JPS6357645A - Production of ultra-high molecular weight polyolefin mixture - Google Patents

Production of ultra-high molecular weight polyolefin mixture

Info

Publication number
JPS6357645A
JPS6357645A JP20149486A JP20149486A JPS6357645A JP S6357645 A JPS6357645 A JP S6357645A JP 20149486 A JP20149486 A JP 20149486A JP 20149486 A JP20149486 A JP 20149486A JP S6357645 A JPS6357645 A JP S6357645A
Authority
JP
Japan
Prior art keywords
molecular weight
ultra
high molecular
weight polyolefin
fluidity improver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20149486A
Other languages
Japanese (ja)
Inventor
Masatoshi Shindo
雅俊 進藤
Hirobumi Harazoe
原添 博文
Akifumi Kato
章文 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP20149486A priority Critical patent/JPS6357645A/en
Publication of JPS6357645A publication Critical patent/JPS6357645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To produce the title mixture having excellent extrudability, storage stability and flow characteristics in powdery form, by mixing an ultra-high molecular weight polyolefin with a specified fluidity improver under specified conditions. CONSTITUTION:95-10wt% ultra-high molecular weight polyolefin powder (A) having an intrinsic viscosity of not lower than 5dl/g (in decalin at 135 deg.C) and a particle size of 1-300mum (e.g., PE) is mixed with 5-90wt% granule of a fluidity improver (B) which is solid at room temp. and has an m.p. lower than that of the component A (e.g., docosane) at a temp. within the range defined by the formula, wherein DELTAHa is the quantity of heat of fusion (cal/g) in the temp. range of the fusion-intiating temp. of the component B to the upper limit of the mixing temp.; and DELTAHf is the total quantity of heat of fusion (cal/g) in the range of the fusion-intiating temp. of the component B to the fusion- terminating temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は押出成形性に優れた超高分子量ポリオレフィン
混合物の製造法に関する。更に詳しくは高弾性率、高引
張強度を有する超高分子量ポリオレフィン延伸物を得る
に好適な押出成形性、貯蔵安定性、粉体流動性に優れた
超高分子量ポリオレフィンと常温固体の流動性改良剤と
からなる混合物の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an ultra-high molecular weight polyolefin mixture with excellent extrudability. More specifically, an ultra-high molecular weight polyolefin with excellent extrusion moldability, storage stability, and powder fluidity suitable for obtaining a drawn ultra-high molecular weight polyolefin product having a high modulus of elasticity and high tensile strength, and a flow improver for solids at room temperature. It relates to a method for producing a mixture consisting of.

〔従来の技術〕[Conventional technology]

超高分子量ポリオレフィンを繊維、テープ等に成形し、
これを延伸することにより、高弾性率、高引張強度を有
する分子配向成形体とすることはすでに公知であり、例
えば、特開昭56−15408号公報には超高分子量ポ
リオレフィンの希薄溶液を紡糸し、得られるフィラメン
トを延伸することが記載されている。
Molding ultra-high molecular weight polyolefin into fibers, tapes, etc.
It is already known that a molecularly oriented molded product having a high elastic modulus and high tensile strength can be obtained by stretching this material. It is described that the resulting filament is drawn.

しかしながら分子量が大きいポリオレフィンは溶媒には
極めて@M溶の為、高濃度の均一溶液を得るのが難しく
、そのことは該公報の一般記載には1〜50重量%の溶
液を用いるとされているものの、その実施例ではせいぜ
い8重量%程度、分子量が100万以上のものについて
は3重量%と掻く低濃度の溶液を用いる方法しか開示さ
れていないことからも明らかである。そのことは該方法
の実用化においては多量の溶媒の処理、生産性等の問題
点があることから、超高分子量ポリオレフィンの高濃度
溶液からの紡糸技術の開発が望まれている。
However, since polyolefins with large molecular weights are extremely @M soluble in solvents, it is difficult to obtain a highly concentrated homogeneous solution, which is why the general description in the publication states that a solution of 1 to 50% by weight should be used. However, it is clear from the fact that the example only discloses a method using a solution with a low concentration of about 8% by weight at most, and 3% by weight for those with a molecular weight of 1 million or more. In practical application of this method, there are problems such as processing of a large amount of solvent and productivity, so there is a desire to develop a spinning technique from a highly concentrated solution of ultra-high molecular weight polyolefin.

超高分子量ポリオレフィンの均一溶液を製造する方法と
して、常温液体の溶媒と超高分子量ポリオレフィンとを
超高分子量ポリオレフィンの溶解温度以下の温度で混合
攪拌し懸濁液とした後、超高分子量ポリオレフィンの溶
解温度に保たれた押出機に供給して均一とする方法(特
開昭61−73743号公報、特開昭61−89232
号公軸)が提案されている。
As a method for producing a homogeneous solution of an ultra-high molecular weight polyolefin, a room temperature liquid solvent and an ultra-high molecular weight polyolefin are mixed and stirred at a temperature below the dissolution temperature of the ultra-high molecular weight polyolefin to form a suspension, and then the ultra-high molecular weight polyolefin is mixed and stirred. A method of supplying the material to an extruder maintained at a melting temperature to make it uniform (JP-A-61-73743, JP-A-61-89232)
No. 1 public axis) has been proposed.

しかしながらかかる方法の如く、常温液体の溶媒を用い
る方法は溶媒と超高分子量ポリオレフィンとの混合時に
攪拌を止めると超高分子量ポリオレフィンが沈澱して不
均一な懸濁液となるので、常に攪拌を行う必要があり、
予め懸濁液として貯蔵してお(ことが困難である。また
溶媒を含む懸濁液を単軸押出機で混練押出ししようとす
る懸濁液とスクリューとが共回りを起こし、且つ押出機
内で溶媒と超高分子量ポリオレフィンとが一部分離し均
一な溶液とはならない虞れがある。事実特開昭61−8
9232号公報に記載された実施例は全て二輪スクリュ
ー押出機を用いた例であり、通常の一軸スクリユー押出
機を用いた場合は不均一なフィラメントで延伸性に劣る
と比較例Cに記されている。
However, in methods using a solvent that is liquid at room temperature, such as this method, if stirring is stopped when the solvent and ultra-high molecular weight polyolefin are mixed, the ultra-high molecular weight polyolefin will precipitate, resulting in a non-uniform suspension, so stirring is required at all times. There is a need,
It is difficult to store the suspension as a suspension in advance.Also, when trying to knead and extrude a suspension containing a solvent with a single screw extruder, the suspension and screw may rotate together, and the screw may rotate inside the extruder. There is a risk that the solvent and the ultra-high molecular weight polyolefin will partially separate and a homogeneous solution will not be obtained.In fact, JP-A-61-8
All of the examples described in Publication No. 9232 are examples using a two-wheel screw extruder, and it is stated in Comparative Example C that when a normal single-screw extruder is used, the filament is non-uniform and the drawability is poor. There is.

一方、超高分子量ポリオレフィンの流動性改良剤として
パラフィン系ワックス等の常温固体の流動性改良剤を用
いる方法(特開昭59−130313号公報、特開昭6
0−197752号公報等)が提案されている。そして
、かかる方法を採用すれば押出成形に通常用いられてい
る単軸押出機を用いて成形物を製造することができるこ
とが分かった。
On the other hand, a method using a fluidity improver that is solid at room temperature such as paraffin wax as a fluidity improver for ultra-high molecular weight polyolefin (JP-A-59-130313, JP-A-6
0-197752, etc.) have been proposed. It has also been found that by employing this method, a molded article can be produced using a single-screw extruder commonly used for extrusion molding.

ところがかかる方法を用いても超高分子量ポリオレフィ
ンと常温固体の流動性改良剤とを混合する際の前処理条
件によっては単軸押出機を用いる際に充分に超高分子量
ポリオレフィンが分散されない場合があることが判明し
た。すなわち超高分子量ポリオレフィンと常温固体の流
動性改良剤とを固体状態のまま単にヘンシェルミキサー
等で漫然と混合するだけでは単軸押出機だけでは充分に
均一溶融混合されない戊れがあること、また特開昭60
−197752号公報に記載された、−旦超高分子量ポ
リオレフインと流動性改良剤とのパウダー混合物を超高
分子量ポリオレフィンの融点以上の温度に放置する方法
では、超高分子量ポリオレフィンが融解して、混合物の
粘度が極端に高くなるため、該公報に記載の如く、押出
機に供給する前にバンバリーミキサ−等の溶融混練機を
用いて均一に溶融混練する必要がある。しかも−旦溶融
混練した混合物を固化させると若干相分離を生じること
、及び固化させたブレンド物は超高分子量ポリオレフィ
ンの分子の絡み合いが生じるためか、再度溶融しても延
伸性に劣るといった現象が生じるため、溶融混練した混
合物は直ちに押出機等に供給する必要があり、予め予備
混合物として貯蔵しておくことが困難である。
However, even if such a method is used, the ultra-high molecular weight polyolefin may not be sufficiently dispersed when using a single-screw extruder depending on the pretreatment conditions when mixing the ultra-high molecular weight polyolefin and the fluidity improver that is solid at room temperature. It has been found. In other words, simply mixing the ultra-high molecular weight polyolefin and the fluidity improver that is solid at room temperature in a solid state using a Henschel mixer or the like may not achieve a sufficiently uniform melt-mixing using a single-screw extruder; 1986
In the method described in Japanese Patent No. 197752, in which a powder mixture of an ultra-high molecular weight polyolefin and a fluidity improver is left at a temperature higher than the melting point of the ultra-high molecular weight polyolefin, the ultra-high molecular weight polyolefin melts and the mixture Since the viscosity of the mixture becomes extremely high, it is necessary to uniformly melt-knead it using a melt-kneader such as a Banbury mixer before feeding it to an extruder, as described in the publication. Furthermore, when a mixture that has been melt-kneaded is solidified, a slight phase separation occurs, and the solidified blend exhibits poor drawability even if it is melted again, probably due to the entanglement of the molecules of the ultra-high molecular weight polyolefin. Therefore, it is necessary to immediately supply the melt-kneaded mixture to an extruder or the like, and it is difficult to store it in advance as a premix.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

かかる状況に鑑み、本発明者らは超高分子量ポリオレフ
ィンの粉末と常温固体で且つ融点が超高分子量ポリオレ
フィンの融点より低い流動性改良剤とからなる押出成形
性、貯蔵安定性、粉体流動性に優れた混合物を得るぺ(
種々検討した結果、本発明に到達した。
In view of this situation, the present inventors developed a method for extrusion moldability, storage stability, and powder fluidity consisting of an ultra-high molecular weight polyolefin powder and a fluidity improver that is solid at room temperature and has a melting point lower than the melting point of the ultra-high molecular weight polyolefin. Get an excellent mixture (
As a result of various studies, we have arrived at the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は、 極限粘度〔η〕が5d1/g以上の超高分子量ポリオレ
フィン(A)の粉末と常温固体で且つ融点が超高分子量
ポリオレフィン(A)の融点より低い流動性改良剤(B
)の顆粒とを、下記式0式% 式中、ΔHaは流動性改良剤(B)の融解開始温度から
混合温度上限までの温度範囲の融解熱量(cal/g)
であり、△llfは流動性改良剤(B)の融解開始温度
から融解終了温度までの全融解熱量(cal/g)であ
る。
That is, the present invention comprises a powder of an ultra-high molecular weight polyolefin (A) having an intrinsic viscosity [η] of 5 d1/g or more, and a fluidity improver (B) that is solid at room temperature and has a melting point lower than that of the ultra-high molecular weight polyolefin (A).
) granules and the following formula 0 formula % where ΔHa is the heat of fusion (cal/g) in the temperature range from the melting start temperature of the fluidity improver (B) to the upper limit of the mixing temperature
and Δllf is the total heat of fusion (cal/g) from the melting start temperature to the melting end temperature of the fluidity improver (B).

を充たす温度範囲で混合することを特徴とする押出成形
性、貯蔵安定性、粉体流動性、作業性等に優れた超高分
子量ポリオレフィン混合物の製造法を提供するものであ
る。
The present invention provides a method for producing an ultra-high molecular weight polyolefin mixture having excellent extrusion moldability, storage stability, powder fluidity, workability, etc., which is characterized by mixing at a temperature range that satisfies the following.

〔作 用〕[For production]

本発明に用いる超高分子量ポリオレフィン(A)はデカ
リン溶媒中135℃で測定した極限粘度〔η〕が5dl
/g以上、好適には7ないし30a/gのものである。
The ultra-high molecular weight polyolefin (A) used in the present invention has an intrinsic viscosity [η] of 5 dl measured at 135°C in a decalin solvent.
/g or more, preferably 7 to 30 a/g.

極限粘度〔η〕が5dl/g未満のものは容易に均一な
混合物を調製できるものの分子鎖が短いため、高弾性率
、高強度特性の達成が難しくなる傾向にある。極限粘度
〔η〕の上限はとくに限定はされないが、30a/gを
越えるものは流動性改良剤(B)を添加しても溶融粘度
が高過ぎて押出成形性に劣る傾向にある。
If the intrinsic viscosity [η] is less than 5 dl/g, a homogeneous mixture can be easily prepared, but because the molecular chain is short, it tends to be difficult to achieve high elastic modulus and high strength properties. The upper limit of the intrinsic viscosity [η] is not particularly limited, but if it exceeds 30 a/g, the melt viscosity is too high even when the fluidity improver (B) is added, and extrusion moldability tends to be poor.

本発明における超高分子量ポリオレフィンは、例えばエ
チレン、プロピレン、1−ブテン、1−ペンテン、l−
ヘキセン、1−オクテン、1−デセン、4−メチル−1
−ペンテンの如きα−オレフィンの単独重合体又は共重
合体である。これらの中ではエチレンの単独重合体もし
くはエチレンと他のα−オレフィンとのエチレンを主体
とした共重合体で高結晶性のものが高弾性率及び高引張
強度化がはかれるので好ましい。
Examples of ultrahigh molecular weight polyolefins in the present invention include ethylene, propylene, 1-butene, 1-pentene, l-
hexene, 1-octene, 1-decene, 4-methyl-1
- Homopolymers or copolymers of α-olefins such as pentene. Among these, ethylene homopolymers or ethylene-based copolymers of ethylene and other α-olefins with high crystallinity are preferred since they can achieve high modulus of elasticity and high tensile strength.

本発明に用いる超高分子量ポリオレフィン(A)は粉末
であり、粒径が通常1〜300μm、好ましくは5〜2
00μmの範囲にある。粒径が300μmを越えるもの
は大き過ぎて後述の流動性改良剤(B)の顆粒の表面に
付着させることができない虞れがある。一方、1μm未
満では(A)成分同士の凝集が激しく起こる様になり均
一分散が困難となる傾向にある。
The ultra-high molecular weight polyolefin (A) used in the present invention is a powder, and the particle size is usually 1 to 300 μm, preferably 5 to 2 μm.
It is in the range of 00 μm. If the particle size exceeds 300 μm, it may be too large to be attached to the surface of the granules of the fluidity improver (B) described below. On the other hand, if the diameter is less than 1 μm, the components (A) tend to aggregate violently, making uniform dispersion difficult.

本発明に用いる流動性改良剤(B)とは常温固体゛で且
つ融点が超高分子量ポリオレフィンの融点より低い超高
分子量ポリオレフィンとの分散性に優れた低分子量化合
物であり、好適には脂肪族炭化水素化合物あるいはその
誘導体である。脂肪族炭化水素化合物としては、飽和脂
肪族炭化水素化合物を主体とするもので、具体的にはト
コサン、トリコサン、テトラコサン、トリアコンタン等
の炭素数22以上のn−アルカンあるいはこれらを主成
分とした低級n−アルカンとの混合物、石油から分離精
製された所謂パラフィンワックス、エチレンあるいはエ
チレンと他のα−オレフィンとを共重合して得られる低
分子量重合体である中・低圧法ポリエチレンワックス、
高圧法ポリエチレンワックス、エチレン共重合ワックス
あるいは中・低圧法ポリエチレン、高圧法ポリエチレン
等のポリエチレンを熱減成等により分子量を低下させた
ワックスおよびそれらのワックスの酸化物あるいはマレ
イン酸変性物等の酸化ワックス、マレイン酸変性ワック
ス等が挙げられる。
The fluidity improver (B) used in the present invention is a low molecular weight compound that is solid at room temperature and has excellent dispersibility with ultra high molecular weight polyolefins whose melting point is lower than the melting point of ultra high molecular weight polyolefins, and is preferably an aliphatic compound. It is a hydrocarbon compound or its derivative. The aliphatic hydrocarbon compounds are mainly saturated aliphatic hydrocarbon compounds, specifically n-alkanes having 22 or more carbon atoms such as tocosan, tricosane, tetracosane, triacontane, etc., or n-alkanes containing these as main components. A mixture with lower n-alkanes, so-called paraffin wax separated and purified from petroleum, medium/low pressure polyethylene wax which is a low molecular weight polymer obtained by copolymerizing ethylene or ethylene with other α-olefins,
High-pressure polyethylene wax, ethylene copolymer wax, medium/low-pressure polyethylene, high-pressure polyethylene, and other waxes whose molecular weight has been lowered by thermal degradation, and oxidized waxes such as oxides of these waxes or maleic acid modified products. , maleic acid-modified wax, and the like.

また、脂肪族炭化水素化合物誘導体としては、例えば脂
肪族炭化水素基(アルキル基、アルケニル基)の末端も
しくは内部に1個又はそれ以上、好ましくは1〜2個、
特に好ましくは1個のカルボキシル基、水酸基、カルバ
モイル基、エステル基、メルトカプト基、カルボニル基
等の官能基を有する化合物である炭素数10以上、好ま
しくは炭素数12〜50又は分子量150〜2000.
好ましくは170〜800の脂肪酸、脂肪族アルコール
、脂肪酸アミド、脂肪酸エステル、脂肪族メルカプタン
、脂肪族アルデヒド、脂肪族ケトン等を挙げることがで
きる。
Further, as the aliphatic hydrocarbon compound derivative, for example, one or more, preferably 1 to 2, at the end or inside of an aliphatic hydrocarbon group (alkyl group, alkenyl group),
Particularly preferred are compounds having one functional group such as carboxyl group, hydroxyl group, carbamoyl group, ester group, meltcapto group, carbonyl group, etc. with a carbon number of 10 or more, preferably a carbon number of 12 to 50, or a molecular weight of 150 to 2,000.
Preferably, 170 to 800 fatty acids, aliphatic alcohols, fatty acid amides, fatty acid esters, aliphatic mercaptans, aliphatic aldehydes, aliphatic ketones, etc. can be mentioned.

具体的には、脂肪酸としてカプリン酸、ラウリン酸、ミ
リスチン酸、バルミチン酸、ステアリン酸、オレイン酸
、脂肪族アルコールとしてミリスチルアルコール、セチ
ルアルコール、ステアリルアルコール、脂肪酸アミドと
してカプリンアミド、ラウリンアミド、パルミチンアミ
ド、ステアリルアミド、脂肪酸エステルとしてステアリ
ル酢酸エステル等を例示することができる。
Specifically, the fatty acids include capric acid, lauric acid, myristic acid, balmitic acid, stearic acid, and oleic acid; the fatty alcohols include myristyl alcohol, cetyl alcohol, and stearyl alcohol; and the fatty acid amides include caprinamide, lauric amide, and palmitinamide. Examples of stearylamide and fatty acid esters include stearyl acetate and the like.

本発明に用いる流動性改良剤(B)としては、前記脂肪
族炭化水素化合物あるいはその誘導体が好ましく、中で
も単一化合物ではなくパラフィンワックス、ポリエチレ
ンワックス、バルミチン酸を含む工業用スクアリン等の
多成分系化合物が融解温度幅が広く、超高分子量ポリオ
レフィン(A)の粉末と流動性改良剤(B)の顆粒との
混合時の温度管理が容易であるので好ましい。
The fluidity improver (B) used in the present invention is preferably the aliphatic hydrocarbon compound or its derivative, and among them, it is not a single compound but a multi-component system such as paraffin wax, polyethylene wax, and industrial squarine containing balmitic acid. It is preferable because the compound has a wide melting temperature range and the temperature can be easily controlled when mixing the powder of the ultra-high molecular weight polyolefin (A) and the granules of the fluidity improver (B).

尚、かかる脂肪族炭化水素化合物あるいはその誘導体に
、本発明の目的を損わない範囲で、軟化点が50ないし
120℃の低軟化点炭化水素重合体、具体的には通常粘
着付与樹脂として粘着テープ、塗料、およびホットメル
ト接着剤用分野に用いられており、重合されるモノマー
源の違いにより次の様な樹脂、例えば、石油、ナフサ等
の分解によって得られるC#留分、C2留分、これらの
混合物あるいはこれらの任意の留分、例えばC1留分中
のイソプレンおよび1.3−ペンタジェンなどを主原料
とする脂肪族系炭化水素樹脂、石油、ナフサ等の分解に
よって得られるC9留分中のスチレンR11体およびイ
ンデン類を主原料とする芳香族系炭化水素樹脂、C4・
C3留分の任意の留分とC9留分を共重合した脂肪族・
芳香族共重合炭化水素樹脂、芳香族系炭化水素樹脂を水
素添加した脂環族系炭化水素樹脂、脂肪族、脂環族およ
び芳香族を含む構造をもつ合成テルペン系炭化水素樹脂
、テレベン油中のα、β−ピネンを原料とするテルペン
系炭化水素樹脂、コールタール系ナフサ中のインデンお
よびスチレン類を原料とするクロマンインデン系炭化水
素樹脂、低分子量スチレン系樹脂およびロジン系炭化水
素樹脂などを添加した混合系の流動性改良剤であっても
よい。
Incidentally, such aliphatic hydrocarbon compound or derivative thereof may be added with a low softening point hydrocarbon polymer having a softening point of 50 to 120°C, specifically, a tackifying resin usually used as a tackifying resin, within a range that does not impair the purpose of the present invention. It is used in the fields of tapes, paints, and hot melt adhesives, and depending on the monomer source to be polymerized, the following resins, such as C# fraction and C2 fraction obtained by decomposing petroleum, naphtha, etc. , a mixture of these or any fraction thereof, for example, a C9 fraction obtained by decomposing an aliphatic hydrocarbon resin, petroleum, naphtha, etc. whose main raw materials are isoprene and 1,3-pentadiene in the C1 fraction. An aromatic hydrocarbon resin whose main raw materials are styrene R11 and indenes, C4.
Aliphatic copolymerization of any C3 fraction and C9 fraction
Aromatic copolymerized hydrocarbon resin, alicyclic hydrocarbon resin obtained by hydrogenating aromatic hydrocarbon resin, synthetic terpene hydrocarbon resin with a structure containing aliphatic, alicyclic and aromatic groups, in turpentine oil terpene-based hydrocarbon resins made from α,β-pinene of It may also be a mixed fluidity improver added.

本発明に用いる流動性改良剤(B)は顆粒であり、粒径
が通常0.2〜5III111好ましくは0.3〜2r
amの範囲にある。5IIII11を越えるものは(A
)の粉末が均一に付着しにくくなり、(A)と(B)の
成分の混合率にむらが生じる虞れがある。
The fluidity improver (B) used in the present invention is a granule, and the particle size is usually 0.2 to 5III111, preferably 0.3 to 2r.
in the am range. Those exceeding 5III11 (A
) will be difficult to adhere uniformly, and there is a risk that the mixing ratio of components (A) and (B) will be uneven.

超高分子量ポリオレフィン(^)の粉末と流動性改良剤
(B)の顆粒との混合割合は、通常超高分子量ポリオレ
フィン(A)の粉末が95ないし10重量%、好ましく
は90ないし30重量%、換言すれば流動性改良剤(B
)の顆粒が5ないし90重量%、好ましくは10ないし
70重量%の範囲である。流動性改良剤(B)の量が5
重量%未満では(A)の付着量に対して(B)の量が少
なすぎる為に(A)同士の凝集が生じ造粒効果も少ない
傾向にあり、又混合物の溶融粘度も高く、押出成形性が
困難な1頃向にある。−方、流動性改良剤(B)が90
重量%を越えると、流動性改良剤(B)同士の付着が激
しくなり、全体的に不均一な組成の粉末となり、且つ粉
末自体もブロック状で流動性の悪い状態になる虞れがあ
る。
The mixing ratio of the powder of the ultra-high molecular weight polyolefin (^) and the granules of the fluidity improver (B) is usually 95 to 10% by weight of the powder of the ultra-high molecular weight polyolefin (A), preferably 90 to 30% by weight, In other words, the fluidity improver (B
) granules ranges from 5 to 90% by weight, preferably from 10 to 70% by weight. The amount of fluidity improver (B) is 5
If it is less than % by weight, the amount of (B) is too small relative to the amount of (A) deposited, so (A) tends to aggregate and the granulation effect tends to be small, and the melt viscosity of the mixture is also high, making it difficult to extrude. I am in the early stages of having difficulty with sex. - On the other hand, the fluidity improver (B) was 90%
If it exceeds % by weight, the fluidity improver (B) will strongly adhere to each other, resulting in a powder with an overall non-uniform composition, and the powder itself may be block-like and have poor fluidity.

本発明の方法は前記超高分子量ポリオレフィン(A)の
粉末と流動性改良剤(B)の顆粒とを下記式0式%(1
) 特に好ましくは下記式 0.003≦ΔHa/Δllf≦0 、012   (
2)式中、△Haは流動性改良剤(・B)の融解開始温
度から混合温度上限までの温度範囲の融解熱量(cal
/g)であり、Δ)Ifは流動性改良剤(B)の融解開
始温度から融解終了温度までの全融解熱量(cat/g
)’である。
In the method of the present invention, the powder of the ultra-high molecular weight polyolefin (A) and the granules of the fluidity improver (B) are mixed with the following formula 0 formula % (1
) Particularly preferably, the following formula 0.003≦ΔHa/Δllf≦0, 012 (
2) In the formula, △Ha is the heat of fusion (cal) in the temperature range from the melting start temperature of the fluidity improver (B) to the upper limit of the mixing temperature.
/g), and Δ)If is the total heat of fusion (cat/g) from the melting start temperature to the melting end temperature of the fluidity improver (B).
)' is.

を充たす温度範囲で混合する方法である。This method involves mixing within a temperature range that satisfies the following.

混合温度がΔHa/Δ)Ifが0.001未満の温度で
は超高分子量ポリオレフィン(A)の粉末が流動性改良
剤(B)の顆粒の表面へ付着せず、一方0.018を越
えると流動性改良剤(B)の顆粒同士がくつついてブロ
ック状となり粉末流動性が劣る。
When the mixing temperature ΔHa/Δ)If is less than 0.001, the powder of the ultra-high molecular weight polyolefin (A) does not adhere to the surface of the fluidity improver (B) granules, while when it exceeds 0.018, the powder of the ultra-high molecular weight polyolefin (A) does not adhere to the surface of the granules of the fluidity improver (B). The granules of the property improver (B) stick together and form blocks, resulting in poor powder fluidity.

流動性改良剤(B)の融解熱量は示差走査型熱量計で以
下の様に行って測定した。示差走査型熱量計はDSCn
型(パーキンエルマー社製)を用いた。
The heat of fusion of the fluidity improver (B) was measured using a differential scanning calorimeter as follows. Differential scanning calorimeter is DSCn
A mold (manufactured by PerkinElmer) was used.

試料約5 smgを封入後、−30℃まで冷却し、−3
1)℃で15分間放置した。その後10℃/n+inの
昇温速度で一30℃から150℃まで測定を行った。得
られた流動性改良剤(B)の完全溶融状態の比熱曲線を
低温側に直接外挿して得られる直線をベースラインとし
て計算した。
After enclosing approximately 5 smg of sample, cool to -30℃ and heat to -3
1) It was left at ℃ for 15 minutes. Thereafter, measurements were carried out from -30°C to 150°C at a temperature increase rate of 10°C/n+in. Calculations were made using a straight line obtained by directly extrapolating the specific heat curve of the obtained fluidity improver (B) in a completely molten state to the low temperature side as a baseline.

超高分子量ポリオレフィン(A)の粉末と流動性改良剤
(B)の顆粒との混合にはヘンシェルミキサー、ヘリカ
ルリボン型混合器、回転式混合器等を使用し得る。
A Henschel mixer, a helical ribbon mixer, a rotary mixer, etc. may be used to mix the ultra-high molecular weight polyolefin (A) powder and the fluidity improver (B) granules.

超高分子量ポリオレフィン(^)の粉末と流動性改良剤
(B)の顆粒との混合時には、耐熱安定剤、耐候安定剤
、顔料、染料、無機充填剤等通常ポリオレフィンに添加
される配合剤を本発明の目的を損わない範囲で添加して
もよい。
When mixing the powder of ultra-high molecular weight polyolefin (^) and the granules of fluidity improver (B), additives that are usually added to polyolefin, such as heat stabilizers, weather stabilizers, pigments, dyes, and inorganic fillers, are added. It may be added within a range that does not impair the purpose of the invention.

〔発明の効果〕 本発明の方法により得られる超高分子量ポリオレフィン
混合物は、押出成形性、貯蔵安定性、粉体流動性に優れ
、しかも予め超高分子量ポリオレフィンが流動性改良剤
の表面に付着した状態で分散した常温固体の混合物であ
るので、通常の押出成形機、すなわち単軸押出成形機を
用いて容易に均質なフィラメント、シート、フィルム、
パイプ、ロッド、テープ等の成形物を溶融押出成形する
ことができる。尚、本発明の方法で得られる混合物は単
軸押出成形機で十分均質な成形物が得られるが、多軸押
出成形機等、他の押出成形機での成形ヰを除外するもの
ではない。
[Effects of the Invention] The ultra-high molecular weight polyolefin mixture obtained by the method of the present invention has excellent extrusion moldability, storage stability, and powder fluidity, and moreover, the ultra-high molecular weight polyolefin has been adhered to the surface of the flowability modifier in advance. Since it is a mixture of solids dispersed at room temperature, it can be easily made into homogeneous filaments, sheets, films, etc. using a normal extruder, i.e. a single screw extruder.
Molded products such as pipes, rods, tapes, etc. can be melt-extruded. Although the mixture obtained by the method of the present invention can be molded into a sufficiently homogeneous molded product using a single-screw extruder, molding using other extrusion molding machines such as a multi-screw extruder is not excluded.

溶融押出成形されたフィラメント、シート、フィルム、
パイプ、テープ等は超高分子量ポリオレフィン(A)に
均質に流動性改良剤(B)が分散されているので、延伸
性に優れており、超高分子量ポリオレフィン(A)の融
点未満の温度で延伸成形するとともに、延伸前、延伸中
あるいは延伸後に成形物から流動性改良剤を除去するこ
とにより、高弾性率、高引張強度を有する超高分子量ポ
リオレフィン延伸物を容易に製造することができる。
Melt extruded filaments, sheets, films,
Pipes, tapes, etc. have excellent stretchability because the fluidity improver (B) is homogeneously dispersed in the ultra-high molecular weight polyolefin (A), and can be stretched at a temperature below the melting point of the ultra-high molecular weight polyolefin (A). By molding and removing the fluidity improver from the molded product before, during or after stretching, it is possible to easily produce a stretched ultra-high molecular weight polyolefin product having a high modulus of elasticity and high tensile strength.

〔実施例〕〔Example〕

次に実施例を挙げて本発明を更に詳しく説明するが、本
発明はその要旨を越えない限りこれらの例に何ら制約さ
れるものではない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples in any way unless the gist of the invention is exceeded.

実施例1 平均粒径150μmの超高分子量ポリエチレン粉末((
η) = 7.5dl/g) 10kgと平均粒径2m
mのパラフィン−AX (分子量500、日本績ろう社
製)10kgとを容積1201のヘンシェルミキサー(
三井三池化工機製)に投入し、ジャケット水は流さず、
700rpmにて混合した。1.5分後攪拌ストップし
、内部のパウダーを取り出したところ平均粒径2.5m
mの流動性良好な顆粒状パウダーが得られた。その時点
でのパウダー温度は35℃、△Ha/△1lf=0.0
11であった。得られたパウダーをホッパー付押出機(
40φ日本製鋼社製)にかけたところ、ホッパーブリッ
ジ防止のための装置を何ら設けることな(、容易に喰い
こみ、ダイス圧力=80kg/cjGで安定して8.8
kg/H1変動率±1.9%で押し出すことができた。
Example 1 Ultra-high molecular weight polyethylene powder ((
η) = 7.5dl/g) 10kg and average particle size 2m
10 kg of paraffin-AX (molecular weight 500, manufactured by Nippon Kiiro Co., Ltd.) and a Henschel mixer (with a volume of 1201 mm)
(manufactured by Mitsui Miike Kakoki) without draining the jacket water.
Mixed at 700 rpm. After 1.5 minutes, stirring was stopped and the powder inside was taken out and the average particle size was 2.5m.
A granular powder with good fluidity was obtained. Powder temperature at that point is 35℃, △Ha/△1lf=0.0
It was 11. The obtained powder is passed through an extruder with a hopper (
40φ made by Nippon Steel Corporation), it was easily bitten and the die pressure = 80kg/cjG was stable at 8.8 without any device to prevent hopper bridging.
It was possible to extrude with a kg/H1 variation rate of ±1.9%.

たところ、パウダー温度が50℃まで上昇しており、流
動性の悪いブロック状物が得られ、ΔHa/△l1f=
0.05であった。
However, the powder temperature rose to 50°C, and a block-like material with poor fluidity was obtained, and ΔHa/Δl1f=
It was 0.05.

そのパウダーをホッパーブリッジ防止のための機械的攪
拌装置を設けて押出機にかけたところ、スタートより喰
いごみが困難で、5分後にはダイス圧力が5 kg /
 aa G以下となり、操作不可能になった。
When the powder was put into an extruder equipped with a mechanical agitation device to prevent hopper bridging, it was difficult to eat the powder from the start, and after 5 minutes, the die pressure was 5 kg /
It became below aa G and became inoperable.

実施例2 平均粒径100μmの超高分子量ポリプロピレン粉末(
〔η) = 9.2dl/g)  8kgと平均粒径3
+wmのパラフィンWAX (分子量=500、日本端
ろう社製)15kgとを実施例1と同一装置にて混合し
、平均粒径3.51の流動性良好な顆粒状パウダーを得
た。その時点でのパウダー温度は38℃、日本製鋼社製
)にかけ、70kg/H(変動率±1.6%)で安定的
に押し出すことができた。
Example 2 Ultra-high molecular weight polypropylene powder with an average particle size of 100 μm (
[η) = 9.2dl/g) 8kg and average particle size 3
+wm paraffin WAX (molecular weight = 500, manufactured by Nihon Danro Co., Ltd.) (15 kg) was mixed in the same device as in Example 1 to obtain a granular powder with an average particle size of 3.51 and good fluidity. At that point, the powder temperature was 38° C. (manufactured by Nippon Steel Corporation), and it was possible to extrude stably at 70 kg/H (variation rate ±1.6%).

Claims (1)

【特許請求の範囲】[Claims] (1)極限粘度〔η〕が5dl/g以上の超高分子量ポ
リオレフィン(A)の粉末と常温固体で且つ融点が超高
分子量ポリオレフィン(A)の融点より低い流動性改良
剤(B)の顆粒とを、下記式 0.001≦△Ha/△Hf≦0.018 式中、△Haは流動性改良剤(B)の融解開始温度から
混合温度上限までの温度範囲の 融解熱量(cal/g)であり、△Hfは流動性改良剤
(B)の融解開始温度から融解終 了温度までの全融解熱量(cal/g)である。 を充たす温度範囲で混合することを特徴とする超高分子
量ポリオレフィン混合物の製造法。
(1) Powder of ultra-high molecular weight polyolefin (A) with intrinsic viscosity [η] of 5 dl/g or more and granules of fluidity improver (B) that is solid at room temperature and has a melting point lower than the melting point of ultra-high molecular weight polyolefin (A). and the following formula 0.001≦△Ha/△Hf≦0.018 where △Ha is the heat of fusion (cal/g) in the temperature range from the melting start temperature of the fluidity improver (B) to the upper limit of the mixing temperature. ), and ΔHf is the total heat of fusion (cal/g) from the melting start temperature to the melting end temperature of the fluidity improver (B). A method for producing an ultra-high molecular weight polyolefin mixture, characterized by mixing at a temperature range that satisfies the following.
JP20149486A 1986-08-29 1986-08-29 Production of ultra-high molecular weight polyolefin mixture Pending JPS6357645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20149486A JPS6357645A (en) 1986-08-29 1986-08-29 Production of ultra-high molecular weight polyolefin mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20149486A JPS6357645A (en) 1986-08-29 1986-08-29 Production of ultra-high molecular weight polyolefin mixture

Publications (1)

Publication Number Publication Date
JPS6357645A true JPS6357645A (en) 1988-03-12

Family

ID=16441986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20149486A Pending JPS6357645A (en) 1986-08-29 1986-08-29 Production of ultra-high molecular weight polyolefin mixture

Country Status (1)

Country Link
JP (1) JPS6357645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791549B2 (en) * 1989-04-26 1995-10-04 ノートン パンパス ゲゼルシャフト ミット ベシュレンクテル ハフツング Maintenance-free sliding bearing and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791549B2 (en) * 1989-04-26 1995-10-04 ノートン パンパス ゲゼルシャフト ミット ベシュレンクテル ハフツング Maintenance-free sliding bearing and its manufacturing method

Similar Documents

Publication Publication Date Title
US5055248A (en) Process for producing stretched article of ultrahigh-molecular weight polyethylene
CN101040001B (en) Polymer blends for producing films with a reduced number of defects
CN1105135C (en) High density polyethylene films with improved barrier
KR910005680B1 (en) Process for producing modified ultrahigh molecular weight polyolefins
JPH0625478A (en) Polyolefin composition and its preparation
JPH0116264B2 (en)
US4490323A (en) Incorporation of liquid additives into polymeric films
KR960000507B1 (en) Ultrahigh-molecular-weight polyolefin composition and process for production thereof
JPS63502992A (en) Ethylene polymer composition and method for producing the same
US5409646A (en) Method for compounding a polymerized alpha-olefin resin
US6433133B1 (en) Process for reducing the weight average molecular weight and melt index ratio of polyethylenes and polyethylene products
EP0755970A1 (en) Process for the extrusion of polyethylene
JPS6357645A (en) Production of ultra-high molecular weight polyolefin mixture
JPS6360708A (en) Manufacture of mixture of ultra-high-molecular-weight polyolefin
JPH0471942B2 (en)
JPH0417132B2 (en)
EP3697863B1 (en) Thermoplastic shape-stable polymer compositions for storing thermal energy
JPH0226915A (en) Production of ultra-high-molecular weight polyolefin fiber
JPS6339941A (en) Production of ultrahigh-molecular weight polyolefin mixture
JPH05279527A (en) Improved olefin polymer composition
JPH0482909A (en) Production of high-molecular weight polyolefin fiber
JPH0314065B2 (en)
Beagan et al. Metallocene catalyzed polyethylene in blown film applications. A comparison between monoextruded blended films and coextruded films
Beagan et al. Metallocene Catalysed Polyethylene in Blown Film Applications-A Comparison Between Monoextruded Blended Films and Coextruded Films
NZ203447A (en) Process for addition of liquid additives to polymeric films