetic wire 5 due to the alternating magnetic field via a detection coil 7. ,
The present invention relates to a magnetic field change detection method using a composite magnetic wire and a composite magnetic wire device thereof, in which a relative change in the alternating magnetic field to the composite magnetic wire 5 is detected by applying tension or tension and twist to the composite magnetic wire 5. According to the invention, the peak value of the output pulse obtained from the detection coil can be obtained about 40 times larger than that of the conventional one, and there are also effects such as less temporal fluctuation of the output pulse and improved time stability. be.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の実施例を示し、第1図
は引張荷重に対する出力を示したグラフ、第2図
はねじり角に対する出力を示したグラフ、第3図
は複合磁性線を用いた車速センサの要部を示した
断面図、第4図は他の実施例よりなる車速センサ
の断面図である。 1……回転軸、2,3……永久磁石、4……支
持部材、5……複合磁性線、6……付加手段、7
……検出コイル。
The drawings all show embodiments of the present invention; Fig. 1 is a graph showing the output versus tensile load, Fig. 2 is a graph showing the output versus torsion angle, and Fig. 3 is a vehicle speed sensor using composite magnetic wire. FIG. 4 is a cross-sectional view of a vehicle speed sensor according to another embodiment. DESCRIPTION OF SYMBOLS 1...Rotating shaft, 2, 3...Permanent magnet, 4...Supporting member, 5...Composite magnetic wire, 6...Additional means, 7
...Detection coil.

Claims (1)

【特許請求の範囲】 1 バイカロイにより形成されたコア部と、リメ
ンダにより形成されたシエル部とからなる2重構
造の複合磁性線5を該複合磁性線に対して相対的
に変化する交番磁界の磁気作用下に配置し、前記
複合磁性線5の前記交番磁界による磁化反転を検
出コイル7を介して検出することにより前記交番
磁界の前記複合磁性線5に対する相対的変化を検
出するものにおいて、前記複合磁性線5に引張り
及びねじりを加えた状態で前記交番磁界の前記複
合磁性線5に対する相対的変化を検出することを
特徴とする複合磁性線を用いた磁界変化検出方
法。 2 バイカロイにより形成されたコア部と、リメ
ンダにより形成されたシエル部とからなる2重構
造の複合磁性線5を備え、かつ該複合磁性線に引
張り及びねじりを付加する付加手段6を設けてな
ることを特徴とする複合磁性線装置。
[Scope of Claims] 1. A composite magnetic wire 5 having a double structure consisting of a core portion formed by Viqualoy and a shell portion formed by Remender is subjected to an alternating magnetic field that changes relative to the composite magnetic wire. The device is arranged under magnetic action and detects a change in the alternating magnetic field relative to the composite magnetic wire 5 by detecting magnetization reversal of the composite magnetic wire 5 due to the alternating magnetic field via a detection coil 7. A magnetic field change detection method using a composite magnetic wire, characterized in that a relative change in the alternating magnetic field with respect to the composite magnetic wire 5 is detected in a state where the composite magnetic wire 5 is stretched and twisted. 2. A composite magnetic wire 5 having a double structure consisting of a core portion formed of Bicaloy and a shell portion formed of Remender, and additional means 6 for applying tension and twist to the composite magnetic wire. A composite magnetic wire device characterized by:
JP6614780A 1980-05-19 1980-05-19 Detecting method of magnetic field change employing composite magnetic wire and composite magnetic wire apparatus Granted JPS56166479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6614780A JPS56166479A (en) 1980-05-19 1980-05-19 Detecting method of magnetic field change employing composite magnetic wire and composite magnetic wire apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6614780A JPS56166479A (en) 1980-05-19 1980-05-19 Detecting method of magnetic field change employing composite magnetic wire and composite magnetic wire apparatus

Publications (2)

Publication Number Publication Date
JPS56166479A JPS56166479A (en) 1981-12-21
JPS6357740B2 true JPS6357740B2 (en) 1988-11-14

Family

ID=13307455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6614780A Granted JPS56166479A (en) 1980-05-19 1980-05-19 Detecting method of magnetic field change employing composite magnetic wire and composite magnetic wire apparatus

Country Status (1)

Country Link
JP (1) JPS56166479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031019U (en) * 1989-05-29 1991-01-08

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450372A (en) * 1977-09-28 1979-04-20 Akira Matsushita Magnetismmsensitive element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103766U (en) * 1977-12-29 1979-07-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450372A (en) * 1977-09-28 1979-04-20 Akira Matsushita Magnetismmsensitive element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031019U (en) * 1989-05-29 1991-01-08

Also Published As

Publication number Publication date
JPS56166479A (en) 1981-12-21

Similar Documents

Publication Publication Date Title
US4247601A (en) Switchable magnetic device
KR101237582B1 (en) Ultra-sensitive magnetoimpedance sensor
Vazquez et al. Magnetic bistability of amorphous wires and sensor applications
US5146790A (en) Torque sensor
US4939459A (en) High sensitivity magnetic sensor
CN114814270A (en) Variable magnetic flux rotation speed sensor
Mohri et al. Jitter-less pulse generator elements using amorphous bistable wires
US5128614A (en) Compound core element having a pair of uniaxial anisotropic ferromagnetic cell components with different coercive field strength for a thin film sensor
EP1366345B1 (en) Longitudinally-magnetised transducer element
JPS6357740B2 (en)
CA1113577A (en) Switchable magnetic device and method of manufacturing same
JPS58117718A (en) Pulse generator
Humphrey et al. Re-entrant magnetic flux reversal in amorphous wires
JPS59164931A (en) Torque detector
JPH10282194A (en) Magnetic sensor and iron-nickel alloy wire rod for magnetism-sensitive wire
JPH03297215A (en) Magneto-sensitive pulse generator using coaxial cylindrical composite magnetic body
RU2024975C1 (en) Magnetic core and process of its manufacture
JPS5814058A (en) Rotation signal generator
Jin et al. Ferritic Fe‐Ni magnetic sensor wires with end‐to‐end voltage‐generating characteristics
JPS59164932A (en) Torque detector
JPH06204019A (en) Pulse generating magnetic wire and its manufacture
JP3430343B2 (en) Pulse generator with temperature sensing function
JPH0620811A (en) Magnetic wire and manufacture thereof
JPH0621779A (en) Pulse generating element and bobbin therefor
JP3066604B2 (en) Manufacturing method of magnetic wire for pulse generation