JPS6357373A - Four-wheel steering device for vehicle - Google Patents

Four-wheel steering device for vehicle

Info

Publication number
JPS6357373A
JPS6357373A JP20108686A JP20108686A JPS6357373A JP S6357373 A JPS6357373 A JP S6357373A JP 20108686 A JP20108686 A JP 20108686A JP 20108686 A JP20108686 A JP 20108686A JP S6357373 A JPS6357373 A JP S6357373A
Authority
JP
Japan
Prior art keywords
steering
vehicle
rear wheel
wheel steering
steering ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20108686A
Other languages
Japanese (ja)
Inventor
Kenichi Watanabe
憲一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP20108686A priority Critical patent/JPS6357373A/en
Priority to US07/089,552 priority patent/US4874054A/en
Priority to DE19873728678 priority patent/DE3728678A1/en
Publication of JPS6357373A publication Critical patent/JPS6357373A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1518Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a mechanical interconnecting system between the steering control means of the different axles
    • B62D7/1545Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a mechanical interconnecting system between the steering control means of the different axles provided with electrical assistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

PURPOSE:To suppress an increase of an understeering tendency by correcting the steering ratio so that the steering state of front wheels and the steering state of rear wheels are in the opposite phase relationship and making the correction quantity manually variable when a lateral force is a predetermined value or more. CONSTITUTION:A rear wheel steering mechanism interlocked with the steering of front wheels has a pulse motor 30 moving a rear wheel steering rod and a pump drive motor 44 applying a hydraulic assist force and is controlled by a control unit 50. In this case, the control unit 50 is constituted of a steering ratio characteristic selecting unit 59 selecting one of multiple steering ratio characteristics stored in a memory unit 58 based on the detected value of a lateral force and a rear wheel steering angle arithmetic unit 60 calculating the rear wheel steering angle based on the steering ratio characteristic and the detected values of the steering angle and vehicle speed. This steering ratio is selected so that the steering state of front wheels and the steering state of rear wheels are in the opposite phase relationship when the lateral force is a predetermined value or more, and this selection is made variable in response to a signal from a travel mode selecting switch 57.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ステアリング・ハンドルを介しての操舵操作
によって前輪が転舵されるとき、同時に後輪も転舵され
るようになす車両の4輪操舵装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a four-wheel drive system of a vehicle in which when the front wheels are steered by a steering operation via a steering wheel, the rear wheels are also steered at the same time. This invention relates to a wheel steering device.

(従来の技術) ステアリング・ホイールを介してなされる操舵操作によ
って前輪が転舵されるとき、前輪の転舵に伴って後輪も
転舵されるようになし、それにより、後輪の横すべりが
低減された状態で車両の操縦が行われるようにして、車
両の運転性の向上が図られるようにする4輪操舵装置が
知られている。
(Prior art) When the front wheels are steered by a steering operation performed through the steering wheel, the rear wheels are also steered as the front wheels are steered, thereby preventing side slip of the rear wheels. A four-wheel steering device is known that improves the drivability of the vehicle by steering the vehicle in a reduced state.

このような4輪操舵装置として、例えば、特開昭55−
91457号公報にも記載されている如く、前輪の舵角
に対する後輪の舵角の比、即ち、転舵比が車速に応じて
変化せしめられるようにされた、車速感応型の転舵比特
性を有するものが提案されている。斯かる車速感応型の
転舵比特性を有する4輪操舵装置においては、通常、車
両が比較的低速で走行するもとでは、前輪の転舵状態と
後輪の転舵状態とが逆位相関係となるものとされる転舵
比が設定され、また、車両が比較的高速で走行するもと
では、前輪の転舵状態と後輪の転舵状態とが同位相関係
となるものとされる転舵比が設定される。転舵比が前輪
の転舵状態と後輪の転舵状態とが逆位相関係になるよう
にされるときには、車両はオーバーステアリング傾向に
おかれるものとされて、旋回性能が向上せしめられ、ま
た、転舵比が前輪の転舵状態と後輪の転舵状態とが同位
相関係になるようにされるときには、車両はアンダース
テアリング傾向におかれるものとされて、走行安定性の
向上が図られる。
As such a four-wheel steering device, for example,
As described in Japanese Patent No. 91457, a vehicle speed-sensitive steering ratio characteristic in which the ratio of the steering angle of the rear wheels to the steering angle of the front wheels, that is, the steering ratio, is changed according to the vehicle speed. has been proposed. In a four-wheel steering system having such a vehicle speed-sensitive steering ratio characteristic, when the vehicle is traveling at a relatively low speed, the front wheel steering state and the rear wheel steering state usually have an opposite phase relationship. When the vehicle is running at a relatively high speed, the front wheel steering state and the rear wheel steering state are assumed to have the same phase relationship. The steering ratio is set. When the steering ratio is set so that the front wheel steering state and the rear wheel steering state are in an opposite phase relationship, the vehicle tends to oversteer, and the turning performance is improved. When the steering ratio is set so that the front wheel steering state and the rear wheel steering state have the same phase relationship, the vehicle tends to understeer, and driving stability is improved. It will be done.

(発明が解決しようとする問題点) しかしながら、上述の如くの車速感応型の転舵比特性を
有する4輪操舵装置においては、一般に、前輪の転舵状
態と後輪の転舵状態とにおける位相関係及び転舵比が、
路面の摩擦特性の如何等にかかわらず、車速に応じて一
義的に設定されるので、例えば、降雨時や降雪時等の路
面の摩擦係数が比較的小となる状態と、晴天時等の路面
の摩擦係数が比較的大となる状態とで、車両の走行態様
が著しく異なるものとなってしまうという問題がある。
(Problems to be Solved by the Invention) However, in a four-wheel steering system having a vehicle speed-sensitive steering ratio characteristic as described above, the phase difference between the front wheel steering state and the rear wheel steering state is generally The relationship and steering ratio are
Regardless of the friction characteristics of the road surface, it is uniquely set according to the vehicle speed, so for example, the coefficient of friction of the road surface is relatively small during rain or snow, and when the road surface is sunny, etc. There is a problem in that the driving behavior of the vehicle becomes significantly different depending on the state in which the coefficient of friction is relatively large.

また、車両が、その旋回走行時に、低速走行状態から高
速走行状態に移行していくと、それに伴って、前輪の転
舵状態と後輪の転舵状態とが逆位相関係から同位相関係
に変化せしめられ、それにより車両のアンダーステアリ
ング傾向が一段と強くなって、運転者が違和感を覚える
ことになるという不都合もある。
Additionally, as the vehicle transitions from a low-speed driving state to a high-speed driving state while turning, the front wheel steering state and the rear wheel steering state change from an opposite phase relationship to an in-phase relationship. As a result, the tendency of the vehicle to understeering becomes even stronger, which causes an inconvenience to the driver.

このため、路面の摩擦係数が比較的小である場合には、
転舵比を、前輪の転舵状態と後輪の転舵状態とが同位相
関係とされることになる同位相側に変化させることによ
り、車両の走行安定性を向上させるようになし、また、
路面の摩擦係数が比較的大である場合には、転舵比を、
前輪の転舵状態と後輪の転舵状態とが逆位相関係とされ
ることになる逆位相側に変化させることにより、車両の
旋回性能を向上させるようになすことが考えられるが、
転舵比が路面の摩擦係数に応じて自動的に変化せしめら
れる場合には、運転者が望む走行態様と実際の走行態様
とが必ずしも一致したものとはならず、運転者の望む態
様の車両の走行状態が得られない虞がある。
Therefore, if the friction coefficient of the road surface is relatively small,
By changing the steering ratio to the same phase side where the front wheel steering state and the rear wheel steering state are in the same phase relationship, the running stability of the vehicle is improved. ,
If the friction coefficient of the road surface is relatively large, the steering ratio should be
It is conceivable to improve the turning performance of the vehicle by changing the steering state of the front wheels and the steering state of the rear wheels to the opposite phase side, where they have an opposite phase relationship.
When the steering ratio is automatically changed according to the coefficient of friction of the road surface, the driving mode desired by the driver and the actual driving mode do not necessarily match, and the vehicle does not behave as the driver desires. There is a possibility that the running condition cannot be obtained.

斯かる点に鑑み、本発明は、前輪が転舵せしめられると
きそれに伴って後輪も転舵せしめられるようになすとと
もに、転舵比を車速に応じて変化せしめられるものとな
し、さらに、運転者が望む態様での走行状態が得られる
べ(、転舵比についての路面の摩擦特性に応じた制御が
行われるものとされて、路面の摩擦特性に応じた適正な
走行特性を得ることができ、かつ、旋回走行を行う車両
が低速走行状態から高速走行状態に移行していく場合に
も、車両のアンダーステアリング傾向の増加を抑制する
ことができる車両の4輪操舵装置を提供することを目的
とする。
In view of the above, the present invention is designed to allow the rear wheels to be steered when the front wheels are steered, and to change the steering ratio in accordance with the vehicle speed. The steering ratio should be controlled in accordance with the frictional characteristics of the road surface, so that the driving condition desired by the user can be obtained. To provide a four-wheel steering device for a vehicle, which is capable of suppressing an increase in the tendency of understeering of a vehicle even when a vehicle that performs cornering transitions from a low-speed driving state to a high-speed driving state. purpose.

(問題点を解決するための手段) 上述の目的を達成すべく、本発明に係る車両の4輪操舵
装置は、操舵操作に応じて前輪を転舵させる前輪操舵機
構と、前輪の転舵に応じて後輪を転舵させる後輪操舵機
構と、転舵比を車速に応じて変化させる転舵比制御手段
と、車両に作用する車幅方向の力を検出する横力検出手
段と、横力検出手段により検出された車両に作用する車
幅方向の力に応じて転舵比を補正制御する転舵比補正手
段と、補正量可変手段とを具備して成り、転舵比補正手
段が、車両に作用する車幅方向の力が所定値以上である
とき、転舵比制御手段により制御される転舵比を、前輪
の転舵状態と後輪の転舵状態とが逆位相関係とされるこ
とになる逆位相側に補正するものとされ、かつ、補正量
可変手段が、転舵比補正手段による転舵比の補正量を手
動操作により変化させ得るものなす。
(Means for Solving the Problems) In order to achieve the above-mentioned object, a four-wheel steering device for a vehicle according to the present invention includes a front wheel steering mechanism that steers the front wheels in response to a steering operation, and a front wheel steering mechanism that steers the front wheels in response to a steering operation. a rear wheel steering mechanism that steers the rear wheels according to the vehicle speed, a steering ratio control means that changes the steering ratio according to the vehicle speed, a lateral force detection means that detects a force acting on the vehicle in the vehicle width direction; The steering ratio correction means comprises a steering ratio correction means for correcting and controlling the steering ratio in accordance with the force in the vehicle width direction acting on the vehicle detected by the force detection means, and a correction amount variable means. , when the force acting on the vehicle in the vehicle width direction is equal to or greater than a predetermined value, the steering ratio controlled by the steering ratio control means is adjusted so that the steering state of the front wheels and the steering state of the rear wheels are in an opposite phase relationship. The correction amount variable means can manually change the amount of correction of the steering ratio by the steering ratio correction means.

(作 用) 上述の如くに構成される本発明に係る車両の4輪操舵装
置においては、前輪操舵機構により前輪が転舵せしめら
れるとき、前輪の転舵に伴って、後輪操舵機構により後
輪が転舵せしめられ、その際、転舵比制御手段によって
転舵比が車速に応じて変化せしめられる。そして、横力
検出手段によリ、車両に作用する車幅方向の力が所定値
以上であることが検出されるときには、転舵比補正手段
により、転舵比制御手段による制御を受ける転舵比の、
前輪の転舵状態と後輪の転舵状態とが逆位相関係とされ
ることになる逆位相側への補正がなされ、しかも、その
とき、転舵比の補正量が補正量可変手段を通じて手動制
御される。
(Function) In the four-wheel steering system for a vehicle according to the present invention configured as described above, when the front wheels are steered by the front wheel steering mechanism, the rear wheel steering mechanism turns the rear wheels along with the steering of the front wheels. The wheels are steered, and at this time, the steering ratio is changed in accordance with the vehicle speed by the steering ratio control means. When the lateral force detection means detects that the force in the vehicle width direction acting on the vehicle is equal to or greater than a predetermined value, the steering ratio correction means causes the steering ratio to be controlled by the steering ratio control means. ratio of
The front wheel steering state and the rear wheel steering state are corrected to the opposite phase side so that they have an opposite phase relationship, and at this time, the correction amount of the steering ratio is manually adjusted through the correction amount variable means. controlled.

一般に、車両の走行時において、路面の摩擦係数が比較
的小である場合にはそれが比較的大である場合に比して
操舵がより慎重に行われるので、等価的に、路面の摩擦
係数が比較的小である場合には車両に作用する車幅方向
の力(横力)が比較的小となり、また、路面の摩擦係数
が比較的大である場合には車両に作用する横力が比較的
大となると考えられる。従って、上述の本発明に係る車
両の4輪操舵装置においては、路面の摩擦係数の相違が
横力検出手段によって等価的に検出されることになり、
転舵比制御手段により車速に応じて変化せしめられる転
舵比が路面の摩擦係数に応じて適正に補正され、さらに
、その際における転舵比の補正量が補正量可変手段を通
じて手動操作により変化せしめられて、運転者が望む態
様での走行状態のちとに路面の摩擦係数に応じた適正な
走行特性が得られることになる。さらに、車両が旋回加
速走行を行う場合には、車両に作用する横力が所定値以
上となることに基づいて、転舵比が前輪の転舵状態と後
輪の転舵状態とが逆位相関係とされることになる逆位相
側に補正制御され、車両のアンダーステアリング傾向が
過度に強められることが抑制される。
In general, when a vehicle is running, if the friction coefficient of the road surface is relatively small, steering is performed more carefully than if it is relatively large. If the coefficient of friction of the road surface is relatively small, the force in the vehicle width direction (lateral force) acting on the vehicle will be relatively small, and if the coefficient of friction of the road surface is relatively large, the lateral force acting on the vehicle will be relatively small. It is thought that it will be relatively large. Therefore, in the four-wheel steering system for a vehicle according to the present invention described above, the difference in the coefficient of friction of the road surface is equivalently detected by the lateral force detection means.
The steering ratio that is changed according to the vehicle speed by the steering ratio control means is appropriately corrected according to the coefficient of friction of the road surface, and furthermore, the correction amount of the steering ratio at this time is changed by manual operation through the correction amount variable means. As a result, after driving in the manner desired by the driver, appropriate driving characteristics are obtained in accordance with the coefficient of friction of the road surface. Furthermore, when the vehicle performs turning acceleration, based on the fact that the lateral force acting on the vehicle exceeds a predetermined value, the steering ratio is such that the front wheel steering state and the rear wheel steering state are in opposite phases. Correction control is performed to the opposite phase side, which is considered to be the relationship, and the tendency of the vehicle to understeering is suppressed from becoming excessively strong.

(実施例) 以下、本発明の実施例について図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明に係る車両の4輪操舵装置の一例を概
略的に示す。第1図においては、左右の前輪2L及び2
Rをステアリング・ホイール3を介しての操舵に応じて
転舵させる前輪操舵機構5が設けられており、この前輪
操舵機構5は、主として、前輪2L及び2Rを回転自在
に支持するとともにジヨイント部4を介して図示されて
いない車体に支持された一対のナックル部材6.これら
ナックル部材6のナックルアーム6aに夫々の一端部が
連結された一対のタイロッド8、及び、−対のタイロッ
ド8の夫々の他端部がその両端部に連結されたラック軸
9を有するラック・アンド・ピニオン方式をとるものと
されたステアリングギア機構10から構成されている。
FIG. 1 schematically shows an example of a four-wheel steering system for a vehicle according to the present invention. In Figure 1, left and right front wheels 2L and 2
A front wheel steering mechanism 5 is provided to steer the wheel R in response to steering via the steering wheel 3. A pair of knuckle members 6 supported by the vehicle body (not shown) via. A rack having a pair of tie rods 8 each having one end connected to the knuckle arms 6a of these knuckle members 6, and a rack shaft 9 having the other ends of each of the pair of tie rods 8 connected to both ends thereof. It is comprised of a steering gear mechanism 10 that is of an and-pinion type.

斯かる前輪操舵機構5においては、ステアリング・ホイ
ール3からの操舵力がステアリングギア機構10によっ
てタイロッド8に伝達されて、タイロフト8が車幅方向
に往復運動するものとされ、このタイロッド8の往復運
動によってナックル部材6がジヨイント部4の回りを回
動せしめられて、前輪2L及び2Rの転舵が行われる。
In such a front wheel steering mechanism 5, the steering force from the steering wheel 3 is transmitted to the tie rod 8 by the steering gear mechanism 10, and the tie loft 8 reciprocates in the vehicle width direction. As a result, the knuckle member 6 is rotated around the joint portion 4, and the front wheels 2L and 2R are steered.

また、左右の後輪12L及び12Rを、前輪2L及び2
Rの夫々の転舵に伴って転舵させる後輪操舵機構11が
設けられており、この後輪操舵機構11は、後輪12L
及び12Rを回転自在に支持するとともにジヨイント部
14を介して図示されていない車体に支持された一対の
ナックル部材16、ナックル部材16のナックルアーム
16aに夫々の一端部が連結された一対のタイロッド1
8、及び、一対のタイロッド18の夫々の他端部が両端
部に連結された後輪操舵用ロッド20を備えている。後
輪操舵用ロッド20にはラック22が形成されており、
ラック22はピニオン軸24の一端部に固定されたピニ
オン26に噛合せしめられている。そして、ピニオン軸
24の他端部には傘歯車28が固定されており、傘歯車
28はパルスモータ30の出力軸に固定された傘歯車3
2に噛合せしめられている。斯かる後輪操舵機構11に
おいては、パルスモータ30の駆動力が傘歯車32及び
28を介してピニオン軸24に伝達されることにより、
パルスモータ30の回転方向及び回転時間に応じて後輪
操舵用ロッド20が車幅方向に沿って移動せしめられる
Also, replace the left and right rear wheels 12L and 12R with the front wheels 2L and 2
A rear wheel steering mechanism 11 is provided which steers the rear wheels 12L as each wheel R is turned.
A pair of knuckle members 16 which rotatably support and 12R and are supported by a vehicle body (not shown) via a joint portion 14, and a pair of tie rods 1 each having one end connected to a knuckle arm 16a of the knuckle member 16.
8, and a rear wheel steering rod 20, the other end of each of which is connected to both ends of the pair of tie rods 18. A rack 22 is formed on the rear wheel steering rod 20,
The rack 22 is meshed with a pinion 26 fixed to one end of a pinion shaft 24. A bevel gear 28 is fixed to the other end of the pinion shaft 24, and the bevel gear 28 is a bevel gear 3 fixed to the output shaft of the pulse motor 30.
2 is engaged. In such a rear wheel steering mechanism 11, the driving force of the pulse motor 30 is transmitted to the pinion shaft 24 via the bevel gears 32 and 28.
The rear wheel steering rod 20 is moved along the vehicle width direction in accordance with the rotation direction and rotation time of the pulse motor 30.

さらに、後輪操舵用ロッド20に関連してパワーシリン
ダ34が配されている。パワーシリンダ34は、後輪操
舵用ロッド20に固着されたピストン34a及びピスト
ン34aによって仕切られる油圧室34b及び34cを
有している。油圧室34b及び34Cは、夫々油圧通路
36及び37を通じてコントロールバルブ38に連通し
ている。
Furthermore, a power cylinder 34 is arranged in relation to the rear wheel steering rod 20. The power cylinder 34 has a piston 34a fixed to the rear wheel steering rod 20 and hydraulic chambers 34b and 34c partitioned by the piston 34a. The hydraulic chambers 34b and 34C communicate with a control valve 38 through hydraulic passages 36 and 37, respectively.

コントロールバルブ38は、油供給通路40及び油戻し
通路41を介して油圧ポンプ42に連通せしめられてお
り、油圧ポンプ42はポンプ駆動用モータ44によって
回転駆動される。
The control valve 38 is communicated with a hydraulic pump 42 via an oil supply passage 40 and an oil return passage 41, and the hydraulic pump 42 is rotationally driven by a pump driving motor 44.

コントロールバルブ38は、ピニオン軸24の回転方向
に応じて、パワーシリンダ34の油圧室34b及び34
cに対する油圧の供給を制御するものとされており、例
えば、後輪12L及び12Rが第1図において時計方向
に転舵せしめられるときには、油供給通路40と油圧通
路36とが連通せしめられて油圧ポンプ42からの圧油
が油圧室34b内に供給され、かつ、油戻し通路41と
油圧通路37とが連通せしめられて油圧室34C内の圧
油が油圧ポンプ42に戻される。また、後輪12L及び
12Rが第1図において反時計方向に転舵せしめられる
ときには、油供給通路40と油圧通路37とが連通せし
められて油圧ポンプ42からの圧油が油圧室34c内に
供給され、がっ、油戻し通路41と油圧通路36とが連
通せしめられて油圧室34b内の圧油が油圧ポンプ42
に戻される。このようにして、パルスモータ30の駆動
力が傘歯車32及び2日を介してピニオン軸24に伝達
されることにより、後輪操舵用ロッド20が車幅方向に
移動せしめられるとき、パワーシリンダ34の油圧室3
4b及び34Cに対する圧油の給排が行われ、それによ
り、後輪操舵用ロッド20の車幅方向の移動が助勢され
て、後輪12L及び12Rが転舵せしめられることにな
る。
The control valve 38 controls the hydraulic chambers 34b and 34 of the power cylinder 34 depending on the rotational direction of the pinion shaft 24.
For example, when the rear wheels 12L and 12R are steered clockwise in FIG. Pressure oil from the pump 42 is supplied into the hydraulic chamber 34b, and the oil return passage 41 and the hydraulic passage 37 are brought into communication, so that the pressure oil in the hydraulic chamber 34C is returned to the hydraulic pump 42. Further, when the rear wheels 12L and 12R are steered counterclockwise in FIG. 1, the oil supply passage 40 and the hydraulic passage 37 are brought into communication, and pressure oil from the hydraulic pump 42 is supplied into the hydraulic chamber 34c. Then, the oil return passage 41 and the hydraulic passage 36 are brought into communication, and the pressure oil in the hydraulic chamber 34b is transferred to the hydraulic pump 42.
will be returned to. In this way, the driving force of the pulse motor 30 is transmitted to the pinion shaft 24 via the bevel gear 32 and the pinion shaft 24, so that when the rear wheel steering rod 20 is moved in the vehicle width direction, the power cylinder 34 Hydraulic chamber 3
Pressure oil is supplied to and discharged from the rear wheels 4b and 34C, thereby assisting the movement of the rear wheel steering rod 20 in the vehicle width direction, and steering the rear wheels 12L and 12R.

パルスモータ30及びポンプ駆動用モータ44は、夫々
、制御ユニット50から送出される駆動信号Sa及びs
bによって駆動制御される。制御ユニット50には、前
輪操舵機構5に関連して前輪2L及び2Rの舵角を検出
する舵角センサ52からの検出信号Ss、車輪(この例
では左前輪2L)の回転数に基づいて車速を検出する車
速センサ54からの検出信号SV、及び、車両の旋回走
行時等において車体に作用する車幅方向の力、即ち、横
力を検出する横力センサ56からの検出信号Sg、及び
、運転者等により手動操作されて車両の通常走行モード
もしくはスポーツ走行モードの選択を行う走行モード選
択スイッチ57からの、通常走行モードもしくはスポー
ツ走行モードをあられす信号Smが供給される。
The pulse motor 30 and the pump drive motor 44 receive drive signals Sa and s sent from the control unit 50, respectively.
The drive is controlled by b. The control unit 50 receives a detection signal Ss from a steering angle sensor 52 that detects the steering angles of the front wheels 2L and 2R in relation to the front wheel steering mechanism 5, and a vehicle speed based on the rotation speed of the wheel (in this example, the left front wheel 2L). a detection signal SV from the vehicle speed sensor 54 that detects the vehicle speed sensor 54, a detection signal Sg from the lateral force sensor 56 that detects the force in the vehicle width direction that acts on the vehicle body when the vehicle is turning, that is, the lateral force, and A driving mode selection switch 57 that is manually operated by a driver or the like to select a normal driving mode or a sports driving mode of the vehicle is supplied with a signal Sm indicative of a normal driving mode or a sports driving mode.

そして、制御ユニット50は、例えば、第2図に示され
る如くの具体構成を有するものとされ、複数の転舵比特
性を記憶する転舵比特性記憶部58と、横力センサ56
からの検出信号Sg及び走行モード選択スイッチ57か
らの信号Smを受け、転舵比特性記憶部58に記憶され
た複数の転舵比特性のうちから検出信号Sgがあられす
横力及び信号Smがあられす車両の走行モードに応じた
適正な転舵比特性を選択し、選択された転舵比特性に応
じた信号Skを送出する転舵比特性選択部59と、舵角
センサ52からの検出信号Ss及び車速センサ54から
の検出信号Svを受け、さらに、転舵比特性選択部59
からの転舵比特性をあられす信号Skを受けて、それら
に基づいて、前輪舵角及び車速に応じた後輪舵角を算出
する演算を行い、算出された後輪舵角に応じた信号Sr
を送出する後輪舵角演算部60と、後輪舵角演算部60
からの信号Srに基づくパルス信号Spを形成するパル
ス信号形成部61と、パルス信号形成部61から得られ
たパルス信号Spに基づいて、パルスモータ30及びポ
ンプ駆動用モータ44に対する駆動信号Sa及びsbを
送出する駆動部62とを備えるものとされる。ここで、
制御ユニット50における後輪舵角演算部60.パルス
信号形成部61及び駆動部62、及び、パルスモータ3
0等により、前輪2L及び2Rの舵角に対する後輪12
L及び12Rの舵角の比で得られる転舵比を制御する転
舵比制御手段が構成されており、また、転舵比特性選択
部59は、横力センサ56からの検出信号Sgがあられ
す横力が所定値以上であるとき、転舵比制御手段によっ
て変化せしめられる転舵比を、前輪2L及び2Rの転舵
状態と後輪12L及び12Rの転舵状態とが逆位相関係
とされることになる逆位相側に補正制御する転舵比補正
手段を形成するとともに、走行モード選択スイッチ57
からの信号Smがあられす車両の走行モードに応じて転
舵比の補正量を変化させる補正量可変手段を形成するも
のとされている。
The control unit 50 has, for example, a specific configuration as shown in FIG. 2, and includes a steering ratio characteristic storage section 58 that stores a plurality of steering ratio characteristics, and a lateral force sensor
In response to the detection signal Sg from the drive mode selection switch 57 and the signal Sm from the driving mode selection switch 57, a detection signal Sg is generated from among a plurality of steering ratio characteristics stored in the steering ratio characteristic storage section 58. A steering ratio characteristic selection unit 59 that selects an appropriate steering ratio characteristic according to the driving mode of the vehicle and sends out a signal Sk corresponding to the selected steering ratio characteristic, and detection from the steering angle sensor 52. Upon receiving the signal Ss and the detection signal Sv from the vehicle speed sensor 54, the steering ratio characteristic selection section 59
A signal Sk indicating the steering ratio characteristics is received from the signal Sk, and based on the signal Sk, a calculation is performed to calculate a front wheel steering angle and a rear wheel steering angle according to the vehicle speed, and a signal corresponding to the calculated rear wheel steering angle is generated. Sr.
a rear wheel steering angle calculation unit 60 that sends out the rear wheel steering angle calculation unit 60;
A pulse signal forming unit 61 that forms a pulse signal Sp based on a signal Sr from the pulse signal forming unit 61 generates drive signals Sa and sb for the pulse motor 30 and the pump drive motor 44 based on the pulse signal Sp obtained from the pulse signal forming unit 61. The drive unit 62 is configured to include a drive unit 62 that sends out the . here,
Rear wheel steering angle calculation section 60 in the control unit 50. Pulse signal forming section 61, driving section 62, and pulse motor 3
0 etc., the rear wheel 12 relative to the steering angle of the front wheels 2L and 2R
A steering ratio control means is configured to control the steering ratio obtained by the ratio of the steering angles L and 12R. When the lateral force is greater than a predetermined value, the steering ratio changed by the steering ratio control means is such that the steering state of the front wheels 2L and 2R and the steering state of the rear wheels 12L and 12R are in an opposite phase relationship. In addition, a steering ratio correction means is formed to perform correction control to the opposite phase side, and a driving mode selection switch 57 is also provided.
The signal Sm from the above-mentioned vehicle is used to form correction amount variable means for changing the correction amount of the steering ratio according to the driving mode of the vehicle in which the vehicle is in trouble.

転舵比特性記憶部58に記憶されている転舵比特性は、
例えば、縦軸に転舵比Kがとられ、横軸に車速Vがとら
れて表される第3図のグラフに示される如く、路面の摩
擦係数が比較的小である場合にとられる転舵比特性kl
+路面の摩擦係数が比較的大である場合にとられる転舵
比特性に2、及び、転舵比特性に2がとられる場合より
路面の摩擦係数がさらに大である場合にとられる転舵比
特性に、に大別される。これら転舵比特性に、、によ及
びに、は、夫々、車速がVt 、V、より大なるv2及
び■2より大なる78未満のとき転舵比Kが負の値をと
るもの、即ち、前輪2L及び2Rの転舵状態と後輪12
L及び12Rの転舵状態とを逆位相関係にするものとな
り、また、車速がVl、v2及び73以上のとき転舵比
Kが正の値をとるもの、即ち、前輪2L及び2Rの転舵
状態と後輪12L及び12Rの転舵状態とを同位相関係
にするものとなるようにされている。さらに、転舵比特
性に、、に2及びに、の夫々は、転舵比にの値が車速の
増大に伴って増加し、また、低車速のもとて共通の負の
値を取るとともに高車速のもとて共通の正の値をとるも
のとなるようにされている。そして、転舵比特性に2が
、転舵比特性k。
The steering ratio characteristics stored in the steering ratio characteristics storage section 58 are as follows:
For example, as shown in the graph of FIG. 3, where the vertical axis represents the steering ratio K and the horizontal axis represents the vehicle speed V, the steering angle is determined when the friction coefficient of the road surface is relatively small. Steering ratio characteristic kl
+ Steering ratio characteristic taken when the coefficient of friction of the road surface is relatively large, and steering taken when the coefficient of friction of the road surface is larger than the case where 2 is taken for the steering ratio characteristic. It is roughly divided into ratio characteristics. These steering ratio characteristics are those in which the steering ratio K takes a negative value when the vehicle speed is less than 78, which is greater than Vt, V2, and V2, respectively. , the steering status of the front wheels 2L and 2R and the rear wheel 12
The steering state of the front wheels 2L and 12R is in an opposite phase relationship, and the steering ratio K takes a positive value when the vehicle speed is Vl, v2 and 73 or more, that is, the steering of the front wheels 2L and 2R. The steering condition and the steering condition of the rear wheels 12L and 12R are made to have the same phase relationship. Furthermore, the steering ratio characteristics, , 2, and 2, respectively, increase as the vehicle speed increases, and take a common negative value at low vehicle speeds. It is designed to take a common positive value even at high vehicle speeds. 2 in the steering ratio characteristic is the steering ratio characteristic k.

に比して、転舵比Kが、前輪2L及び2Rの転舵状態と
後輪12L及び12Rの転舵状態とを逆位相関係にする
ことになる逆位相側に移行しており、転舵比特性に、が
、転舵比特性に2に比して、転舵比Kが、さらに、前輪
2L及び2Rの転舵状態と後輪12L及び12Rの転舵
状態とを逆位相関係にすることになる逆位相側に移行し
ている関係にある。
Compared to , the steering ratio K has shifted to the opposite phase side where the steering state of the front wheels 2L and 2R and the steering state of the rear wheels 12L and 12R are in an opposite phase relationship. The ratio characteristic is 2, and the steering ratio K further makes the steering state of the front wheels 2L and 2R and the steering state of the rear wheels 12L and 12R have an opposite phase relationship. The relationship is such that the phase has shifted to the opposite phase side.

上述の如くの構成のもとに、車両の走行時において、横
力センサ56からの検出信号Sgが制御ユニット50の
転舵比特性選択部59に供給され、転舵比特性選択部5
9において、検出信号Sgがあられす横力が所定値以上
か否かが判別される。
Based on the above-described configuration, when the vehicle is running, the detection signal Sg from the lateral force sensor 56 is supplied to the steering ratio characteristic selection section 59 of the control unit 50.
At step 9, it is determined whether the lateral force caused by the detection signal Sg is greater than or equal to a predetermined value.

即ち、転舵比特性選択部59において、横力センサ56
により検出される車両に作用する横力が所定値以上であ
るか否かが検出されるのである。また、走行モード選択
スイッチ57からの信号Smも転舵比特性選択部59に
供給され、転舵比特性選択部59において、信号Smが
あられす車両の走行モードが通常走行モードかスポーツ
走行モードかが判別される。
That is, in the steering ratio characteristic selection section 59, the lateral force sensor 56
It is detected whether the lateral force acting on the vehicle detected by the lateral force is greater than or equal to a predetermined value. Further, the signal Sm from the driving mode selection switch 57 is also supplied to the steering ratio characteristic selection section 59, and the steering ratio characteristic selection section 59 determines whether the signal Sm is the normal driving mode or the sport driving mode of the vehicle. is determined.

そして、転舵比特性選択部59において検出信号Sgが
あられす横力が所定値未満であることがヰ食出され、従
って、路面の摩擦係数が比較的小であるとみなされる場
合には、転舵比特性選択部59により、転舵比特性記憶
部58に記憶された転舵比特性のうちから、例えば、第
3図に示される転舵比特性に1が選択されて、転舵比特
性に1に応じた信号Skが後輪舵角演算部60に供給さ
れる。これにより、後輪舵角演算部60においては、車
速センサ54からの検出信号Svがあられす車速と信号
Skがあられす転舵比特性に、とから得られる転舵比K
、及び、舵角センサ52からの検出信号Ssがあられす
前輪舵角から、検出信号SVがあられす車速に応じた後
輪舵角が算出され、得られた後輪舵角に応じた信号Sr
がパルス信号形成部61に供給される。そして、パルス
信号形成部61において、信号Srが示す後輪舵角に対
応するパルス信号Spが形成されて駆動部62に供給さ
れ、駆動部62においてパルス信号Spに基づく駆動信
号Sa及びsbが形成されて、それらがパルスモータ3
0及びポンプ駆動用モータ44に夫々供給される。その
結果、パルスモータ30及びポンプ駆動用モータ44の
、後輪舵角演算部60において算出された後輪舵角に応
じた駆動がなされる。
When the steering ratio characteristic selection unit 59 detects that the lateral force generated by the detection signal Sg is less than a predetermined value, and therefore the coefficient of friction of the road surface is considered to be relatively small, For example, 1 is selected as the steering ratio characteristic shown in FIG. 3 from among the steering ratio characteristics stored in the steering ratio characteristic storage section 58 by the steering ratio characteristic selection section 59, and the steering ratio A signal Sk corresponding to the characteristic 1 is supplied to the rear wheel steering angle calculation section 60. As a result, in the rear wheel steering angle calculating section 60, the detection signal Sv from the vehicle speed sensor 54 is determined as the vehicle speed, the signal Sk is determined as the steering ratio characteristic, and the steering ratio K obtained from
, and from the front wheel steering angle at which the detection signal Ss from the steering angle sensor 52 is generated, a rear wheel steering angle corresponding to the vehicle speed at which the detection signal SV is generated is calculated, and a signal Sr corresponding to the obtained rear wheel steering angle is calculated.
is supplied to the pulse signal forming section 61. Then, in the pulse signal forming section 61, a pulse signal Sp corresponding to the rear wheel steering angle indicated by the signal Sr is formed and supplied to the drive section 62, and the drive section 62 forms drive signals Sa and sb based on the pulse signal Sp. and they are pulse motor 3
0 and the pump drive motor 44, respectively. As a result, the pulse motor 30 and the pump drive motor 44 are driven according to the rear wheel steering angle calculated by the rear wheel steering angle calculating section 60.

このようにして、パルスモータ30及びポンプ駆動用モ
ータ44が駆動制御されることにより、後輪12L及び
12Rが、転舵比特性に1に従って転舵せしめられ、車
両が車速71未満で走行するときには、前輪2L及び2
Rの転舵状態と後輪12L及び12Rの転舵状態とが逆
位相関係におかれて、良好な旋回性能が得られ、また、
車両が車速71以上で走行するときには、前輪2L及び
2Rの転舵状態と後輪12L及び12Rの転舵状態とが
同位相関係におかれて、安定した走行状態が得られるこ
とになる。
In this way, by controlling the drive of the pulse motor 30 and the pump drive motor 44, the rear wheels 12L and 12R are steered according to the steering ratio characteristic of 1, and when the vehicle runs at a speed less than 71, the rear wheels 12L and 12R are steered according to the steering ratio characteristic of 1. , front wheels 2L and 2
The steering state of R and the steering state of rear wheels 12L and 12R are in an opposite phase relationship, and good turning performance is obtained.
When the vehicle runs at a vehicle speed of 71 or more, the steered states of the front wheels 2L and 2R and the steered states of the rear wheels 12L and 12R are in the same phase relationship, resulting in a stable running state.

これに対して、転舵比特性選択部59において、検出信
号Sgがあられす横力が所定値以上であることが検出さ
れ、従って、路面の摩擦係数が比較的大であるとみなさ
れ、さらに、走行モード選択スイッチ57からの信号S
mがあられす車両の走行モードが通常走行モードである
ことが検出される場合には、転舵比特性選択部59によ
り、転舵比特性記憶部5Bに記憶された転舵比特性のう
ちから、例えば、第3図に示される転舵比特性に2が選
択されて、転舵比特性ktに応じた信号Skが後輪舵角
演算部60に供給される。これにより、後輪舵角演算部
60においては、車速センサ54からの検出信号Svが
あられす車速と信号Skがあられす転舵比特性に2とか
ら得られる転舵比K、及び、舵角センサ52からの検出
信号Ssがあられす前輪舵角から、検出信号Svがあら
れす車速に応じた後輪舵角が算出され、得られた後輪舵
角に応じた信号Srがパルス信号形成部61に供給され
る。そして、この場合にも、パルス信号形成部61から
、信号Srが示す後輪舵角に対応するパルス信号Spが
駆動部62に供給され、駆動部62から、パルス信号s
pに基づく駆動信号Sa及びsbがパルスモータ30及
びポンプ駆動用モータ44に夫々供給されて、パルスモ
ータ30及びポンプ駆動用モータ44の、後輪舵角演算
部60において算出された後輪舵角に応じた駆動がなさ
れる。
On the other hand, the steering ratio characteristic selection unit 59 detects that the lateral force caused by the detection signal Sg is greater than or equal to the predetermined value, and therefore it is determined that the coefficient of friction of the road surface is relatively large. , signal S from the running mode selection switch 57
If it is detected that the driving mode of the vehicle in which m is in a hailstorm is the normal driving mode, the steering ratio characteristic selection unit 59 selects one of the steering ratio characteristics stored in the steering ratio characteristic storage unit 5B. For example, 2 is selected as the steering ratio characteristic shown in FIG. 3, and a signal Sk corresponding to the steering ratio characteristic kt is supplied to the rear wheel steering angle calculation section 60. As a result, in the rear wheel steering angle calculating section 60, the steering ratio K and the steering angle obtained from the detection signal Sv from the vehicle speed sensor 54 and the steering ratio characteristics obtained from the actual vehicle speed and the signal Sk, respectively. A rear wheel steering angle corresponding to the vehicle speed at which the detection signal Sv is generated is calculated from the front wheel steering angle at which the detection signal Ss from the sensor 52 is generated, and a signal Sr corresponding to the obtained rear wheel steering angle is sent to the pulse signal forming section. 61. Also in this case, the pulse signal forming section 61 supplies the pulse signal Sp corresponding to the rear wheel steering angle indicated by the signal Sr to the drive section 62, and the drive section 62 supplies the pulse signal Sp corresponding to the rear wheel steering angle indicated by the signal Sr.
The drive signals Sa and sb based on p are supplied to the pulse motor 30 and the pump drive motor 44, respectively, and the rear wheel steering angle calculated by the rear wheel steering angle calculating section 60 of the pulse motor 30 and the pump drive motor 44 is calculated. The drive is performed accordingly.

このようにして、パルスモータ30及びポンプ駆動用モ
ータ44が駆動制御されることにより、後輪12L及び
12Rが、転舵比特性に2に従って転舵せしめられ、車
両が車速72未満で走行するときには、前輪2L及び2
Rの転舵状態と後輪12L及び12Rの転舵状態とが逆
位相関係におかれて、良好な旋回性能が得られ、また、
車両が車速72以上で走行するときには、前輪2L及び
2Rの転舵状態と後輪12L及び12Rの転舵状態とが
同位相関係におかれて、安定した走行状態が得られるこ
とになる。
In this way, by driving and controlling the pulse motor 30 and the pump drive motor 44, the rear wheels 12L and 12R are steered according to the steering ratio characteristic of 2, and when the vehicle runs at a speed less than 72 , front wheels 2L and 2
The steering state of R and the steering state of rear wheels 12L and 12R are in an opposite phase relationship, and good turning performance is obtained.
When the vehicle runs at a vehicle speed of 72 or more, the steered state of the front wheels 2L and 2R and the steered state of the rear wheels 12L and 12R are in the same phase relationship, resulting in a stable running state.

この場合、転舵比特性に2は、転舵比特性に1に比して
、転舵比Kが、前輪2L及び2Rの転舵状態と後輪12
L及び12Rの転舵状態とを逆位相関係にすることにな
る逆位相側に移行したものとされていて、車速がvIよ
り大なるvtになるまで、前輪2L及び2Rの転舵状態
と後輪12L及び12Rの転舵状態とが逆位相関係にお
かれる状態が維持される。従って、路面の摩擦係数が比
較的大である場合には、車両が比較的低速で走行する状
態のみならず比較的高速で走行する状態においても、良
好な旋回性能が得られることになる。
In this case, the steering ratio characteristic of 2 is different from the steering ratio characteristic of 1 in that the steering ratio K is different from the steering state of the front wheels 2L and 2R and the rear wheel 12.
It is assumed that the steering state of the front wheels 2L and 2R has shifted to the opposite phase side, which makes the steering state of the front wheels 2L and 12R in an opposite phase relationship, and the steering state of the front wheels 2L and 2R and the rear The state in which the steered states of wheels 12L and 12R are in an opposite phase relationship is maintained. Therefore, when the coefficient of friction of the road surface is relatively large, good turning performance can be obtained not only when the vehicle is running at a relatively low speed but also when the vehicle is running at a relatively high speed.

また、転舵比特性選択部59において、検出信号Sgが
あられす横力が所定値以上であることが検出され、かつ
、走行モード選択スイッチ57からの信号Smがあられ
す車両の走行モードがスポーツ走行モードであることが
検出される場合には、転舵比特性選択部59により、転
舵比特性記憶部58に記憶された転舵比特性のうちから
、例えば、第3図に示される転舵比特性に3が選択され
て、転舵−比特性に、に応じた信号Skが後輪舵角演算
部60に供給される。これにより、後輪12L及び12
Rが転舵比特性に3に従づて転舵される。
In addition, in the steering ratio characteristic selection unit 59, when the detection signal Sg indicates that the lateral force to be caused is detected to be equal to or greater than a predetermined value, and the signal Sm from the driving mode selection switch 57 indicates that the driving mode of the vehicle is set to sport. When the driving mode is detected, the steering ratio characteristic selection section 59 selects, for example, the steering ratio characteristics shown in FIG. 3 from among the steering ratio characteristics stored in the steering ratio characteristic storage section 58. 3 is selected as the steering ratio characteristic, and a signal Sk corresponding to the steering ratio characteristic is supplied to the rear wheel steering angle calculation section 60. As a result, rear wheels 12L and 12
R is steered according to the steering ratio characteristic 3.

一方、車両が旋回走行時において低速走行状態から高速
走行状態に移行していく際には、横力センサ56により
検出される車両に作用する横力が増大していく。斯かる
場合に、上述の如くにして検出信号Sgがあられす横力
及び信号Smがあられす車両の走行モードに応じた転舵
比特性の選択が転舵比特性選択部59において行われ、
例えば、車速か第3図に示されるVaとなる状態で、横
力センサ56により検出される車両に作用する横力が所
定値以上となり、そのとき走行モード選択スイッチ57
によってスポーツ走行モードが選択されていて、第3図
に示される転舵比特性に+から転舵比特性に、への切換
えがなされたとすると、車速がVaからvbまで増加し
て行く間に、転舵比には、比較的大なる絶対値を有する
負の値Kaから比較的小なる正の値KbまでのΔにだけ
変化する。これに対し、仮に、検出信号Sgがあられす
横力に応じた転舵比特性の選択がなされず、車速がVa
以上となっても転舵比特性に1に従う後輪12L及び1
2Rの転舵が行われるとすると、第3図に示される如く
、車速がVaからvbまで増加していく間に、転舵比に
は、比較的小なる絶対値を有する負の値K alから比
較的大なる正の値Kb’ までのΔに°だけ変化するこ
とになる。
On the other hand, when the vehicle transitions from a low-speed running state to a high-speed running state during cornering, the lateral force acting on the vehicle detected by the lateral force sensor 56 increases. In such a case, the steering ratio characteristic selection unit 59 selects the steering ratio characteristic according to the lateral force generated by the detection signal Sg and the driving mode of the vehicle generated by the signal Sm as described above.
For example, when the vehicle speed is Va as shown in FIG.
If the sport driving mode is selected by , and the steering ratio characteristic shown in FIG. 3 is switched from + to the steering ratio characteristic, while the vehicle speed increases from Va to vb, The steering ratio varies only in Δ from a negative value Ka having a relatively large absolute value to a positive value Kb having a relatively small absolute value. On the other hand, if the steering ratio characteristic is not selected according to the lateral force caused by the detection signal Sg, and the vehicle speed is Va.
Rear wheels 12L and 1 follow the steering ratio characteristic even if the above is the case.
Assuming that 2R steering is performed, as shown in FIG. 3, while the vehicle speed increases from Va to vb, the steering ratio has a negative value K al with a relatively small absolute value. to a relatively large positive value Kb'.

これらの転舵比にの変化ΔにとΔに゛ とを比較すると
、Δに′に比してΔにの方が前輪2L及び2Rの転舵状
態と後輪12L及び12Rの転舵状態とを逆位相関係に
することになる逆位相側にあり、従って、転舵比にの変
化がΔにとなる場合の方がΔに′となる場合に比して、
車速がVaからvbまで増加していく間に前輪2L及び
2Rの転舵状態と後輪12L及び12Rの転舵状態とが
逆位相関係におかれる状態が長くされることになる。
Comparing these changes in the steering ratio, Δ and Δ, Δ is more sensitive to the steering conditions of the front wheels 2L and 2R and the rear wheels 12L and 12R than to Δ. is on the opposite phase side, which makes the change in the steering ratio Δ, compared to the case where the change in steering ratio becomes Δ,
While the vehicle speed increases from Va to vb, the state in which the steered state of the front wheels 2L and 2R and the steered state of the rear wheels 12L and 12R are in an opposite phase relationship is prolonged.

このため、車両が旋回走行時において低速走行状態から
高速走行状態に移行していき、それに伴って横力センサ
56により検出される車両に作用する横力が増大してい
く際に、上述の如くにして検出信号Sgがあられす横力
に応じた転舵比特性の選択が転舵比特性選択部59にお
いて行われることにより、車両の旋回に伴うアンダース
テアリング傾向の増大が効果的に抑制され、アンダース
テアリング傾向が過度となる状態が回避される。
Therefore, when the vehicle transitions from a low-speed driving state to a high-speed driving state during turning, and the lateral force acting on the vehicle detected by the lateral force sensor 56 increases accordingly, as described above, By selecting the steering ratio characteristic in accordance with the lateral force generated by the detection signal Sg in the steering ratio characteristic selection section 59, an increase in the tendency of understeering due to turning of the vehicle is effectively suppressed. Excessive understeering tendency is avoided.

第4図は、第1図に示される実施例に用いられる制御ユ
ニット50の他の具体構成例を示す。
FIG. 4 shows another specific example of the configuration of the control unit 50 used in the embodiment shown in FIG.

この第4図に示される具体構成例は、例えば、第3図に
示される転舵比特性に1のみを記憶する転舵比特性記憶
部58゛と、舵角センサ52からの検出信号S3及び車
速センサ54からの検出信号Svが供給され、それらが
あられす前輪舵角及び車速と転舵比特性記憶部58”に
記憶された転舵比特性に、とに基づいて後輪舵角を算出
する演算を行い、算出された後輪舵角に応じた信号Sr
を送出する後輪舵角演算部60と、横力センサ56から
の検出信号Sg及び走行モード選択スイッチ57からの
信号Smが供給され、検出信号Sgがあられす横力及び
信号Smがあられす車両の走行モードに応じて後輪舵角
演算部60で算出された後輪舵角を補正し、必要な補正
がなされた後輪舵角に応じた信号Sr”を送出する補正
部65と、補正部65からの信号Sr’ に応じたパル
ス信号Spを形成するパルス信号形成部61と、パルス
信号形成部61で得られたパルス信号Spに基づいて、
パルスモータ30及びポンプ駆動用モータ44に対する
駆動信号Sa及びsbを送出する駆動部62とを備えて
いる。
The specific configuration example shown in FIG. 4 includes, for example, a steering ratio characteristic storage section 58' that stores only 1 in the steering ratio characteristic shown in FIG. The detection signal Sv from the vehicle speed sensor 54 is supplied, and the rear wheel steering angle is calculated based on the detected front wheel steering angle and vehicle speed, and the steering ratio characteristic stored in the steering ratio characteristic storage section 58''. A signal Sr corresponding to the calculated rear wheel steering angle is calculated.
The detection signal Sg from the lateral force sensor 56 and the signal Sm from the driving mode selection switch 57 are supplied to the rear wheel steering angle calculating section 60 which sends out the lateral force and the signal Sm indicates the lateral force to be detected and the signal Sm to the vehicle. a correction unit 65 that corrects the rear wheel steering angle calculated by the rear wheel steering angle calculation unit 60 according to the driving mode of the rear wheel steering angle, and sends out a signal Sr'' corresponding to the rear wheel steering angle that has undergone the necessary correction; Based on the pulse signal forming section 61 which forms the pulse signal Sp according to the signal Sr' from the section 65 and the pulse signal Sp obtained by the pulse signal forming section 61,
It includes a drive section 62 that sends drive signals Sa and sb to the pulse motor 30 and the pump drive motor 44.

斯かる構成のもとに、車両の走行時において、後輪舵角
演算部60で、車速センサ54からの検出信号Svがあ
られす車速と転舵比特性記憶部58゛に記憶された転舵
比特性に1とから得られる転舵比K、及び、舵角センサ
52からの検出信号Ssがあられす前輪舵角から、検出
信号Svがあられす車速に応じた後輪舵角が算出され、
得られた後輪舵角に応じた信号Srが補正部65に供給
される。
Based on this configuration, when the vehicle is running, the rear wheel steering angle calculating section 60 calculates the detected signal Sv from the vehicle speed sensor 54 to determine the actual vehicle speed and steering stored in the steering ratio characteristic storage section 58'. From the steering ratio K obtained from the ratio characteristic of 1 and the front wheel steering angle at which the detection signal Ss from the steering angle sensor 52 is generated, the rear wheel steering angle according to the vehicle speed at which the detection signal Sv is generated is calculated,
A signal Sr corresponding to the obtained rear wheel steering angle is supplied to the correction section 65.

また、横力センサ56からの検出信号Sg及び走行モー
ド選択スイッチ57からの信号Smが補正部65に供給
され、補正部65において、検出信号Sgがあられす横
力が所定値以上か否かが判別され、また、信号Smがあ
られす車両の走行モードが通常走行モードかスポーツ走
行モードかが判別される。そして、補正部65において
検出信号Sgがあられす横力が所定値未満であり、従っ
て、路面の摩擦係数が比較的小であるとみなされる場合
には、補正部65における後輪舵角演算部60からの信
号Srがあられす後輪舵角に対する補正は行われない。
Further, the detection signal Sg from the lateral force sensor 56 and the signal Sm from the driving mode selection switch 57 are supplied to the correction section 65, and the correction section 65 determines whether or not the lateral force caused by the detection signal Sg is greater than or equal to a predetermined value. It is also determined whether the driving mode of the vehicle in which the signal Sm is generated is the normal driving mode or the sport driving mode. If the detection signal Sg in the correction unit 65 indicates that the lateral force is less than a predetermined value and therefore the friction coefficient of the road surface is considered to be relatively small, the rear wheel steering angle calculation unit in the correction unit 65 No correction is made to the rear wheel steering angle that is affected by the signal Sr from 60.

このため、補正部65から、後輪舵角演算部60からの
信号Srがそのまま信号Sr’ とされて得られ、パル
ス信号形成部61に供給される。そして、パルス信号形
成部61において、信号s rlが示す後輪舵角に対応
するパルス信号Spが形成されて駆動部62に供給され
、駆動部62においてパルス信号Spに基づく駆動信号
Sa及びsbが形成されて、それらがパルスモータ30
及びポンプ駆動用モータ44に夫々供給される。その結
果、パルスモータ30及びポンプ駆動用モータ44の、
後輪舵角演算部60において算出された後輪舵角に応じ
た駆動がなされる。
Therefore, the signal Sr from the rear wheel steering angle calculation section 60 is directly obtained from the correction section 65 as a signal Sr', and is supplied to the pulse signal formation section 61. Then, in the pulse signal forming section 61, a pulse signal Sp corresponding to the rear wheel steering angle indicated by the signal srl is formed and supplied to the drive section 62, and the drive section 62 generates drive signals Sa and sb based on the pulse signal Sp. The pulse motor 30
and the pump drive motor 44, respectively. As a result, the pulse motor 30 and the pump drive motor 44,
Drive is performed according to the rear wheel steering angle calculated by the rear wheel steering angle calculating section 60.

このようにして、パルスモータ30及びポンプ駆動用モ
ータ44が駆動制御されることにより、後輪12L及び
12Rが、転舵比特性に1に従って転舵せしめられ、前
述の第2図に示される具体構成例による場合と同様な車
両の走行状態が得られることになる。
In this way, by driving and controlling the pulse motor 30 and the pump drive motor 44, the rear wheels 12L and 12R are steered according to the steering ratio characteristic of 1, as shown in FIG. The same running state of the vehicle as in the case of the configuration example can be obtained.

これに対して、補正部65において検出信号Sgがあら
れす横力が所定値以上であることが検出され、従って、
路面の摩擦係数が比較的大であるとおなされる場合には
、補正部65において、後輪舵角演算部60からの信号
Srがあられす後輪舵角に対する補正が行われ、転舵比
が補正される。
On the other hand, the correction unit 65 detects that the lateral force caused by the detection signal Sg is greater than or equal to the predetermined value, and therefore,
When it is determined that the coefficient of friction of the road surface is relatively large, the correction section 65 corrects the rear wheel steering angle based on the signal Sr from the rear wheel steering angle calculation section 60, and adjusts the steering ratio accordingly. Corrected.

このとき、転舵比の補正量は、補正部65において信号
Smに基づいて検出される車両の走行モードによって異
なるものとされる。例えば、通常走行モードがとられる
場合には、後輪舵角演算部60において転舵比特性に、
に代えて第3図に示される転舵比特性に2が用いられた
演算が行われるとして、そのとき算出される後輪舵角に
相当するものとされる補正後輪舵角が得られる。また、
スポーツ走行モードがとられる場合には、後輪舵角演算
部60において転舵比特性に1に代えて転舵比特性に、
が用いられた演算が行われるとして、そのとき算出され
る後輪舵角に相当するものとされる補正後輪舵角が得ら
れる。そして、補正部65から、斯かる補正後輪舵角に
応じた信号Sr’がパルス信号形成部61に供給される
。そして、この場合にも、パルス信号形成部61から、
信号Sr”が示す補正後輪舵角に対応するパルス信号S
pが駆動部62に供給され、駆動部62から、パルス信
号spに基づく駆動信号Sa及びsbがパルスモータ3
0及びポンプ駆動用モータ44に夫々供給されて、パル
スモータ30及びポンプ駆動用モータ44の、後輪舵角
演算部60において算出された後輪舵角に応じた駆動が
なされる。 。
At this time, the amount of correction of the steering ratio differs depending on the driving mode of the vehicle detected by the correction unit 65 based on the signal Sm. For example, when the normal driving mode is used, the rear wheel steering angle calculation unit 60 determines the steering ratio characteristic.
If the calculation using 2 for the steering ratio characteristic shown in FIG. 3 is performed instead, a corrected rear wheel steering angle corresponding to the rear wheel steering angle calculated at that time is obtained. Also,
When the sport driving mode is selected, the steering ratio characteristic is set to 1 in the rear wheel steering angle calculation unit 60, and the steering ratio characteristic is set to 1.
, a corrected rear wheel steering angle is obtained which corresponds to the rear wheel steering angle calculated at that time. Then, the correction section 65 supplies a signal Sr' corresponding to the corrected rear wheel steering angle to the pulse signal formation section 61. Also in this case, from the pulse signal forming section 61,
Pulse signal S corresponding to the corrected rear wheel steering angle indicated by the signal Sr”
p is supplied to the drive section 62, and from the drive section 62, drive signals Sa and sb based on the pulse signal sp are sent to the pulse motor 3.
0 and the pump drive motor 44, and the pulse motor 30 and the pump drive motor 44 are driven according to the rear wheel steering angle calculated by the rear wheel steering angle calculating section 60. .

このようにして、パルスモータ30及びポンプ駆動用モ
ータ44が駆動制御されることにより、後輪12L及び
12Rが、転舵比特性に2もしくはに3に従って転舵せ
しめられ、前述の第2図に示される具体構成例による場
合と同様な車両の走行状態が得られることになる。
In this way, by driving and controlling the pulse motor 30 and the pump drive motor 44, the rear wheels 12L and 12R are steered according to the steering ratio characteristic of 2 or 3, as shown in FIG. The same running state of the vehicle as in the specific configuration example shown will be obtained.

なお、上述の実施例においては、車両に作用する横力を
検出する手段として横力センサ56を用いているが、斯
かる横力センサ56の使用に代えて、例えば、縦軸に前
輪舵角θがとられ、横軸に車速■がとられて表される第
5図のグラフに示される如くの、複数の横力曲線G、、
cz 、G、及びG4等に従って、舵角センサ52から
の検出信号Ssがあられす前輪舵角及び車速センサ54
からの検出信号Svがあられす車速に対応する横力値を
求めることにより、車両に作用する横力を検出するよう
にしてもよい。
In the above-described embodiment, the lateral force sensor 56 is used as a means for detecting the lateral force acting on the vehicle, but instead of using the lateral force sensor 56, for example, the front wheel steering angle is plotted on the vertical axis. A plurality of lateral force curves G, as shown in the graph of FIG. 5, where θ is plotted and vehicle speed ■ is plotted on the horizontal axis.
A front wheel steering angle and vehicle speed sensor 54 receives a detection signal Ss from the steering angle sensor 52 according to cz, G, G4, etc.
The lateral force acting on the vehicle may be detected by determining the lateral force value corresponding to the vehicle speed detected by the detection signal Sv from the vehicle.

第6図は、本発明に係る車両の4輪操舵装置の他の例を
示す。第6図において第1図に示される例に対応する各
部には第1図と共通の符号を付して示し、それらについ
ての重複説明は省略する。
FIG. 6 shows another example of the four-wheel steering system for a vehicle according to the present invention. In FIG. 6, each part corresponding to the example shown in FIG. 1 is shown with the same reference numerals as in FIG. 1, and repeated explanation thereof will be omitted.

第6図に示される例においては、前輪操舵機構5゛を構
成するステアリングギア機構10のランク軸9にラック
70が形成されている。そして、ラック70には、車両
の長さ方向に伸びる伝達ロッド72の一端部に固定され
たピニオン74が噛合せしめられており、伝達ロッド7
2の他端部は転舵比変更機構76に連結されている。転
舵比変更機構76は、車幅方向に移動自在に支持された
スライド部材78を有している。スライド部材78には
ラック80が形成されており、ラック80にはピニオン
軸24の一端部に固定されたピニオン82が噛合せしめ
られている。ピニオン軸24の他端部にはピニオン26
が固定されており、このピニオン26は後輪操舵用ロッ
ド20に形成されたラック22に噛合せしめられている
In the example shown in FIG. 6, a rack 70 is formed on the rank shaft 9 of the steering gear mechanism 10 that constitutes the front wheel steering mechanism 5''. A pinion 74 fixed to one end of a transmission rod 72 extending in the longitudinal direction of the vehicle is meshed with the rack 70.
The other end of 2 is connected to a steering ratio changing mechanism 76. The steering ratio changing mechanism 76 includes a slide member 78 supported movably in the vehicle width direction. A rack 80 is formed on the slide member 78, and a pinion 82 fixed to one end of the pinion shaft 24 is meshed with the rack 80. A pinion 26 is attached to the other end of the pinion shaft 24.
is fixed, and this pinion 26 is meshed with a rack 22 formed on the rear wheel steering rod 20.

転舵比変更機構76は、例えば、第7図に示される如く
、車両の高さ方向に伸びる中心軸線O3を中心にして回
転自在に支持された軸83を有しており、軸83の一端
部には二股形状を有するホルダー84が取り付けられて
いる。ホルダー84には、ビン86を介して回動アーム
8日の一端部が連結されており、ビン86の中心は、中
心軸線01に直交して車幅方向に沿う中心軸線02に−
致するものとされている。従って、ビン86を中心とす
る回動アーム88の回動軌跡の、中心軸線0□に対する
角度は、中心軸線0.を中心とするホルダー84の回転
に伴って変化するものとなる。
For example, as shown in FIG. 7, the steering ratio changing mechanism 76 has a shaft 83 rotatably supported around a central axis O3 extending in the height direction of the vehicle, and one end of the shaft 83 A holder 84 having a bifurcated shape is attached to the portion. One end of the rotating arm 8 is connected to the holder 84 via a pin 86, and the center of the pin 86 is aligned with the central axis 02 which is orthogonal to the central axis 01 and along the vehicle width direction.
It is assumed that Therefore, the angle of the rotation locus of the rotation arm 88 about the bin 86 with respect to the central axis 0□ is 0. It changes as the holder 84 rotates around .

回動アーム88の他端部は、その中間部をボールジヨイ
ント90によって連結されたリンク部材92を介してス
ライド部材78に連結されている。
The other end of the rotating arm 88 is connected to the slide member 78 via a link member 92 whose intermediate portion is connected by a ball joint 90.

回動アーム88の他端部とリンク部材92の一端部、及
び、リンク部材92の他端部とスライド部材78は、夫
々、中心軸線0.及びot上においてボールジヨイント
94及び95を介して連結されている。リンク部材92
におけるボールジヨイント90及び94の中間部は、筒
状部材96によって車幅方向に摺動自在に支持されてい
る。筒状部材96は、中心軸線ORを中心にして回転自
在に支持された回転軸98に一端部を固定された回動ア
ーム100の他端部に固定されている。回転軸98の一
端部には傘歯車102が固定されており、傘歯車102
は伝達ロッド72の他端部に固定された傘歯車104に
噛合せしめられている。
The other end of the rotating arm 88 and one end of the link member 92, and the other end of the link member 92 and the slide member 78, respectively, are connected to the center axis 0. and ot via ball joints 94 and 95. Link member 92
The intermediate portions of the ball joints 90 and 94 are supported by a cylindrical member 96 so as to be slidable in the vehicle width direction. The cylindrical member 96 is fixed to the other end of a rotating arm 100, which has one end fixed to a rotating shaft 98 that is rotatably supported around the central axis OR. A bevel gear 102 is fixed to one end of the rotating shaft 98.
is meshed with a bevel gear 104 fixed to the other end of the transmission rod 72.

従って、筒状部材96は、前輪操舵機構5′の動作に伴
う伝達ロッド72の回転により、回転軸98を中心とし
て回動せしめられる。そして、斯かる状態において、回
動アーム88の回動軌跡が中心軸線O!に対して傾いて
いる場合には、リンク部材92が第7図において矢印F
で示される方向に移動せしめられ、これにより、スライ
ド部材78が車幅方向に変位せしめられることになる。
Therefore, the cylindrical member 96 is rotated about the rotating shaft 98 by the rotation of the transmission rod 72 accompanying the operation of the front wheel steering mechanism 5'. In such a state, the rotation locus of the rotation arm 88 is the central axis O! If the link member 92 is tilted relative to the arrow F in FIG.
This causes the slide member 78 to be displaced in the vehicle width direction.

斯かるスライド部材78の変位量は、回動アーム88の
ピン86を中心とする回動軌跡と中心軸線0□との角度
、即ち、中心軸vA01を中心とするホルダー84の回
転角度によって決定される。このため、一端部にホルダ
ー84が固定された軸83の他端部にセクタ歯車106
が固定されており、セクタ歯車106には、制御ユニッ
ト50からの駆動信号Saによって駆動制御されるモー
タ1゜8の出力軸に固定されたビニオン110が噛合せ
しめられている。そして、この例においては、制御ユニ
ソ)50における後輪舵角演算部60.パルス信号形成
部61及び駆動部62、及び、転舵比変更機構76等に
より、転舵比制御手段が構成されているのである。
The amount of displacement of the slide member 78 is determined by the angle between the rotation locus of the rotation arm 88 about the pin 86 and the center axis 0□, that is, the rotation angle of the holder 84 about the center axis vA01. Ru. Therefore, the sector gear 106 is attached to the other end of the shaft 83 to which the holder 84 is fixed.
is fixed, and a pinion 110 fixed to the output shaft of a motor 1.8 whose drive is controlled by a drive signal Sa from a control unit 50 is meshed with the sector gear 106. In this example, the rear wheel steering angle calculating section 60 in the control unit 50. The pulse signal forming section 61, the driving section 62, the steering ratio changing mechanism 76, and the like constitute a steering ratio control means.

斯かる構成とされた4輪操舵装置が搭載された車両の走
行時においては、ステアリング・ホイール3からの操舵
力が前輪操舵機構5°及び伝達ロッド72を介して転舵
比変更機構76に伝達されるとき、制御ユニット50に
おいて、舵角センサ52、車速センサ54.横力センサ
56及び走行モード選択スイッチ57からの検出信号S
s、SV及びSg及び信号Smに基づいて転舵比が設定
される。そして、設定された転舵比に応じた駆動信号S
aが制御ユニッ)50から転舵比変更機構76に供給さ
れ、それにより、スライド部材78が所定量だけ変位せ
しめられる。斯かるスライド部材78の変位は、ビニオ
ン軸24を介して後輪操舵用ロッド20に伝達され、ナ
ックル部材16がジヨイント部14の回りを回動せしめ
られることにより、後輪12R及び12Lが所定の転舵
比のもとに転舵せしめられる。
When a vehicle equipped with the four-wheel steering device configured as described above is running, the steering force from the steering wheel 3 is transmitted to the steering ratio changing mechanism 76 via the front wheel steering mechanism 5° and the transmission rod 72. When the steering angle sensor 52, vehicle speed sensor 54 . Detection signal S from lateral force sensor 56 and driving mode selection switch 57
The steering ratio is set based on s, SV, Sg, and signal Sm. Then, a drive signal S according to the set steering ratio
a is supplied from the control unit 50 to the steering ratio changing mechanism 76, thereby displacing the slide member 78 by a predetermined amount. The displacement of the slide member 78 is transmitted to the rear wheel steering rod 20 via the binion shaft 24, and the knuckle member 16 is rotated around the joint portion 14, thereby causing the rear wheels 12R and 12L to move to a predetermined position. It is steered based on the steering ratio.

斯かる第6図に示される実施例における他の構成及び動
作は、第1図に示される実施例と同様である。
Other configurations and operations in the embodiment shown in FIG. 6 are similar to those in the embodiment shown in FIG.

(発明の効果) 以上の説明から明らかな如く、本発明に係る車両の4輪
操舵装置によれば、前輪が転舵せしめられるときそれに
伴って後輪が転舵せしめられるとともに、転舵比、即ち
、前輪の舵角に対する後輪の舵角の比が車速に応じて変
化せしめられるものとされ、かつ、転舵比が、車両が走
行する路面の摩擦係数に応じて適正に補正され、さらに
、この転舵比の補正量が手動操作により変化せしめられ
るので、路面の摩擦係数が比較的小であるもとでは車両
の走行安定性の向上が図られ、また、路面の摩擦係数が
比較的大であるもとでは車両の旋回性能の向上が図られ
ることになるという如くの、路面の摩擦係数の相違に応
じ、かつ、運転者の望む走行態様に応じた適正な車両走
行状態を得ることができる。また、車両が、旋回走行時
に低速走行状態から高速走行状態に移行していく際にお
いて、車両に作用する横力が所定値以上となることに基
づいて、転舵比が前輪の転舵状態と後輪の転舵状態とが
逆位相関係とされることになる逆位相側に補正制御され
るので、車両の旋回走行に伴ってアンダーステアリング
傾向が過度に強められることを効果的に抑制できること
になる。
(Effects of the Invention) As is clear from the above description, according to the four-wheel steering device for a vehicle according to the present invention, when the front wheels are steered, the rear wheels are accordingly steered, and the steering ratio is That is, the ratio of the steering angle of the rear wheels to the steering angle of the front wheels is changed according to the vehicle speed, and the steering ratio is appropriately corrected according to the coefficient of friction of the road surface on which the vehicle travels. Since the correction amount of this steering ratio can be changed manually, the running stability of the vehicle can be improved when the friction coefficient of the road surface is relatively small; To obtain an appropriate vehicle running condition in accordance with the difference in the coefficient of friction of the road surface and in accordance with the driving mode desired by the driver, such as improving the turning performance of the vehicle under conditions where the vehicle is large. Can be done. In addition, when the vehicle transitions from a low-speed driving state to a high-speed driving state during turning, the steering ratio changes to the front wheel steering state based on the fact that the lateral force acting on the vehicle exceeds a predetermined value. Since the correction control is performed to the opposite phase side, which means that the steering state of the rear wheels is in an opposite phase relationship, it is possible to effectively suppress the tendency for understeering to become excessively strong as the vehicle turns. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る車両の4輪操舵装置の一例を概略
的に示す全体構成図、第2図は第1図に示される例に用
いられる制御ユニットの具体構成例を示すブロック図、
第3図は第2図に示される制御ユニットの具体構成例の
動作説明に供される転舵比特性を示す図、第4図は第1
図に示される例に用いられる制御ユニットの他の具体構
成例を示すブロック図、第5図は第1図に示される例に
おいて行われ得る横力検出の説明に供される図、第6図
は本発明に係る車両の4輪操舵装置の他の例を示す全体
構成図、第7図は第6図に示される例に用いられる転舵
比変更機構の具体構成例を示す概略構成図である。 図中、2L及び2Rは前輪、5及び5′は前輪操舵機構
、11は後輪操舵機構、12L及び12Rは後輪、30
はパルスモータ、50は制御ユニット、56は横力セン
サ、57は走行モード選択スイッチ、58及び58°は
転舵比特性記憶部、59は転舵比特性選択部、60は後
輪舵角演算部、61はパルス信号形成部、62は駆動部
、65は補正部、76は転舵比変更機構である。 特許出願人   マツダ株式会社 第6図 ハソーンソング 第7図
FIG. 1 is an overall configuration diagram schematically showing an example of a four-wheel steering system for a vehicle according to the present invention, and FIG. 2 is a block diagram showing a specific configuration example of a control unit used in the example shown in FIG.
FIG. 3 is a diagram showing steering ratio characteristics used to explain the operation of the specific configuration example of the control unit shown in FIG. 2, and FIG.
FIG. 5 is a block diagram showing another specific example of the configuration of the control unit used in the example shown in FIG. 1, and FIG. 7 is a general configuration diagram showing another example of a four-wheel steering device for a vehicle according to the present invention, and FIG. 7 is a schematic configuration diagram showing a specific configuration example of a steering ratio changing mechanism used in the example shown in FIG. 6. be. In the figure, 2L and 2R are front wheels, 5 and 5' are front wheel steering mechanisms, 11 is a rear wheel steering mechanism, 12L and 12R are rear wheels, 30
50 is a pulse motor, 50 is a control unit, 56 is a lateral force sensor, 57 is a driving mode selection switch, 58 and 58° are a steering ratio characteristic storage section, 59 is a steering ratio characteristic selection section, 60 is a rear wheel steering angle calculation 61 is a pulse signal forming section, 62 is a drive section, 65 is a correction section, and 76 is a steering ratio changing mechanism. Patent applicant Mazda Motor Corporation Figure 6 Hathorn Song Figure 7

Claims (1)

【特許請求の範囲】[Claims] 車両における操舵操作に応じて前輪を転舵させる前輪操
舵機構と、上記前輪の転舵に応じて後輪を転舵させる後
輪操舵機構と、上記前輪の舵角に対する上記後輪の舵角
の比を車速に応じて変化させる転舵比制御手段と、上記
車両に作用する車幅方向の力を検出する横力検出手段と
、該横力検出手段により上記車両に作用する車幅方向の
力が所定値以上であることが検出されるとき、上記転舵
比制御手段により制御される上記前輪の舵角に対する上
記後輪の舵角の比を、上記前輪の転舵状態と上記後輪の
転舵状態とが逆位相関係とされることになる逆位相側に
補正する転舵比補正手段と、該転舵比補正手段による上
記前輪の舵角に対する上記後輪の舵角の比の補正量を手
動操作により変化させ得るものとなす補正量可変手段と
、を備えて構成された車両の4輪操舵装置。
A front wheel steering mechanism that steers a front wheel in response to a steering operation in a vehicle, a rear wheel steering mechanism that steers a rear wheel in response to the steering of the front wheel, and a steering angle of the rear wheel relative to a steering angle of the front wheel. steering ratio control means for changing the ratio according to vehicle speed; lateral force detection means for detecting a force in the vehicle width direction acting on the vehicle; and a force in the vehicle width direction acting on the vehicle by the lateral force detection means. is greater than a predetermined value, the ratio of the steering angle of the rear wheels to the steering angle of the front wheels controlled by the steering ratio control means is calculated based on the steering state of the front wheels and the steering angle of the rear wheels. A steering ratio correction means for correcting the steering ratio to the opposite phase side so that the steering state has an opposite phase relationship, and correction of the ratio of the steering angle of the rear wheels to the steering angle of the front wheels by the steering ratio correction means. A four-wheel steering device for a vehicle, comprising: correction amount variable means that allows the amount to be changed by manual operation.
JP20108686A 1986-08-27 1986-08-27 Four-wheel steering device for vehicle Pending JPS6357373A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20108686A JPS6357373A (en) 1986-08-27 1986-08-27 Four-wheel steering device for vehicle
US07/089,552 US4874054A (en) 1986-08-27 1987-08-26 Control in a vehicle four wheel steering system
DE19873728678 DE3728678A1 (en) 1986-08-27 1987-08-27 CONTROL OF A FOUR-WHEEL STEERING SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20108686A JPS6357373A (en) 1986-08-27 1986-08-27 Four-wheel steering device for vehicle

Publications (1)

Publication Number Publication Date
JPS6357373A true JPS6357373A (en) 1988-03-12

Family

ID=16435159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20108686A Pending JPS6357373A (en) 1986-08-27 1986-08-27 Four-wheel steering device for vehicle

Country Status (1)

Country Link
JP (1) JPS6357373A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166566A (en) * 1984-02-08 1985-08-29 Mazda Motor Corp Four wheel steering device for vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166566A (en) * 1984-02-08 1985-08-29 Mazda Motor Corp Four wheel steering device for vehicle

Similar Documents

Publication Publication Date Title
US5964819A (en) Vehicle yawing behavior control apparatus
JP3816730B2 (en) Vehicle steering device
US4874054A (en) Control in a vehicle four wheel steering system
JPH0533193B2 (en)
JPS6218367A (en) Four-wheel steering gear of vehicle
JPH0380669B2 (en)
JPS6357374A (en) Four-wheel steering device for vehicle
JP2760184B2 (en) Vehicle camber angle control device
JPS6357373A (en) Four-wheel steering device for vehicle
JPS6357372A (en) Four-wheel steering device for vehicle
JPH0649465B2 (en) 4-wheel steering system for vehicles
JPS6357375A (en) Four-wheel steering device for vehicle
JPS60166566A (en) Four wheel steering device for vehicle
JPH0358945B2 (en)
JP2594822B2 (en) Four-wheel steering system
JPH0653499B2 (en) 4-wheel steering system for vehicles
JPH06127244A (en) Alignment control method of vehicle suspension device
JPH0825481B2 (en) 4-wheel steering system for vehicles
JPS62227873A (en) Four wheel steering device for vehicle
JPS63192663A (en) Four-wheel-steering device for vehicle
JPS63199178A (en) Four-wheel steering device for vehicle
JPH01306369A (en) Method of steering four wheels of car
JPH08268312A (en) Rear wheel steering device
JPS63235169A (en) Four wheel steering device for vehicle
JPS624679A (en) 4-wheel steering apparatus for vehicle