JPS6357413B2 - - Google Patents

Info

Publication number
JPS6357413B2
JPS6357413B2 JP20074885A JP20074885A JPS6357413B2 JP S6357413 B2 JPS6357413 B2 JP S6357413B2 JP 20074885 A JP20074885 A JP 20074885A JP 20074885 A JP20074885 A JP 20074885A JP S6357413 B2 JPS6357413 B2 JP S6357413B2
Authority
JP
Japan
Prior art keywords
tar
extractant
phenolate
impurities
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20074885A
Other languages
Japanese (ja)
Other versions
JPS6261938A (en
Inventor
Mamoru Ishii
Katsunori Tamura
Yasuo Kuwana
Takeshi Ueda
Tomoji Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Sumikin Kako KK
Original Assignee
Sumitomo Heavy Industries Ltd
Sumikin Kako KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd, Sumikin Kako KK filed Critical Sumitomo Heavy Industries Ltd
Priority to JP20074885A priority Critical patent/JPS6261938A/en
Publication of JPS6261938A publication Critical patent/JPS6261938A/en
Publication of JPS6357413B2 publication Critical patent/JPS6357413B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明はタール酸類(フエノール類、クレゾー
ル類、キシレノール類)から不純物を除去する方
法に関する。 従来技術 タール系留出油中の石炭酸類を苛性ソーダによ
り抽出して得られた石炭酸ソーダ(以下フエノレ
ートと称する)には微量のタール塩基分や中性油
分等不純物が混在する。これ等不純物は最終的に
タール酸製品(複数)に移行し、品質低下の原因
となる為、除去する必要がある。ここで、精製除
去の段階としては塩基類の除去の容易さから、タ
ール酸が苛性ソーダと結合してフエノレートの形
態にある段階、すなわち炭酸ガスにより分解し粗
タール酸を製造する工程の前段階に実施するのが
一般的である。 このための精製法には従来よりスチーミングに
よる「スチームストリツピング法」と軽油洗浄
法」とがあり(タール工業便覧第181頁、第182頁
参照)、片方又は両方式を装置内に組入れている。 スチームストリツピング法単独による不純物除
去の場合、高沸点塩基分及び高沸点中性油分の除
去に無理があり、このためのスチーム消費量の増
大および効率(塔中での発泡による効率低下)の
問題等ならびに省エネの観点より見ても操業上極
めて不経済であつた。又、従来の軽油洗浄を併用
する場合は軽油洗浄装置としてスプレー塔又は充
填塔を用いていた。フエノレート中の微量のター
ル塩基分や中性油分等不純物を除去せねばならな
い理由は、最終工程で得られる各種タール酸製品
の着色抑制と中性油試験合格のためである。着色
の主原因である塩基分、特に次工程のスチームス
トリツピング法では簡単に除去し難い高沸点塩基
分、例えばアニリン、トルイジン、キノリン等を
除去する事にあり、製品クレゾールの着色原因を
取除く事を主目的とし、分留製品であるフエノー
ル、オルトクレゾール、メタ・パラクレゾール、
キシレノール、高沸点タール酸において、高品質
な製品を得ることである。 従来法のスプレー塔、不規則充填塔においては
下記欠点がある。 a 系内ホールドアツプ量が大きい為、フエノレ
ートの置換が遅く抽剤比の変更等操作条件変更
に対するレスポンスが遅い。 b 抽料、抽剤の運転負荷を低減した場合(ロー
ドダウン)、分散相である抽料(フエノレート)
が均一に分散しないため接触効果が低下し易
い。 c 設備の専有面積が大きく、コンパクトでな
い。 目 的 本発明は、タール酸類から不純物を除去するに
際し、上記従来法の欠点を克服し除去効率にすぐ
れ、エネルギー消費も少ない方法を提供すること
を目的とする。 構 成 本発明者は前記目的を達成するために鋭意、研
究した結果、タール酸類から抽剤を用いて不純物
を除去するに際し、多孔板を上下振動させる形式
の多孔板往復動型向流抽出塔を使用することを特
徴とするタール酸類の不純物を除去する方法を提
供することによつて前記目的が達成できることを
見出した。 石炭酸類は主としてコールタールから回収され
る。タールを蒸留して得られるカルボル油、ナフ
タリン油を苛性ソーダ水溶液で抽出分離し、フエ
ノレートとして取出される。 取り出されたフエノレートにはタール塩基分
や、中性油分等不純物が含有されている。本発明
はこの不純物を少量の抽剤(省エネ化)の使用の
もとに高効率(性能の向上)で抽出除去しようと
する不純物除去法である。 フエノレートは次に炭酸ガス、硫酸などで中和
分解されて、粗タール酸が得られる。 本発明における抽剤としては、従来公知の粗ベ
ンゾール、水添油(ユニフイネート)、純ベンゾ
ールの他、タール蒸留時に発生するタール軽油を
抽剤として使用できる。タール軽油は沸点170℃
以下の留分で収率は対タール1%以下と発生量が
非常に少なく、通常粗ベンゾールよりもベンゾー
ル、トリオールの含有量が少ない為、粗ベンゾー
ルに混入させ回収されており、回収率の向上に役
立つ程度で、軽油洗浄用抽剤としては不適とされ
ていた。しかし低油剤比でも接触効率の高い「多
孔板往復動型向流抽出塔」(住友/カールカラム
抽出装置のごとき空孔率50〜60%の多孔板を上下
振動する形式)を使用することにより、使用量に
限度があるタール軽油であつても高効率にて不純
物を除去する事が可能となつた。 特に高沸点中性油分については、その分配係数
(抽出相中の平衝濃度/抽残相中の平衝濃度)が
大であることが手伝つて本機の特性が顕著に発揮
されている。一般に、抽剤比を小に採ると、所定
の除去率確保の為の所要抽出理論段数は増加の方
向となる上に段効率(接触効率)が低下し易くな
るという二重の障害が発生するが、本機は後者を
カバーし除去率を高位に維持していると考えるこ
とが出来る。 以下に本発明の詳細を、本発明の方法を実施す
るのに使用される抽出塔及び前記抽出塔を2つ組
合わせた装置系を示す第1図及び第2図に基づい
て説明する。 タール系留出油中の石炭酸類を苛性ソーダによ
り抽出し、得られた粗製フエノレートはパイプ1
により第1抽出塔7の上部より導入され、分散相
として不純物抽出後底部よりパイプ2により第2
抽出塔8に第1抽出塔と同様にその上部より導入
され分散相として不純物抽出後底部よりパイプ3
により抜出され、精製フエノレートとして次工程
の粗タール酸工程へ送られ処理される。 抽剤はパイプ4により第2抽出塔8の下部に導
入され連続相として(運転開始前に抽剤を7及び
8の両抽出塔に張込んでおく)フエノレート中の
不純物を抽出し上部よりパイプ5によりオーバー
フローにて抜出され、第1抽出塔7の底部へ導入
され、第2抽出塔と同様にフエノレート内の不純
物を抽出し、パイプ6によりオーバーフローにて
抜出され回収される。 この場合フエノレートと抽剤の界面は7,8抽
出塔底部の10に表われ、この界面を崩すことな
く、底部より界面計により制御されフエノレート
はパイプ2及び3により抜出される。 不純物の除去率、抽剤種類、抽剤比により駆動
機11の上下ストローク数を調整することにより
シヤフト12に取付けられている多孔プレート1
3の上下振動数の最適な位置で使用される。 又、所望除去率により抽出塔の単段、多段化の
最適塔高(塔数)を選定することが出来る。 次に本発明を下記の実施例によつて従来法によ
る比較例とともに説明する。 実施例 フエノレート:2000/時間 タール軽油 :150/時間 抽剤比 :0.075 (S/F) フエノレート中の中性油、塩基分(単位ppm)
TECHNICAL FIELD The present invention relates to a method for removing impurities from tar acids (phenols, cresols, xylenols). Prior Art Sodium carbonate (hereinafter referred to as phenolate) obtained by extracting the carbolic acids in tar-based distillate oil with caustic soda contains impurities such as trace amounts of tar base and neutral oil. These impurities must be removed because they will eventually transfer to the tar acid product(s) and cause quality deterioration. In order to facilitate the removal of bases, the purification and removal stage is performed at the stage where tar acid is combined with caustic soda to form a phenolate, that is, the stage before the process of decomposition with carbon dioxide gas to produce crude tar acid. It is common practice to do so. Conventional refining methods for this purpose include the ``steam stripping method'' using steaming and the light oil cleaning method (see pages 181 and 182 of the Tar Industry Handbook), and one or both methods can be incorporated into the equipment. ing. When removing impurities using the steam stripping method alone, it is difficult to remove high-boiling bases and high-boiling neutral oils, which increases steam consumption and reduces efficiency (efficiency decrease due to foaming in the column). It was extremely uneconomical to operate from the point of view of problems and energy saving. Furthermore, when conventional light oil cleaning is used in combination, a spray tower or a packed tower has been used as the light oil cleaning device. The reason why it is necessary to remove trace amounts of impurities such as tar bases and neutral oils in the phenolate is to suppress the coloring of various tar acid products obtained in the final process and to pass the neutral oil test. The purpose of this method is to remove base components that are the main cause of coloration, especially high-boiling base components that are difficult to remove in the next step, steam stripping, such as aniline, toluidine, and quinoline. The main purpose is to remove fractional distillation products such as phenol, ortho-cresol, meta-para-cresol,
The aim is to obtain high quality products in xylenol and high boiling point tar acid. Conventional spray towers and irregularly packed towers have the following drawbacks. a) Due to the large amount of hold-up in the system, phenolate replacement is slow and the response to changes in operating conditions such as changes in extraction ratio is slow. b When the operating load of extractant and extractant is reduced (loaddown), the extractant (phenolate) which is the dispersed phase
is not uniformly dispersed, so the contact effect tends to deteriorate. c The equipment occupies a large area and is not compact. Purpose An object of the present invention is to provide a method for removing impurities from tar acids, which overcomes the drawbacks of the conventional methods described above, has excellent removal efficiency, and consumes less energy. Configuration As a result of intensive research to achieve the above object, the present inventor has developed a perforated plate reciprocating type countercurrent extraction column in which the perforated plate is vibrated up and down when removing impurities from tar acids using an extractant. It has been found that the above object can be achieved by providing a method for removing impurities from tar acids, which is characterized by using a method for removing impurities from tar acids. Carbolic acids are mainly recovered from coal tar. Carbol oil and naphthalene oil obtained by distilling tar are extracted and separated with an aqueous solution of caustic soda and extracted as phenolate. The extracted phenolate contains impurities such as tar base and neutral oil. The present invention is an impurity removal method that attempts to extract and remove these impurities with high efficiency (improved performance) using a small amount of extractant (energy saving). The phenolate is then neutralized and decomposed with carbon dioxide gas, sulfuric acid, etc. to obtain crude tar acid. As the extractant in the present invention, in addition to conventionally known crude benzol, hydrogenated oil (unifinate), pure benzol, tar light oil generated during tar distillation can be used as the extractant. Tar diesel oil has a boiling point of 170℃
The yield of the following fractions is less than 1% of tar, which is a very small amount, and the benzene and triol content is lower than normal crude benzole, so they are collected by mixing them with crude benzole, improving the recovery rate. It was considered to be unsuitable as an extractant for cleaning light oil. However, by using a "perforated plate reciprocating type countercurrent extraction tower" (a type of perforated plate with a porosity of 50 to 60%, such as the Sumitomo/Karl column extractor, that vibrates vertically), which has high contact efficiency even at a low oil/agent ratio. It has become possible to remove impurities with high efficiency even from tar gas oil, which has a limited usage amount. Especially for high-boiling neutral oils, the characteristics of this machine are clearly demonstrated due to the large partition coefficient (balanced concentration in the extraction phase/balanced concentration in the raffinate phase). . In general, when the extractant ratio is set to a small value, the number of theoretical plates required for extraction to ensure a given removal rate tends to increase, and the plate efficiency (contact efficiency) tends to decrease, which is a dual problem. However, this machine can be considered to cover the latter and maintain a high removal rate. The details of the present invention will be explained below with reference to FIGS. 1 and 2, which show an extraction column used to carry out the method of the present invention and an apparatus system combining two of the extraction columns. The phenolic acids in the tar distillate are extracted with caustic soda, and the resulting crude phenolate is passed through pipe 1.
is introduced from the top of the first extraction column 7, and after extracting impurities as a dispersed phase, it is introduced into the second extraction column from the bottom via pipe 2.
The pipe 3 is introduced into the extraction tower 8 from the top, as in the first extraction tower, from the bottom after impurities are extracted as a dispersed phase.
It is extracted as purified phenolate and sent to the next step, the crude tar acid step, for treatment. The extractant is introduced into the lower part of the second extraction tower 8 through the pipe 4, and the impurities in the phenolate are extracted as a continuous phase (the extractant is charged into both extraction towers 7 and 8 before the start of operation). The phenolate is extracted as an overflow through a pipe 6 and introduced into the bottom of the first extraction column 7, where impurities in the phenolate are extracted in the same manner as in the second extraction column, and then extracted as an overflow through a pipe 6 and recovered. In this case, the interface between the phenolate and the extractant appears at 10 at the bottom of the extraction tower 7 and 8, and the phenolate is extracted from the bottom through pipes 2 and 3 under control by an interfacial meter without breaking this interface. The perforated plate 1 is attached to the shaft 12 by adjusting the number of vertical strokes of the driving machine 11 according to the impurity removal rate, the type of extractant, and the extractant ratio.
It is used at the optimal position of 3 vertical vibrations. Furthermore, the optimal column height (number of columns) for single-stage or multi-stage extraction towers can be selected depending on the desired removal rate. Next, the present invention will be explained with reference to the following examples and comparative examples using conventional methods. Example Phenolate: 2000/hour Tar light oil: 150/hour Extractant ratio: 0.075 (S/F) Neutral oil and base content in phenolate (unit: ppm)

【表】 上記実施データはタール蒸留設備内脱酸設備の
運転実積データによる。 通常、上記値を得る為には従来法では抽剤比を
0.5〜4.0の範囲にする必要がある。 本発明の実施例と同等の不純物除去効率を得る
為の従来法による装置系の比較値を下記に示す。
[Table] The above implementation data is based on the actual operating data of the deoxidizing equipment in the tar distillation equipment. Normally, in order to obtain the above value, in conventional methods, the extractant ratio is
Must be in the range 0.5 to 4.0. Comparative values of a conventional apparatus system for obtaining impurity removal efficiency equivalent to that of the embodiment of the present invention are shown below.

【表】【table】

【表】 * 充填物:ラシヒリング
比較例 脱酸設備のミキサーセトラー型(ミキサー:静
置混合型 セトラー:独立静置槽型)1系列での
タール軽油による軽油洗浄実積データ。
[Table] * Filling: Raschig Ring Comparative Example Actual data on light oil cleaning with tar light oil in one line of mixer-settler type deoxidizing equipment (mixer: static mixing type, settler: independent static tank type).

【表】 上記と同様な抽剤比にて本発明法で処理した場
合: 除去率 (1) アニリン 1360ppm→480ppm 65% (2) トルイジン 460→ 50 89 (3) キノリン 2330→400 83 となる。 なお、本実施例において、抽剤としてタール軽
油を使用した場合について述べたが、除去したい
不純物を殆んど含まない純ベンゾール等を抽剤と
して使用すれば、さらに不純物の除去率を高める
ことができることはいうまでもない。 効 果 以上述べたように、高効率な多孔板往復動型向
流抽出塔を使用することによつて抽剤比(抽剤/
抽料(フエノレート)の割合)の大巾な低減が可
能となり、使用済抽剤の再生エネルギーの低減に
より大巾な省エネルギーが計れる。 一方抽剤比低減の場合、抽出除去の対象は前述
の分配係数の大な不純物に絞られてくるがこのよ
うな不純物が高沸点中性油分及び高沸点塩基分で
あることから非常に好都合である。すなわち次工
程のスチーミング塔での脱油工程での不純物除去
が楽になり、ここでのスチーム使用量も低減さ
れ、省エネルギー化をもたらす結果となる。
[Table] When treated with the method of the present invention using the same extractant ratio as above: Removal rate (1) Aniline 1360ppm→480ppm 65% (2) Toluidine 460→50 89 (3) Quinoline 2330→400 83. Although this example describes the case where tar light oil is used as the extractant, the removal rate of impurities can be further increased if pure benzol, etc., which contains almost no impurities to be removed, is used as the extractant. It goes without saying that it can be done. Effects As mentioned above, by using a highly efficient perforated plate reciprocating type countercurrent extraction tower, the extractant ratio (extractant/
This makes it possible to significantly reduce the amount of extractant (phenolate), and to reduce the amount of energy required to regenerate used extractor, resulting in significant energy savings. On the other hand, in the case of reducing the extractant ratio, the targets for extraction and removal are narrowed down to the aforementioned impurities with large partition coefficients, which is very convenient since these impurities are high-boiling neutral oils and high-boiling bases. be. In other words, impurities can be easily removed in the next step of deoiling in a steaming tower, and the amount of steam used in this step is also reduced, resulting in energy savings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で使用される抽出塔の概略図で
あり、第2図は前記抽出塔を2つ組合わせた本発
明の方法を実施するための装置系の系統図であ
る。 1,2,3,4,5,6…パイプ、7,8…抽
出塔、9…オーバーフロー液面、10…界面(抽
剤/フエノレート)、11…駆動機、12…シヤ
フト、13…多孔プレート。
FIG. 1 is a schematic diagram of an extraction column used in the present invention, and FIG. 2 is a system diagram of an apparatus system for carrying out the method of the present invention, which combines two of the extraction columns. 1, 2, 3, 4, 5, 6... Pipe, 7, 8... Extraction column, 9... Overflow liquid level, 10... Interface (extraction agent/phenolate), 11... Drive machine, 12... Shaft, 13... Porous plate .

Claims (1)

【特許請求の範囲】[Claims] 1 タール蒸留工程で回収されるタール酸類から
抽剤を用いて不純物を除去するに際し、多孔板を
上下振動させる形式の多孔板往復動型向流抽出塔
を使用することを特徴とするタール酸類の不純物
を除去する方法。
1. When removing impurities from tar acids recovered in a tar distillation process using an extractant, a perforated plate reciprocating type countercurrent extraction column in which the perforated plate is vibrated up and down is used. How to remove impurities.
JP20074885A 1985-09-10 1985-09-10 Removal of impurity of tar acid Granted JPS6261938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20074885A JPS6261938A (en) 1985-09-10 1985-09-10 Removal of impurity of tar acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20074885A JPS6261938A (en) 1985-09-10 1985-09-10 Removal of impurity of tar acid

Publications (2)

Publication Number Publication Date
JPS6261938A JPS6261938A (en) 1987-03-18
JPS6357413B2 true JPS6357413B2 (en) 1988-11-11

Family

ID=16429514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20074885A Granted JPS6261938A (en) 1985-09-10 1985-09-10 Removal of impurity of tar acid

Country Status (1)

Country Link
JP (1) JPS6261938A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350921B1 (en) * 1998-02-24 2002-02-26 Indspec Chemical Corporation Process for the production of a dihydroxybenzene and dicarbinol from diisopropylbenzene

Also Published As

Publication number Publication date
JPS6261938A (en) 1987-03-18

Similar Documents

Publication Publication Date Title
EP0567338B1 (en) Method of phenol extraction from phenol tar
KR100835323B1 (en) Propylene Oxide Purification
US2662843A (en) Shale oil refining
JP3516168B2 (en) Phenol recovery method
US2285696A (en) Process for desulphurizing mineral oil distillates
JPS6357413B2 (en)
EP0862544B1 (en) Process for purifying a 2,6-dialkylphenol
JPS63205101A (en) Separation of dimethyl carbonate
JP4276349B2 (en) Inden production method
US1873900A (en) Removal of phenols from waste and other liquors
US2826615A (en) Process for producing alcohols by acid treating olefinic mineral oils
US2593851A (en) Method of removing mercaptans from hydrocarbons
JP3019535B2 (en) How to collect indene from tar
US2997477A (en) Extraction and recovery of phenols and pyridines from phenol containing oils
JP3455772B2 (en) Method for recovering phenol and its derivatives
SU1310395A1 (en) Method for isolating and purifying raw quinoline bases from sulfates of bases of naphthalene and absorption fractions of coal tar
JP2002363118A (en) Method for purifying dihydroxybenzene
JPH0613715B2 (en) Solvent recovery method
JPS6087230A (en) Production of indene
EP2412695B1 (en) Method of purifying dihydroxybenzene
JP3063304B2 (en) Inden distillation purification method
CN116943282A (en) Method for removing neutral oil in crude phenol oil and process system thereof
JP4239225B2 (en) Caprolactam production method
JPH0222788B2 (en)
Alessi et al. Process for the recovery of phenol from an aqueous stream containing NA SO 4