JPS6357601A - Three-dimensionally crosslinked polymeric sub-stance and its production - Google Patents
Three-dimensionally crosslinked polymeric sub-stance and its productionInfo
- Publication number
- JPS6357601A JPS6357601A JP20129286A JP20129286A JPS6357601A JP S6357601 A JPS6357601 A JP S6357601A JP 20129286 A JP20129286 A JP 20129286A JP 20129286 A JP20129286 A JP 20129286A JP S6357601 A JPS6357601 A JP S6357601A
- Authority
- JP
- Japan
- Prior art keywords
- amylase
- units
- crosslinked polymeric
- dimensionally crosslinked
- enzyme
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000126 substance Substances 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 36
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 14
- 238000004132 cross linking Methods 0.000 claims abstract description 14
- 239000008103 glucose Substances 0.000 claims abstract description 14
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 5
- 238000007710 freezing Methods 0.000 claims abstract description 4
- 230000008014 freezing Effects 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 238000006116 polymerization reaction Methods 0.000 claims description 5
- 108010019077 beta-Amylase Proteins 0.000 abstract description 48
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 abstract description 25
- 239000003463 adsorbent Substances 0.000 abstract description 9
- 229920001542 oligosaccharide Polymers 0.000 abstract description 9
- 150000002482 oligosaccharides Chemical class 0.000 abstract description 9
- 239000000843 powder Substances 0.000 description 61
- 102000004190 Enzymes Human genes 0.000 description 52
- 108090000790 Enzymes Proteins 0.000 description 52
- 229940088598 enzyme Drugs 0.000 description 52
- 239000004382 Amylase Substances 0.000 description 45
- 108090000637 alpha-Amylases Proteins 0.000 description 44
- 102000004139 alpha-Amylases Human genes 0.000 description 44
- 229940024171 alpha-amylase Drugs 0.000 description 44
- 229920000642 polymer Polymers 0.000 description 44
- 239000007788 liquid Substances 0.000 description 34
- 239000000706 filtrate Substances 0.000 description 33
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 30
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 27
- 230000000694 effects Effects 0.000 description 26
- 239000000243 solution Substances 0.000 description 21
- 239000000203 mixture Substances 0.000 description 20
- 239000000499 gel Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- 239000006228 supernatant Substances 0.000 description 11
- 108091005804 Peptidases Proteins 0.000 description 10
- 238000003795 desorption Methods 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- 239000011550 stock solution Substances 0.000 description 10
- 238000005406 washing Methods 0.000 description 10
- 235000011121 sodium hydroxide Nutrition 0.000 description 9
- 102000013142 Amylases Human genes 0.000 description 7
- 108010065511 Amylases Proteins 0.000 description 7
- 239000004365 Protease Substances 0.000 description 7
- 235000019418 amylase Nutrition 0.000 description 7
- 229920000856 Amylose Polymers 0.000 description 6
- 240000006439 Aspergillus oryzae Species 0.000 description 6
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 238000004040 coloring Methods 0.000 description 5
- 239000012141 concentrate Substances 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 239000005416 organic matter Substances 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 4
- 102000035195 Peptidases Human genes 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 229920006037 cross link polymer Polymers 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 241000228212 Aspergillus Species 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 241000235527 Rhizopus Species 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 235000011118 potassium hydroxide Nutrition 0.000 description 2
- 238000005185 salting out Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- DBTMGCOVALSLOR-UHFFFAOYSA-N 32-alpha-galactosyl-3-alpha-galactosyl-galactose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(OC2C(C(CO)OC(O)C2O)O)OC(CO)C1O DBTMGCOVALSLOR-UHFFFAOYSA-N 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RXVWSYJTUUKTEA-UHFFFAOYSA-N D-maltotriose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 RXVWSYJTUUKTEA-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- LUEWUZLMQUOBSB-UHFFFAOYSA-N UNPD55895 Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(OC3C(OC(O)C(O)C3O)CO)C(O)C2O)CO)C(O)C1O LUEWUZLMQUOBSB-UHFFFAOYSA-N 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000006103 coloring component Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 229940079919 digestives enzyme preparation Drugs 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000003262 industrial enzyme Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- UYQJCPNSAVWAFU-UHFFFAOYSA-N malto-tetraose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(O)C(CO)O2)O)C(CO)O1 UYQJCPNSAVWAFU-UHFFFAOYSA-N 0.000 description 1
- LUEWUZLMQUOBSB-OUBHKODOSA-N maltotetraose Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@H](CO)O[C@@H](O[C@@H]2[C@@H](O[C@@H](O[C@@H]3[C@@H](O[C@@H](O)[C@H](O)[C@H]3O)CO)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O LUEWUZLMQUOBSB-OUBHKODOSA-N 0.000 description 1
- FYGDTMLNYKFZSV-UHFFFAOYSA-N mannotriose Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(O)C(O)C2O)CO)C(O)C1O FYGDTMLNYKFZSV-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- FYGDTMLNYKFZSV-BYLHFPJWSA-N β-1,4-galactotrioside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@H](CO)O[C@@H](O[C@@H]2[C@@H](O[C@@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-BYLHFPJWSA-N 0.000 description 1
Landscapes
- Enzymes And Modification Thereof (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Polyethers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、新規な三次元架橋化高分子物質に係り、特に
β−アミラーゼ、γ−アミラーゼを選択的に吸着する吸
着剤として有用な三次元架橋化高分子物質及びその製造
方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel three-dimensionally crosslinked polymeric material, and particularly to a three-dimensionally crosslinked polymeric material useful as an adsorbent for selectively adsorbing β-amylase and γ-amylase. This invention relates to an original crosslinked polymer material and a method for producing the same.
現在、異性化糖や麦芽糖は澱粉をα−アミラーゼ、γ−
アミラーゼあるいはβ−アミラーゼを用いて加水分解し
工業生産されている。Currently, high fructose sugar and maltose contain starch with α-amylase and γ-amylase.
It is industrially produced by hydrolysis using amylase or β-amylase.
このようにβ−アミラーゼやT−アミラーゼは澱粉から
有用な低分子性の甘味料を工業生産するのに極めて有用
である。As described above, β-amylase and T-amylase are extremely useful in the industrial production of useful low-molecular-weight sweeteners from starch.
一般に、酵素は酵素生産菌を液体培養して製造される。Generally, enzymes are produced by liquid culturing enzyme-producing bacteria.
研究用試薬としての酵素は、塩析やイオン交換クロマト
、電気泳動法等を組み合わせた、複雑なプロセスによっ
て、部分精製もしくは高度精製して用いられている。Enzymes used as research reagents are partially or highly purified through complex processes that combine salting out, ion exchange chromatography, electrophoresis, and the like.
これに対し、工業用酵素製剤としては、培養濾液をその
まま濃縮した濃縮液か、乾燥した粉末、あるいは分離精
製して得られる濃縮液もしくはその乾燥粉末として得ら
れる。しかし、培養濾液の濃縮液や粗乾燥品には、培養
液中に含まれる不快臭成分及び着色成分が多量に含まれ
るため、目的とする反応生成物を分離精製する際、最終
的に除去することが必要となってくる。また、培養濾液
中には蛋白分解酵素(プロテアーゼ)をも含むことが多
い。アミラーゼ以外に蛋白分解酵素類を含む培養濾液等
の粗酵素溶液では精製途中や目的反応の進行に際して、
蛋白分解酵素の作用によりアミラーゼが分解され失活す
ることが多い。このため、酵素反応を利用して有用物質
を生産する際には、これら不利益となる゛不純物を除去
することが必要となってくる。On the other hand, industrial enzyme preparations can be obtained as a concentrate obtained by concentrating the culture filtrate as it is, as a dried powder, or as a concentrate obtained by separation and purification or as a dry powder thereof. However, concentrated liquids and crudely dried culture filtrates contain large amounts of unpleasant odor components and coloring components contained in the culture solution, so they must be removed when separating and purifying the desired reaction product. It becomes necessary. Furthermore, the culture filtrate often also contains proteolytic enzymes (proteases). For crude enzyme solutions such as culture filtrates that contain proteolytic enzymes other than amylase, during purification or when the desired reaction is progressing,
Amylase is often degraded and inactivated by the action of proteolytic enzymes. Therefore, when producing useful substances using enzymatic reactions, it is necessary to remove these disadvantageous impurities.
このため、後続の反応生成物の分離精製工程に著しく負
担をかける。一方、一般的な精製方法として知られる塩
析法や液体クロマトでは部分的な濃縮が限界であり、分
離精度を高めるためにはこれらの操作条件、例えば沈澱
剤の種類、濃度、pH1充填剤の種類、吸脱着液の種類
等、を変え、これらを組み合わせた複雑なプロセスを経
ることが必要となる。This places a significant burden on the subsequent separation and purification process of the reaction product. On the other hand, the salting-out method and liquid chromatography, which are known as general purification methods, have a limit of partial concentration, and in order to improve the separation accuracy, these operating conditions, such as the type and concentration of precipitant, the pH 1 packing material, etc. It is necessary to go through a complicated process that involves changing the type, type of adsorption/desorption liquid, etc., and combining these.
それだけでなく、操作には沈澱剤、溶出剤として多量の
塩を添加することになり、次工程へ移る際の脱塩操作も
必要である。さらに、数10%の高い塩濃度のBOD廃
液は、その廃液処理も簡単ではない。In addition, a large amount of salt is added as a precipitant and an eluent during the operation, and a desalting operation is also necessary when moving on to the next step. Furthermore, BOD wastewater with a high salt concentration of several tens of percent is not easy to treat.
以上のことから、これら公知の精製方法は、専ら、研究
用試薬等におのずと限定されている。From the above, these known purification methods are naturally limited to research reagents and the like.
なかでも、精製が困難とされているβ−アミラーゼとT
−アミラーゼを選択的に効率よく吸着できる吸着剤が開
発されれば、培養濾液から両酵素を一段階で純度高く濃
縮分離できる。Among these, β-amylase and T
- If an adsorbent that can selectively and efficiently adsorb amylase is developed, both enzymes can be concentrated and separated from the culture filtrate in one step with high purity.
発明者らは、古くから、α−アミラーゼの精製方法とし
て研究されはじめていたアミロース〔グルコースの直鎖
状ポリマ(分子量10〜405、グルコース重合数(5
X10”〜2X10’)を吸着剤とする吸着法に着目し
、これをβ−アミラーゼ及びT−アミラーゼに適用して
みた。The inventors discovered that amylose, a linear polymer of glucose (molecular weight 10-405, glucose polymerization number (5
We focused on an adsorption method using adsorbents (X10'' to 2X10') and applied this to β-amylase and T-amylase.
しかし、吸着容量がα−アミラーゼの103分の1以下
と極めて低く、実質的に吸着分離が不可能であることが
判明した。However, it was found that the adsorption capacity was extremely low, less than 1/103 of that of α-amylase, making adsorption separation virtually impossible.
本発明の目的は、グルコースのα−1,4ホモオリゴマ
を分子間架橋してなる新規な三次元架橋化高分子物質及
びその製造方法を提供するものであって、この高分子物
質は培養液などのβ−アミラーゼ及びγ−アミラーゼ以
外に多種多様の不純物を含む、β−アミラーゼ、γ−ア
ミラーゼもしくは両者を含む含有液から、該酵素を選択
的に効率よく吸着分離できる吸着剤として利用できるも
のである。An object of the present invention is to provide a novel three-dimensionally crosslinked polymeric substance formed by intermolecularly crosslinking α-1,4 homooligomers of glucose, and a method for producing the same. It can be used as an adsorbent that can selectively and efficiently adsorb and separate the enzyme from a solution containing β-amylase, γ-amylase, or both, which contains a wide variety of impurities in addition to β-amylase and γ-amylase. be.
本発明者らは、β−アミラーゼ及びγ−アミラーゼ用の
吸着剤について鋭意検討した結果、グルコースがα−1
,4結合したオリゴ糖の分子がβ−アミラーゼもしくは
T−アミラーゼの分子と複合分子を形成することを見出
した。しかし、オリゴ糖とのこれら複合体は水溶性のた
め、酵素の回収は簡単ではない。そこで、更に、種々検
討した結果、該オリゴ糖を分子間で架橋化することによ
り得られる新規な架橋化高分子物質が該酵素類への吸着
能を損なうことなし水に不溶化することを見出し、本発
明を完成するに到った。As a result of intensive studies on adsorbents for β-amylase and γ-amylase, the present inventors found that glucose
, 4-linked oligosaccharide molecules form a complex molecule with β-amylase or T-amylase molecules. However, since these complexes with oligosaccharides are water-soluble, recovery of the enzyme is not easy. Therefore, as a result of various studies, it was discovered that a new crosslinked polymer substance obtained by intermolecularly crosslinking the oligosaccharide can be made insoluble in water without impairing its adsorption ability to the enzymes, The present invention has now been completed.
本発明の第1の特徴は、好ましくはグルコース分子が2
〜6分子、α−1,4結合により直線的に重合したオリ
ゴマを化学的に分子間架橋して三次元マトリックスを形
成させたα−アミラーゼ及びT−アミラーゼを選択的に
吸着できる高分子物質及びその製造方法である。A first feature of the invention is that preferably the glucose molecule is
A polymeric substance capable of selectively adsorbing α-amylase and T-amylase, which is formed by chemically intermolecularly crosslinking linearly polymerized oligomers with ~6 molecules of α-1,4 bonds to form a three-dimensional matrix. This is the manufacturing method.
架橋剤としてエピクロルヒドリンを用いた場合の前記物
質の代表的な構造単位の例を次の式(1)゛ 及び(I
I)に示す。Examples of typical structural units of the substance when epichlorohydrin is used as a crosslinking agent are represented by the following formulas (1) and (I
I).
(本頁以下余白)
c式中、1は非還元末端、2は還元末端、3は架橋鎖を
示す、〕
本発明の三次元架橋化高分子物質を吸着剤として適用で
きる酵素は、β−アミラーゼ及びγ−アミラーゼである
。本酵素の分類の範囲内にあれば、その起源生物に特に
限定されるものではない。(Margins below this page) In the formula c, 1 is a non-reducing end, 2 is a reducing end, and 3 is a crosslinked chain.] The enzyme to which the three-dimensionally crosslinked polymeric substance of the present invention can be applied as an adsorbent is β- amylase and γ-amylase. The originating organism is not particularly limited as long as it falls within the classification of this enzyme.
例えば、アスペルギルス属、リゾープス属等の糸状菌や
サツカロミセス属等の酵母、バシルス属等の細菌を起源
とするβ−アミラーゼであっても適用できる。また、ア
スペルギルス属、リゾープス属等の糸状菌やサツカロミ
セス属等の酵母、バシルス属、クロスツリジュウム属等
の細菌を起源とするT−アミラーゼであっても適用でき
る。For example, β-amylase originating from filamentous fungi such as Aspergillus and Rhizopus, yeast such as Satucharomyces, and bacteria such as Bacillus can be used. Furthermore, T-amylases originating from filamentous fungi such as Aspergillus and Rhizopus, yeasts such as Satucharomyces, and bacteria such as Bacillus and Clothuridium can also be used.
本発明の架橋化高分子物質を製造するための原料として
のオリゴ糖は、グルコ−ろ分子がα−1゜4結合で直線
状に重合した重合数2〜6のオリゴ糖が用いられる。こ
れらのオリゴ糖は単成分であっても混合物であってもよ
い。しかし、β−アミラーゼとT−アミラーゼのどちら
か一方乃至両方を相対的に選択吸収したい場合には前述
した様に適宜、糖の種類を選択する。゛
上述したオリゴ糖の架橋方法は、特に限定されないが、
その架橋の程度は、β−アミラーゼもしくはT−アミラ
ーゼを吸着する際に使用される温度である氷点以上で6
0℃以下において、100gの水に対し得られる架橋化
高分子物質の溶解度が0.01g以下になる様に、分子
間架橋を行なえばよい。The oligosaccharide used as a raw material for producing the crosslinked polymeric substance of the present invention is an oligosaccharide having a polymerization number of 2 to 6, in which gluco-fila molecules are linearly polymerized with α-1°4 bonds. These oligosaccharides may be a single component or a mixture. However, if one or both of β-amylase and T-amylase is desired to be absorbed relatively selectively, the type of sugar is appropriately selected as described above.゛The method for crosslinking the oligosaccharides described above is not particularly limited, but
The degree of crosslinking is 6°C above the freezing point, which is the temperature used to adsorb β-amylase or T-amylase.
Intermolecular crosslinking may be performed at 0° C. or below so that the solubility of the crosslinked polymer substance obtained per 100 g of water is 0.01 g or less.
したがって、架橋化処理により調製された本発明の架橋
化高分子物質は水和性のゲル又は固定である。Therefore, the crosslinked polymeric materials of the present invention prepared by the crosslinking process are hydratable gels or solids.
架橋反応及び条件は、オリゴ糖の種類、濃度、酵素吸着
時の使用条件により適宜選択される。反応として、例え
ば、エピクロルヒドリンによるグルコース残基のOH基
間の架橋等があげられる。エピハロゲンとしてはエピク
ロルヒドリンが最も実用的である。エピハロゲンの場合
、その添加量は原料ポリグルカンの溶液の0.5〜3倍
が好適である。原料液中のポリグルカン濃度は少なくと
も1%以上が好ましい、アルカリは苛性ソーダ、苛性カ
リ等の強アルカリが用いられるが、その濃度は1 N以
上のエピハロゲンのハロゲンに対し、等量・以上のアル
カリを含むことが必要である。温度は30℃以上で行わ
れる。時間は温度、アルカリ濃度により適宜選択される
が、60℃の際、30分間以上を要する。反応中のエピ
ハロゲン層と水層との接触と、ゲル生成に伴う液の粘性
上昇のため攪拌は有効である。The crosslinking reaction and conditions are appropriately selected depending on the type and concentration of the oligosaccharide and the conditions used during enzyme adsorption. Examples of the reaction include crosslinking between OH groups of glucose residues using epichlorohydrin. Epichlorohydrin is the most practical epihalogen. In the case of epihalogen, the amount added is preferably 0.5 to 3 times the amount of the raw material polyglucan solution. The concentration of polyglucan in the raw material solution is preferably at least 1%. As the alkali, a strong alkali such as caustic soda or caustic potash is used. It is necessary to include The temperature is 30°C or higher. Although the time is appropriately selected depending on the temperature and alkali concentration, 30 minutes or more is required at 60°C. Stirring is effective for contact between the epihalogen layer and the water layer during the reaction and for increasing the viscosity of the liquid due to gel formation.
以下、本発明の実施例を用いて、さらに詳しく説明する
。Hereinafter, the present invention will be explained in more detail using examples.
実施例1
マルトース10gに水90−を添加し、50℃に加熱し
て溶解した。これに3Nの苛性ソーダ33−を添加し、
これを攪拌機と還流冷却器を付した500−の反応フラ
スコに入れた。次いで、140−のエビロクロルヒドリ
ンを加え、2Qrpmで攪拌しつつ、70℃で15時間
加熱した。Example 1 90 g of water was added to 10 g of maltose and dissolved by heating to 50°C. Add 3N caustic soda 33- to this,
This was placed in a 500-mm reaction flask equipped with a stirrer and a reflux condenser. Next, 140-chlorohydrin was added, and the mixture was heated at 70° C. for 15 hours while stirring at 2 Qrpm.
反応終了後、内容物を室温に冷却し、下部の水層中のゲ
ル状物を濾別した。このゲル状物にエタノール50m1
を添加し、攪拌後濾過してゲル状物を回収した0回収ゲ
ルを再度エタノール50−に再び懸濁し、濾過してゲル
状物を回収した0本捏作をさらに3回繰り返した0次に
、蒸留水50−に懸濁し、濾別した0本捏作を3回繰り
返した後、再度エタノール50meに分散した。これを
濾過し、ゲル状物を乾燥後、粉砕し、白色高分子粉末9
.4gを得た。After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. Add 50ml of ethanol to this gel.
was added, stirred and filtered to recover the gel-like substance.The recovered gel was re-suspended in 50% ethanol and filtered to recover the gel-like substance.The fabrication process was repeated three more times. , suspended in 50ml of distilled water, filtered, and repeated 3 times, and then dispersed again in 50ml of ethanol. Filter this, dry the gel-like substance, and then crush it to form a white polymer powder 9
.. 4g was obtained.
本粉末の60℃における水への溶解度は水100gに対
し0.002g以下であった。さらに本粉末を60℃の
水に1日間浸漬した後の水和ゲルの本粉末に対する重量
比は14.0であった。The solubility of this powder in water at 60° C. was 0.002 g or less per 100 g of water. Furthermore, after immersing this powder in water at 60° C. for 1 day, the weight ratio of the hydrated gel to this powder was 14.0.
一方、アスペルギルス・オリゼIFO−4176の培養
濾液20d(α−アミラーゼ0.50単位、β−アミラ
ーゼ0.98単位、γ−アミラーゼ1.30単位/−を
含む)を6℃に冷却し、上記の高分子粉末0.2gを添
加し、5 rpmで2分間攪拌した。これを濾過し濾液
20−を得た。濾液中のα−アミラーゼ活性、β−アミ
ラーゼ活性、γ−アミラーゼ活性を測定した。On the other hand, 20 d of the culture filtrate of Aspergillus oryzae IFO-4176 (containing 0.50 units of α-amylase, 0.98 units of β-amylase, and 1.30 units of γ-amylase) was cooled to 6°C, and the above 0.2 g of polymer powder was added and stirred at 5 rpm for 2 minutes. This was filtered to obtain a filtrate 20-. α-amylase activity, β-amylase activity, and γ-amylase activity in the filtrate were measured.
濾液中のα−アミラーゼは0.50単位/−1β−アミ
ラーゼは0.97単位/−1T−アミラーゼは0.01
単位/−であった。α-amylase in the filtrate is 0.50 units/-1β-amylase is 0.97 units/-1T-amylase is 0.01
The unit was /-.
上記高分子粉末に吸着した酵素量を、高分子粉末との接
触前の酵素濃度から接触後の酵素濃度を減じた値として
計算した。その結果、α−アミラーゼはθ単位/−1β
−アミラーゼは0.015単位/d、γ−アミラーゼは
1.29単位/−−培養濾液、だけ高分子粉末に吸着さ
れたことになる。したがって、培養濾液中に存在したα
−アミラーゼの0%、β−アミラーゼの1%、T−アミ
ラーゼの99%が吸着された。The amount of enzyme adsorbed to the polymer powder was calculated as the value obtained by subtracting the enzyme concentration after contact from the enzyme concentration before contact with the polymer powder. As a result, α-amylase is θ units/−1β
- 0.015 units/d of amylase and 1.29 units/d of γ-amylase were adsorbed to the polymer powder. Therefore, α present in the culture filtrate
- 0% of amylase, 1% of β-amylase and 99% of T-amylase were adsorbed.
次に、上記の酵素を吸着した高分子粉末を20mfの容
器に入れ、苛性ソーダでpH8に調節した液4−を添加
し、5 rpmで攪拌して2分間接触させた。これを3
00Orpm、 5分間遠心分離して、高分子粉末と上
澄液とに分離した。さらに高分子粉末に水2−を加え懸
濁し、再度、3000rp+*、 5分間遠心分離して
、洗滌液と高分子粉末とに固液分離した。Next, the above enzyme-adsorbed polymer powder was placed in a 20 mf container, and a solution 4- adjusted to pH 8 with caustic soda was added thereto, and the mixture was stirred at 5 rpm and brought into contact for 2 minutes. This is 3
The mixture was centrifuged at 00 rpm for 5 minutes to separate the polymer powder and supernatant. Furthermore, water 2- was added to the polymer powder to suspend it, and the mixture was centrifuged again at 3000 rp+* for 5 minutes to separate solid and liquid into a washing liquid and the polymer powder.
上記で得られた上澄液と洗滌液とを合わせ、酵素脱離液
6−を得た。The supernatant liquid obtained above and the washing liquid were combined to obtain enzyme desorption liquid 6-.
上記の酵素脱離液の酵素濃度を測定した結果、α−アミ
ラーゼθ単位/−2β−アミラーゼ0.65単位/−1
γ−アミラーゼ4.25単位/@1であった。As a result of measuring the enzyme concentration of the above enzyme desorption solution, α-amylase θ units/-2 β-amylase 0.65 units/-1
γ-amylase was 4.25 units/@1.
従って、α−アミラーゼ0単位(回収率0%)、β−ア
ミラーゼの3.9単位(2%)、γ−アミラーゼ25.
5単位(98%)を回収できた。Therefore, α-amylase 0 units (recovery rate 0%), β-amylase 3.9 units (2%), γ-amylase 25.
5 units (98%) were recovered.
また、本液中にはプロテアーゼ活性は検出されず、着色
、着臭も認められなかった。かつ、本液中の有機物量及
び無機物量は、原液中の含有量に対し、それぞれ1.5
%、1.4%に減少した。上記により、原液中のγ−ア
ミラーゼを選択的に約3倍に濃縮し、かつ精製できた。Furthermore, no protease activity was detected in this liquid, and neither coloring nor odor was observed. Moreover, the amount of organic matter and the amount of inorganic matter in this solution are each 1.5% of the content in the stock solution.
%, decreased to 1.4%. By the above method, it was possible to selectively concentrate and purify the γ-amylase in the stock solution by about 3 times.
実施例2
マルトース20gに水80afを添加し、50℃に加熱
して溶解した。これに4Nの苛性カリ33mを添加し、
これを攪拌機と還流冷却器を付した5001Blの反応
フラスコに入れた。Example 2 80af of water was added to 20g of maltose and dissolved by heating to 50°C. Add 33 m of 4N caustic potash to this,
This was placed in a 5001 Bl reaction flask equipped with a stirrer and reflux condenser.
次いで、140−のエビロクロルヒドリンを加え、20
rpmで攪拌しつつ、80℃で6時間加熱した。Next, add 140-m of Ebichlorohydrin and add 20-
It was heated at 80° C. for 6 hours while stirring at rpm.
反応終了後、内容物を室温に冷却し、下部の水層中のゲ
ル状物を濾別した。このゲル状物にエタノール50−を
添加し、攪拌後濾過してゲル状物を回収した。After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. 50% of ethanol was added to this gel-like material, stirred, and then filtered to recover the gel-like material.
回収ゲルを再度エタノール50dに懸濁し、濾過してゲ
ル状物を回収した0本捏作をさらに3回繰り返した0次
に、蒸留水50nIに懸濁し、濾別した。The collected gel was again suspended in 50 d of ethanol, filtered, and a gel-like substance was collected. The 0-piece fabrication was repeated three more times. Next, the gel was suspended in 50 nl of distilled water and filtered.
本操作を3回繰り返した後、再度エタノール5〇−に分
散した。これを濾過し、ゲル状物を乾燥後、粉砕し、白
色の高分子粉末18.1gを得た。After repeating this operation three times, the mixture was again dispersed in 50% of ethanol. This was filtered, and the gel-like material was dried and crushed to obtain 18.1 g of white polymer powder.
本粉末の60℃における水への溶解炭は水100gに対
し0.003g以下であった。さらに本粉末を60℃の
水に1日間浸漬した後の水和ゲルの本粉末に対する重量
比は15.2であった。The amount of carbon dissolved in water at 60° C. of this powder was 0.003 g or less per 100 g of water. Furthermore, after immersing this powder in water at 60° C. for 1 day, the weight ratio of the hydrated gel to this powder was 15.2.
一方、アスペルギルス・オリゼIFO−4176の培養
濾液20mZ (α−アミラーゼ0.50単位、β−ア
ミラーゼ0.98単位、γ−アミラーゼ1.30単位/
−を含む)を6℃に冷却し、上記の高分子粉末0.2g
を添加し、5 rpmで2分間攪拌した。これを濾過し
、濾液中のα−アミラーゼ活性、β−アミラーゼ活性、
T−アミラーゼ活性を測定した。On the other hand, 20 mZ of culture filtrate of Aspergillus oryzae IFO-4176 (α-amylase 0.50 units, β-amylase 0.98 units, γ-amylase 1.30 units/
) was cooled to 6℃, and 0.2g of the above polymer powder was added.
was added and stirred for 2 minutes at 5 rpm. This is filtered, α-amylase activity, β-amylase activity in the filtrate,
T-amylase activity was measured.
濾液中の各酵素活性を測定した。濾液中のα−アミラー
ゼは0.50単位/−1β−アミラーゼは0゜88単位
/−1γ−アミラーゼは0.01単位/m1であった。Each enzyme activity in the filtrate was measured. In the filtrate, α-amylase was 0.50 units/-1β-amylase was 0.88 units/-1γ-amylase was 0.01 units/ml.
上記高分子粉末に吸着した酵素量を、高分子粉末との接
触前の酵素濃度から接触後の酵素濃度を減じた値として
計算した。その結果、α−アミラーゼはO単位/−1β
−アミラーゼは0.10単位/−1T−アミラーゼは1
.29単位/d−培養濾液、だけ高分子粉末に吸着され
たことになる。The amount of enzyme adsorbed to the polymer powder was calculated as the value obtained by subtracting the enzyme concentration after contact from the enzyme concentration before contact with the polymer powder. As a result, α-amylase has O units/−1β
-amylase is 0.10 units/-1T-amylase is 1
.. Only 29 units/d of culture filtrate were adsorbed onto the polymer powder.
したがって、培養濾液中に存在したα−アミラーゼは全
く吸着されず、β−アミラーゼの10%、γ−アミラー
ゼの99%が吸着された。Therefore, α-amylase present in the culture filtrate was not adsorbed at all, but 10% of β-amylase and 99% of γ-amylase were adsorbed.
次に、上記め酵素を吸着した高分子粉末を20−の容器
に入れ、苛性カリでpH8に調節した液4−を添加し、
5 rpsで攪拌して2分間接触させた。Next, the polymer powder adsorbed with the above enzyme was placed in a 20- container, and a solution 4- adjusted to pH 8 with caustic potassium was added.
Contact was performed for 2 minutes with stirring at 5 rps.
これを300Orpm、 5分間遠心分離して、高分子
粉末と上澄液とに分離した。さらに高分子粉末に水2−
を加え懸濁し、再度、3000rpm+、 5分間遠心
分離して、洗滌液と高分子粉末とに固液分離した。上記
で得られた上澄液と洗滌液とを合わせ、酵素脱離液6m
lを得た。This was centrifuged at 300 rpm for 5 minutes to separate the polymer powder and supernatant. Furthermore, water 2-
was added and suspended, and centrifuged again at 3,000 rpm for 5 minutes to separate solid and liquid into a washing solution and polymer powder. Combine the supernatant liquid and washing liquid obtained above, and add 6ml of enzyme desorption liquid.
I got l.
上記の酵素脱離液の酵素濃度を測定した結果、α−アミ
ラーゼ0単位/−1β−アミラーゼ0.35単位/−2
T−アミラーゼ4.14単位/−であった。As a result of measuring the enzyme concentration of the above enzyme desorption solution, α-amylase 0 units/-1 β-amylase 0.35 units/-2
T-amylase was 4.14 units/-.
従って、α−アミラーゼ0単位(回収率0%)、β−ア
ミラーゼ2.1単位(10,7%)、T−アミラーゼ2
4.8単位(95%)を回収できた。Therefore, α-amylase 0 units (recovery rate 0%), β-amylase 2.1 units (10.7%), T-amylase 2
4.8 units (95%) were recovered.
また、本液中にはプロテアーゼ活性は検出されず、着色
、着臭も認められなかった。かつ、本液中の有機物量及
び無機物量は、原液中の含有量に対し、それぞれ1.4
%、1.2%に減少した。上記により、原液中のT−ア
ミラーゼを選択的に約3.2倍に濃縮し、かつ精製でき
た。Furthermore, no protease activity was detected in this liquid, and neither coloring nor odor was observed. In addition, the amount of organic matter and the amount of inorganic matter in this solution are each 1.4 relative to the content in the stock solution.
%, decreased to 1.2%. By the above method, T-amylase in the stock solution could be selectively concentrated and purified by about 3.2 times.
実施例3
マルトトリオース10gに水80−を添加し、50℃に
加熱して溶解した。これに4Nの苛性ソーダ33−を添
加し、これを攪拌機と還流冷却器を付した500−の反
応フラスコに入れた。Example 3 80 g of water was added to 10 g of maltotriose and dissolved by heating to 50°C. To this was added 33 cm of 4N caustic soda, and the mixture was placed in a 500-cm reaction flask equipped with a stirrer and a reflux condenser.
次いで、14011iのエビロクロルヒドリンを加え、
20rpraで攪拌しつつ、80℃で6時間加熱した。Then add 14011i of Ebichlorohydrin,
The mixture was heated at 80° C. for 6 hours while stirring at 20 rpra.
反応終了後、内容物を室温に冷却し、下部の水層中のゲ
ル状物を濾別した。このゲル状物にエタノール50yd
を添加し、攪拌後濾過してゲル状物を回収した。After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. Add 50 yards of ethanol to this gel.
was added, stirred, and then filtered to collect a gel-like substance.
回収ゲルを再度エタノール50−に懸濁し、濾過してゲ
ル状物を回収した0本捏作をさらに3回繰り返した0次
に、蒸留水50−に懸濁し、濾別した。The collected gel was suspended again in 50% of ethanol and filtered to collect the gel-like material. This process was repeated three more times. Next, the gel was suspended in 50% of distilled water and filtered.
本操作を3回繰り返した後、再度エタノール50dに分
散した。これを濾過し、ゲル状物を乾燥後、粉砕し、白
色高分子粉末9.7gを得た。After repeating this operation three times, it was again dispersed in 50 d of ethanol. This was filtered, and the gel-like material was dried and crushed to obtain 9.7 g of white polymer powder.
本粉末の60℃における水への溶解度は水100gに対
し0.002g以下であった0、さらに本粉末を60℃
の水に1日間浸漬した後の水和ゲルの本粉末に対する重
量比は14.8であった。The solubility of this powder in water at 60°C was less than 0.002g per 100g of water.
The weight ratio of the hydrated gel to the present powder after being immersed in water for one day was 14.8.
一方、アスペルギルス・オリゼIMP−4076の培養
濾液20−(α−アミラーゼ0.50単位、β−アミラ
ーゼ0.98単位、T−アミラーゼ1.30単位/lB
1を含む)を6℃に冷却し、上記の高分子粉末0.2g
を添加し、5 rpmで2分間攪拌した。これを濾過し
、濾液中のα−アミラーゼ活性、β−アミラーゼ活性、
T−アミラーゼ活性を測定した。On the other hand, culture filtrate of Aspergillus oryzae IMP-4076 20-(α-amylase 0.50 unit, β-amylase 0.98 unit, T-amylase 1.30 unit/lB
1) was cooled to 6°C, and 0.2 g of the above polymer powder was added.
was added and stirred for 2 minutes at 5 rpm. This is filtered, α-amylase activity, β-amylase activity in the filtrate,
T-amylase activity was measured.
濾液中の各酵素活性を測定した。濾液中のα−アミラー
ゼは0.50単位/−1β−アミラーゼは0゜64単位
/−1T−アミラーゼは0.03単位/dであった。Each enzyme activity in the filtrate was measured. The α-amylase in the filtrate was 0.50 units/-1β-amylase was 0.64 units/-1T-amylase was 0.03 units/d.
上記の高分子粉末に吸着した酵素量を、高分子粉末との
接触前の酵素濃度から接触後の酵素濃度を減じた値とし
て計算した。The amount of enzyme adsorbed to the polymer powder was calculated as the value obtained by subtracting the enzyme concentration after contact from the enzyme concentration before contact with the polymer powder.
その結果、α−アミラーゼは0単位/d、β−アミラー
ゼは0.34単位/−2T−アミラーゼは1.27単位
/wl−培養濾液、たけ高分子粉末に吸着されたことに
なる。As a result, α-amylase was adsorbed at 0 unit/d, β-amylase at 0.34 unit/2T-amylase at 1.27 unit/wl, and the culture filtrate and bamboo polymer powder were adsorbed.
したがって、培養濾液中に存在したα−アミラーゼは全
く吸着されず、β−アミラーゼの35%、γ−アミラー
ゼの98%が吸着された。Therefore, α-amylase present in the culture filtrate was not adsorbed at all, but 35% of β-amylase and 98% of γ-amylase were adsorbed.
次に、上記の酵素を吸着した高分子粉末を20−の容器
に入れ、苛性ソーダでpH8に調節した液4mfを添加
し、5 rpmで攪拌して2分間接触させた。これを3
00Orpm、 5分間遠心分離して、高分子粉末と上
澄液とに分離した。さらに高分子粉末に水2−を加えて
懸濁し、再度、3000rpm、 5分間遠心分離して
、洗滌液と高分子粉末とに固液分離した。上記で得られ
た上澄液と洗滌液とを合わせ、酵素脱離液6−を得た。Next, the above-mentioned enzyme-adsorbed polymer powder was placed in a 20-mm container, 4 mf of a solution adjusted to pH 8 with caustic soda was added, and the mixture was stirred at 5 rpm and brought into contact for 2 minutes. This is 3
The mixture was centrifuged at 00 rpm for 5 minutes to separate the polymer powder and supernatant. Furthermore, water 2- was added to the polymer powder to suspend it, and the mixture was centrifuged again at 3,000 rpm for 5 minutes to separate solid and liquid into a washing liquid and the polymer powder. The supernatant liquid obtained above and the washing liquid were combined to obtain enzyme desorption liquid 6-.
上記の酵素脱離液の酵素濃度を測定した結果、α−アミ
ラーゼθ単位/−1β−アミラーゼ1.05単位/Td
、T−アミラーゼ4.16単位/dであった。As a result of measuring the enzyme concentration of the above enzyme desorption solution, α-amylase θ units/-1β-amylase 1.05 units/Td
, T-amylase 4.16 units/d.
従って、α−アミラーゼ0単位(回収率0%)、β−ア
ミラーゼ6.27単位(32%)、γ−アミラーゼ25
.0単位(96%)全回収できた。Therefore, α-amylase 0 units (recovery rate 0%), β-amylase 6.27 units (32%), γ-amylase 25
.. 0 units (96%) were completely recovered.
また、本液中にはプロテアーゼ活性は検出されず、着色
、着臭も認められなかった。かつ、本液中の有機物量及
び無機物量は、原液中の含有量に対し、それぞれ1.7
%、1.2%に減少した。上記により、原液中のγ−ア
ミラーゼを選択的に約3.2倍に濃縮し、かつ精製でき
た。Furthermore, no protease activity was detected in this liquid, and neither coloring nor odor was observed. Moreover, the amount of organic matter and the amount of inorganic matter in this solution are each 1.7 compared to the content in the stock solution.
%, decreased to 1.2%. By the above method, it was possible to selectively concentrate and purify γ-amylase in the stock solution by about 3.2 times.
実施例4
マルトテトラオース1gに水8−を添加し、50℃に加
熱して溶解した。これに4Nの苛性ソーダ33mを添加
し、これを攪拌機と還流冷却器を付した200−の反応
フラスコに入れた。Example 4 8-g of water was added to 1 g of maltotetraose and dissolved by heating to 50°C. To this was added 33 ml of 4N caustic soda, and the mixture was placed in a 200-cm reaction flask equipped with a stirrer and a reflux condenser.
次いで、15−のエビロクロルヒドリンを加え、20r
p−で攪拌しつつ、80℃で6時間加熱した。Next, add 15-chlorohydrin and add 20r
The mixture was heated at 80°C for 6 hours while stirring at p-.
反応終了後、内容物を室温に冷却し、下部の水層中のゲ
ル状物を濾別した。このゲル状物にエタノール50−を
添加し、攪拌後濾過してゲル状物を回収した。After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. 50% of ethanol was added to this gel-like material, stirred, and then filtered to recover the gel-like material.
回収ゲルを再度エタノール50−に懸濁し、濾過してゲ
ル状物を回収した0本捏作をさらに3回繰り返した0次
に、蒸留水50−にM、’lil、、、濾別した。The recovered gel was suspended again in 50% of ethanol and filtered to recover the gel-like material. This process was repeated three more times. Next, it was filtered into 50% of distilled water.
本操作を3回繰り返した後、再度エタノール5〇−に分
散した。これを濾過し、ゲル状物を乾燥後、粉砕し、白
色高分子粉末0.90gを得た。After repeating this operation three times, the mixture was again dispersed in 50% of ethanol. This was filtered, and the gel-like material was dried and pulverized to obtain 0.90 g of white polymer powder.
本粉末の60℃における水への溶解度は水100gに対
し0.001g以下であった。さらに、本粉末を60℃
の水に1日間浸漬した後の水和ゲルの本粉末に対する重
量比は13.4であった。The solubility of this powder in water at 60° C. was 0.001 g or less per 100 g of water. Furthermore, this powder was heated at 60°C.
The weight ratio of the hydrated gel to the present powder after being immersed in water for one day was 13.4.
一方、アスペルギルス・オリゼIMP−4076の培養
濾液20m1(α−アミラーゼ0.50単位、β−アミ
ラ−ゼ0.98単位、T−アミラーゼ1.30単位/−
を含む)を6℃に冷却し、上記の高分子粉末0.2gを
添加し、5 rpmで2分間攪拌した。On the other hand, 20 ml of culture filtrate of Aspergillus oryzae IMP-4076 (α-amylase 0.50 units, β-amylase 0.98 units, T-amylase 1.30 units/-
) was cooled to 6° C., 0.2 g of the above polymer powder was added, and the mixture was stirred at 5 rpm for 2 minutes.
これを濾過し、濾液中のα−アミラーゼ活性、β−アミ
ラーゼ活性、T−アミラーゼ活性を測定した。This was filtered, and α-amylase activity, β-amylase activity, and T-amylase activity in the filtrate were measured.
濾液中のα−アミラーゼは0.50単位/−1β−アミ
ラーゼは0.29単位/rIi、γ−アミラーゼは0゜
03単位/dであった。The α-amylase in the filtrate was 0.50 units/-1 β-amylase was 0.29 units/rIi, and the γ-amylase was 0.03 units/d.
上記の高分子粉末に吸着した酵素量を、高分子粉末との
接触前の酵素濃度から接触後の酵素濃度を減じた値とし
て計算した。The amount of enzyme adsorbed to the polymer powder was calculated as the value obtained by subtracting the enzyme concentration after contact from the enzyme concentration before contact with the polymer powder.
その結果、α−アミラーゼはO単位/d、β−アミラー
ゼは0.69単位/−1T−アミラーゼは1゜27単位
/−−培養濾液だけ高分子粉末に吸着されたことになる
。As a result, only O units/d of α-amylase and 0.69 units/d of β-amylase and 1°27 units/d of T-amylase were adsorbed to the polymer powder of the culture filtrate.
したがって、培養濾液中に存在したα−アミラーゼは全
く吸着されず、β−アミラーゼの70%、T−アミラー
ゼの98%が吸着した。Therefore, α-amylase present in the culture filtrate was not adsorbed at all, but 70% of β-amylase and 98% of T-amylase were adsorbed.
次に、上記の酵素を吸着した高分子粉末を20w1の容
器に入れ、苛性ソーダでpH8,2に調節した液4rd
添加し、5 rpmで攪拌して2分間接触させた。これ
を300Orpm、 5分間遠心分離して、高分子粉末
と上澄液とに分離した。さらに高分子粉末に水2−を加
え懸濁し、再度、3QOOrpm、 5分間遠心分離し
て、洗滌液と高分子粉末とに固液分離した。Next, the polymer powder adsorbed with the above enzyme was placed in a 20w1 container, and the pH was adjusted to 8.2 with caustic soda.
was added and allowed to contact for 2 minutes with stirring at 5 rpm. This was centrifuged at 300 rpm for 5 minutes to separate the polymer powder and supernatant. Furthermore, water 2- was added to the polymer powder to suspend it, and the mixture was centrifuged again at 3 QOO rpm for 5 minutes to separate the washing liquid and the polymer powder into solid and liquid.
上記で得られた上澄液と洗滌液とを合わせ、酵素脱離液
6−を得た。The supernatant liquid obtained above and the washing liquid were combined to obtain enzyme desorption liquid 6-.
上記の酵素脱離液の酵素濃度を測定した結果、α−アミ
ラーゼ0単位/ai、β−アミラーゼ1.31単位/m
l、r−アミラーゼ2.06単位/rnlであった。As a result of measuring the enzyme concentration of the above enzyme desorption solution, α-amylase was 0 units/ai, β-amylase was 1.31 units/m
l,r-amylase was 2.06 units/rnl.
従って、α−アミラーゼ0単位(回収率0%)、β−ア
ミラーゼ7.84単位(40,0%)、T−アミラーゼ
12.35単位(95%)を回収できた。Therefore, 0 units of α-amylase (recovery rate 0%), 7.84 units of β-amylase (40.0%), and 12.35 units of T-amylase (95%) were recovered.
また、本液中にはプロテアーゼ活性は検出されず、着色
、着臭も認められなかった。かつ、本液中の有機物量及
び無機物量は、原液中の含有量に対し、それぞれ1.7
%、1.3%に減少した。上記により、原液中のγ−ア
ミラーゼを選択的に約9.5倍に濃縮し、かつ精製でき
た。Furthermore, no protease activity was detected in this liquid, and neither coloring nor odor was observed. Moreover, the amount of organic matter and the amount of inorganic matter in this solution are each 1.7 compared to the content in the stock solution.
%, decreased to 1.3%. As a result of the above, it was possible to selectively concentrate and purify γ-amylase in the stock solution by about 9.5 times.
実施例5
マルトースヘキサオース10gに水90m1を添加し、
50℃に加熱して溶解した。これに4Nの苛性ソーダ3
3−を添加し、これを攪拌機と還流冷却器を付した20
0dの反応フラスコに入れた。Example 5 90 ml of water was added to 10 g of maltose hexaose,
It was heated to 50°C to dissolve it. Add 3 4N caustic soda to this
3- was added, and this was heated to 20°C with a stirrer and a reflux condenser.
0d into a reaction flask.
次いで、150m1のエビロクロルヒドリンを加え、2
0rp+*で攪拌しつつ、80℃で6時間加熱した。Then add 150ml of Ebichlorohydrin and add 2
The mixture was heated at 80° C. for 6 hours while stirring at 0 rpm+*.
反応終了後、内容物を室温に冷却し、下部の水層中のゲ
ル状物を濾別した。このゲル状物にエタノール50−を
添加し、攪拌後濾過してゲル状物を回収した。After the reaction was completed, the contents were cooled to room temperature, and the gel-like substance in the lower aqueous layer was filtered off. 50% of ethanol was added to this gel-like material, stirred, and then filtered to recover the gel-like material.
回収ゲルを再度エタノール50−に懸濁し、濾過してゲ
ル状物を回収した。本操作をさらに3回繰り返した。次
に、蒸留水50m(に懸濁し、濾別した。The recovered gel was suspended again in 50% of ethanol and filtered to recover a gel-like substance. This operation was repeated three more times. Next, it was suspended in 50 ml of distilled water and filtered.
本操作を3回繰り返した後、再度エタノール5〇−に分
散した。これを濾過し、ゲル状物を乾燥後、粉砕し、白
色高分子粉末9.7gを得た。After repeating this operation three times, the mixture was again dispersed in 50% of ethanol. This was filtered, and the gel-like material was dried and crushed to obtain 9.7 g of white polymer powder.
本粉末の60℃における水への溶解度は水100gに対
し0.001g以下であった。さらに、本粉末を60℃
の水に1日間浸漬した後の水和ゲルの本粉末に対する重
量比は13,5であった。The solubility of this powder in water at 60° C. was 0.001 g or less per 100 g of water. Furthermore, this powder was heated at 60°C.
The weight ratio of the hydrated gel to the present powder after being immersed in water for one day was 13.5.
一方、アスペルギルス・オリゼIMP−4076の培養
t?ff120mZ (α−アミラーゼ0.50単位、
β−アミラーゼ0.98単位、γ−アミラーゼ1.30
単位/Tn1を含む)を6℃に冷却し、5 rpmで2
分間攪拌した。On the other hand, culture of Aspergillus oryzae IMP-4076 t? ff120mZ (α-amylase 0.50 units,
β-amylase 0.98 units, γ-amylase 1.30 units
unit/Tn1) was cooled to 6°C and heated at 5 rpm for 2
Stir for a minute.
これを濾過し、濾液中のα−アミラーゼ活性、β−アミ
ラーゼ活性、r−7ミラーゼ活性を測定した。This was filtered, and α-amylase activity, β-amylase activity, and r-7 amylase activity in the filtrate were measured.
上澄液中のα−アミラーゼは0.50単位/d、β−ア
ミラーゼは0.02単位/m1、T−アミラーゼは0.
03単位/dであった。In the supernatant, α-amylase was 0.50 units/d, β-amylase was 0.02 units/ml, and T-amylase was 0.
03 units/d.
上記の高分子粉末に吸着した酵素量を、高分子粉末との
接触前の酵素濃度から接触後の酵素濃度を減じた値とし
て計算した。その結果、α−アミラーゼは0単位/−1
β−アミラーゼは0.96単位/mZ、γ−アミラーゼ
は1.27単位/d−培養濾液だけ高分子粉末に吸着さ
れたことになる。The amount of enzyme adsorbed to the polymer powder was calculated as the value obtained by subtracting the enzyme concentration after contact from the enzyme concentration before contact with the polymer powder. As a result, α-amylase was 0 units/-1
This means that 0.96 units/mZ of β-amylase and 1.27 units/mZ of γ-amylase were adsorbed to the polymer powder.
したがって、培養濾液中に存在したα−アミラーゼは吸
着されず、β−アミラーゼは90%、T−アミラーゼの
98%が吸着された。Therefore, α-amylase present in the culture filtrate was not adsorbed, but 90% of β-amylase and 98% of T-amylase were adsorbed.
次に、上記の酵素を吸着した高分子粉末を20mfの容
器に入れ、苛性ソーダでpH8,2に調節した液4dを
添加し、5 rps+で攪拌して2分間接触させた。こ
れを300Orpm 、5分間遠心分離して、高分子粉
末と上澄液とに分離した。さらに高分子粉末に水2−を
加えて懸濁し、再度、3000rpm、 5分間遠心分
離して、洗滌液と高分子粉末とに固液分離した。上記で
得られた上澄液と洗滌液とを合わせ、酵素脱離液6−を
得た。Next, the above enzyme-adsorbed polymer powder was placed in a 20 mf container, and 4d of a solution adjusted to pH 8.2 with caustic soda was added thereto, and the mixture was stirred at 5 rps+ and brought into contact for 2 minutes. This was centrifuged at 300 rpm for 5 minutes to separate the polymer powder and supernatant. Furthermore, water 2- was added to the polymer powder to suspend it, and the mixture was centrifuged again at 3,000 rpm for 5 minutes to separate solid and liquid into a washing liquid and the polymer powder. The supernatant liquid obtained above and the washing liquid were combined to obtain enzyme desorption liquid 6-.
上記の酵素脱離液の酵素濃度を測定した結果、α−アミ
ラーゼO単位/−1β−アミラーゼ25.5単位/−1
γ−アミラーゼ41.7車位/wlであった。As a result of measuring the enzyme concentration of the above enzyme desorption solution, α-amylase O units/-1 β-amylase 25.5 units/-1
γ-amylase was 41.7 car position/wl.
従って、α−アミラーゼO単位(回収率θ%)、β−ア
ミラーゼ15.3単位(78,0%)、T−アミラーゼ
25.0単位(96,0%)を回収できた。Therefore, α-amylase O units (recovery rate θ%), β-amylase 15.3 units (78.0%), and T-amylase 25.0 units (96.0%) were recovered.
また、本液中にはプロテアーゼ活性は検出されず、着色
、着臭も認められなかった。かつ、本液中の有機物量及
び無機物量は、原液中の含有量に対し、それぞれ1.8
%、1.9%に減少した。上記により、原液中のT−ア
ミラーゼを選択的に約19゜2倍に濃縮し、かつ精製し
た。Furthermore, no protease activity was detected in this liquid, and neither coloring nor odor was observed. In addition, the amount of organic matter and the amount of inorganic matter in this solution are each 1.8 compared to the content in the stock solution.
%, decreased to 1.9%. As described above, T-amylase in the stock solution was selectively concentrated and purified by about 19 degrees twice.
次に、本発明吸着剤の代わりにα−アミラーゼ吸着剤と
して公知のアミロース(馬鈴薯起源)を用いてα−アミ
ラーゼ、β−アミラーゼ及びr −アミラーゼの吸着実
験を比較例として実施した。Next, adsorption experiments of α-amylase, β-amylase, and r-amylase were conducted as a comparative example using amylose (derived from potato), which is known as an α-amylase adsorbent, instead of the adsorbent of the present invention.
比較例1
実施例と同一ロンドのアスペルギルス・オリゼIFO−
4176の培養液40a! (α−アミラーゼ0.50
単位、β−アミラーゼ0.98単位、T−アミラーゼ1
.30単位/−を含む)を6℃に冷却し、アミロース粉
末0.2gを添加し、5 rpmで2分間攪拌して接触
させた。これを濾過し、濾液中のα−アミラーゼ活性、
β−アミラーゼ活性及びγ−アミラーゼ活性を測定した
。Comparative Example 1 Same Rondo Aspergillus oryzae IFO as in Example
4176 culture solution 40a! (α-amylase 0.50
unit, β-amylase 0.98 unit, T-amylase 1
.. (containing 30 units/-) was cooled to 6° C., 0.2 g of amylose powder was added and brought into contact with stirring at 5 rpm for 2 minutes. This is filtered, α-amylase activity in the filtrate,
β-amylase activity and γ-amylase activity were measured.
濾液中のα−アミラーゼは0.02単位/−1β−アミ
ラーゼは0.96単位/d、γ−アミラーゼは1゜29
単位/−であった。上記アミロース粉末に吸着した酵素
量を、アミロースとの接触前の酵素濃度から接触後の酵
素濃度を減じた値として計算した。α-amylase in the filtrate is 0.02 units/d, β-amylase is 0.96 units/d, and γ-amylase is 1°29
The unit was /-. The amount of enzyme adsorbed to the amylose powder was calculated as the value obtained by subtracting the enzyme concentration after contact with amylose from the enzyme concentration before contact with amylose.
その結果、培養濾液中に存在したα−アミラーゼはその
96%(0,48単位/wl)、β−アミラーゼはその
2%(0,02単位/−)が吸着され、T−アミラーゼ
は1%(0,01単位/−)と事実上α−アミラーゼ以
外は吸着されなかった。As a result, 96% (0.48 units/wl) of α-amylase present in the culture filtrate, 2% (0.02 units/-) of β-amylase, and 1% of T-amylase were adsorbed. (0.01 units/-), and virtually nothing other than α-amylase was adsorbed.
本発明は、グルコースのα−1,4ホモオリゴマを分子
間架橋してなる新規な三次元架橋高分子物質を提供する
ものである。そして、この三次元架橋化高分子物質は酵
素生産菌の培養濾液など多種多様の有機性、無機性の不
純物及び他の酵素を含む液中から、β−アミラーゼ、T
−アミラーゼを選択的に吸着分離することができる。特
に、プロテアーゼなどの酵素精製の際に不都合な酵素類
を除去することができる。The present invention provides a novel three-dimensionally crosslinked polymeric substance formed by intermolecularly crosslinking α-1,4 homooligomers of glucose. This three-dimensionally cross-linked polymeric material is extracted from a liquid containing various organic and inorganic impurities and other enzymes, such as culture filtrate of enzyme-producing bacteria.
-Amylase can be selectively adsorbed and separated. In particular, enzymes that are inconvenient during enzyme purification, such as protease, can be removed.
Claims (1)
してなることを特徴とする三次元架橋化高分子物質。 2、グルコースのα−1,4ホモオリゴマの重合度が2
〜6であることを特徴とする特許請求の範囲第1項記載
の三次元架橋化高分子物質。 3、グルコースのα−1,4ホモオリゴマの重合度が2
であることを特徴とする特許請求の範囲第2項記載の三
次元架橋化高分子物質。 4、グルコースのα−1,4ホモオリゴマの重合度が3
〜6であることを特徴とする特許請求の範囲第2項記載
の三次元架橋化高分子物質。 5、氷点以上60℃以下の温度範囲において、100g
の水に対する溶解度が0.001g以下であることを特
徴とする特許請求の範囲第1〜第4項記載の三次元架橋
化高分子物質。 6、グルコースのα−1,4ホモオリゴマに架橋剤を加
え反応させ分子間架橋させて三次元マトリックスを形成
させることを特徴とする三次元架橋化高分子物質の製造
方法。 7、架橋剤がエピハロゲンであることを特徴とする特許
請求の範囲第6項記載の三次元架橋化高分子物質の製造
方法。 8、エピハロゲンがエピクロルヒドリンであることを特
徴とする特許請求の範囲第7項記載の三次元架橋化高分
子物質の製造方法。 9、架橋剤を加えた反応により、氷点以上60℃以下の
温度範囲ににおいて、100gの水に対する溶解度が0
.001g以下になるように分子間架橋させることを特
徴とする特許請求の範囲第6項記載の三次元架橋化高分
子物質の製造方法。[Scope of Claims] 1. A three-dimensionally crosslinked polymeric material, characterized in that it is formed by intermolecularly crosslinking α-1,4 homooligomers of glucose. 2. The degree of polymerization of α-1,4 homooligomer of glucose is 2.
6. The three-dimensionally crosslinked polymeric material according to claim 1, wherein the three-dimensionally crosslinked polymeric material has a molecular weight of 6 to 6. 3. The degree of polymerization of α-1,4 homooligomer of glucose is 2.
The three-dimensionally crosslinked polymeric substance according to claim 2, which is characterized in that: 4. The degree of polymerization of α-1,4 homooligomer of glucose is 3
6. The three-dimensionally crosslinked polymeric material according to claim 2, wherein the three-dimensionally crosslinked polymeric substance has a molecular weight of 6 to 6. 5. 100g in the temperature range above freezing point and below 60℃
The three-dimensionally crosslinked polymeric substance according to any one of claims 1 to 4, wherein the solubility in water is 0.001 g or less. 6. A method for producing a three-dimensionally crosslinked polymeric substance, which comprises adding a crosslinking agent to α-1,4 homooligomer of glucose and causing the reaction to cause intermolecular crosslinking to form a three-dimensional matrix. 7. The method for producing a three-dimensionally crosslinked polymeric substance according to claim 6, wherein the crosslinking agent is an epihalogen. 8. The method for producing a three-dimensionally crosslinked polymeric substance according to claim 7, wherein the epihalogen is epichlorohydrin. 9. Due to the reaction with the addition of a crosslinking agent, the solubility in 100g of water is 0 in the temperature range from freezing point to 60℃.
.. 7. The method for producing a three-dimensionally crosslinked polymeric substance according to claim 6, characterized in that intermolecular crosslinking is carried out so that the weight of the three-dimensionally crosslinked polymeric substance is 0.001g or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20129286A JPS6357601A (en) | 1986-08-29 | 1986-08-29 | Three-dimensionally crosslinked polymeric sub-stance and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20129286A JPS6357601A (en) | 1986-08-29 | 1986-08-29 | Three-dimensionally crosslinked polymeric sub-stance and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6357601A true JPS6357601A (en) | 1988-03-12 |
JPH0372083B2 JPH0372083B2 (en) | 1991-11-15 |
Family
ID=16438561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20129286A Granted JPS6357601A (en) | 1986-08-29 | 1986-08-29 | Three-dimensionally crosslinked polymeric sub-stance and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6357601A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6105116A (en) * | 1997-01-06 | 2000-08-15 | Nec Corporation | Method and apparatus of controlling a disk cache during a degenerated mode of operation |
JP2003532774A (en) * | 2000-05-08 | 2003-11-05 | セラニーズ ベンチャーズ ゲー・エム・ベー・ハー | Gel consisting of poly α-1,4-glucan and starch |
-
1986
- 1986-08-29 JP JP20129286A patent/JPS6357601A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6105116A (en) * | 1997-01-06 | 2000-08-15 | Nec Corporation | Method and apparatus of controlling a disk cache during a degenerated mode of operation |
JP2003532774A (en) * | 2000-05-08 | 2003-11-05 | セラニーズ ベンチャーズ ゲー・エム・ベー・ハー | Gel consisting of poly α-1,4-glucan and starch |
Also Published As
Publication number | Publication date |
---|---|
JPH0372083B2 (en) | 1991-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4418144A (en) | Process for producing gamma-cyclodextrins | |
US4384898A (en) | Process for producing cyclodextrins | |
US4303787A (en) | Process for recovering cyclodextrins | |
EP0220719B1 (en) | Cyclodextrin absorbing material and its use | |
JPS58190394A (en) | Production of d-glucose | |
JPH0329241B2 (en) | ||
JPH0217158B2 (en) | ||
CA1116113A (en) | Process for producing an immobilized glucose isomerase | |
JPS6357601A (en) | Three-dimensionally crosslinked polymeric sub-stance and its production | |
JPS62164701A (en) | Diglucosyl-alpha-cyclodextrin and its production | |
EP0045464B1 (en) | Process for producing cyclodextrins | |
US5202250A (en) | Method for isolation and purification of amylases, and adsorbents used for the same as well as devices for the isolation and purification | |
JPH0248561B2 (en) | ||
Su et al. | A novel method for continuous production of cyclodextrins using an immobilized enzyme system | |
US3888738A (en) | Method for purifying cyclodextrin-producing enzymes | |
JP3075873B2 (en) | Novel cyclic isomaltooligosaccharide and method for producing the same | |
CA1159785A (en) | Method for the production of immobilized glucose isomerase | |
JPS643480B2 (en) | ||
JPS62171693A (en) | Production of branched oligosaccharide | |
JP3009944B2 (en) | Method for producing branched cyclodextrin | |
JPH0265789A (en) | Production of agar oligosaccharide | |
JPH0265788A (en) | Production of agar oligosaccharide | |
JP2798920B2 (en) | Process for producing syrup containing isomaltooligosaccharide | |
JPH07289277A (en) | Production of dextran | |
JPH04112797A (en) | Production of isomaltooligosaccharide |