JPS6357153B2 - - Google Patents

Info

Publication number
JPS6357153B2
JPS6357153B2 JP56177035A JP17703581A JPS6357153B2 JP S6357153 B2 JPS6357153 B2 JP S6357153B2 JP 56177035 A JP56177035 A JP 56177035A JP 17703581 A JP17703581 A JP 17703581A JP S6357153 B2 JPS6357153 B2 JP S6357153B2
Authority
JP
Japan
Prior art keywords
weight
pole
welding
caf
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56177035A
Other languages
Japanese (ja)
Other versions
JPS5881593A (en
Inventor
Fumimaru Kawabata
Atsushi Shiga
Tadamasa Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17703581A priority Critical patent/JPS5881593A/en
Publication of JPS5881593A publication Critical patent/JPS5881593A/en
Publication of JPS6357153B2 publication Critical patent/JPS6357153B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3607Silica or silicates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、多電極タンデム高速サブマージア
ーク溶接方法に関し、とくに大径鋼管シーム溶接
などに用いて高能率かつ高品位の溶接部を得るサ
ブマージアーク溶接の改良を提案しようとするも
のである。 たとえばUO大径鋼管の製造に対しその生産能
率の向上にはシーム溶接に用いられるサブマージ
アーク溶接の速度向上が直接効果があり、ここに
該溶接材料あるいは溶接条件など多方面から、溶
接速度向上の検討がなされている。 発明者らが先に開発した高速溶接用焼成型フラ
ツクスは、高速において良好なる作業性を有する
ものの、このタイプのフラツクスが持つ弱点つま
りアークの集中性がやや乏しく、溶接条件の如何
によつてはときに溶接が不安定となることがあつ
た。すなわち、一般に焼成型フラツクスは、かさ
比重が小さく、フラツクスの散布高さが低いよう
な場合には電極間でアークの吹き上げが起こり、
これが強烈な場合には電極チツプの溶損を引き起
こして溶接作業能率の低下を招く。またこのよう
な溶接中の不安定現象はビードの蛇行などの溶接
欠かんとなつて現われ、溶接部の品位を低下させ
る。 この発明は焼成型フラツクスにおける上記のよ
うな弱点を改善し、その高速溶接性能を十分に引
き出すことが基本の目的である。 発明者らは上記の高速溶接用焼成型フラツクス
による高能率での溶接が可能な長所を助長し、し
かも溶接時にみられる不安定さが、このフラツク
スの持つ特有な性質としてかさ比重が小さいこと
およびガス発生に関連しとくにこの性質が高速溶
接性をもたらす主要因でもあることから、アーク
の発生状態を改善する以外には上記の弱点を解消
する手段はないと考え、電極電流の位相差の適正
なる選択を検討してきた。その結果、発明者らの
見出した4電極法における適正位相の中に、先に
のべた焼成型フラツクスの溶接時の安定性を向上
し、能率を高めるものを見い出した。 すなわち6〜15重量%(以下単に%で示す)の
MgO、5〜15%のAl2O3、5〜20%のTiO2、お
よび6〜15%のCaF2を下式(1)、(2)を同時に満足
する範囲内で、25〜35%のSiO2、4〜15%の
MnOおよび5〜15%のCaOとともに含有する組
成になり、これら成分の熱分解で発生するガスが
1.5〜3%の焼成型フラツクスであり累積粒度分
布において50%を占めるメジアン径dmedが500〜
800μmでかつ粒子径295μm以下の微粒子は全体
の15%以下である多電極タンデム高速サブマージ
アーク溶接用フラツクス 記 1.3≦MgO/CaF2+0.59・Al2O3/TiO2≦1.7
……(1) 0.2≦MgO/CaF2≦1.0 ……(2) がそれであり、またこのフラツクスは、溶接時の
安定性向上の寄与が、とくに下記の多電極サブマ
ージアーク溶接方法に使用するときに著しい。 記 溶接進行方向に前方からL極、M1極、M2極お
よびT極の順に一列に配置した4本の電極の全て
に交流電流を、最前のL極または最後のT極の何
れかを除いた3本の電極の相互間で電流の位相差
がそれぞれ120゜であり、残りのT極またはL極は
最も遠く離れた電極に対して電流の位相差が0゜±
30゜となる3相交流電源により負荷することがそ
れである。 高速溶接でアンダーカツトを防止するためには
T極アークを溶接方向に支配的に偏向させ、これ
により後方への急速な溶鋼流を抑制する必要があ
る。 T極アークを溶接方向に偏向させるためにはT
極アークに働く電磁力を制御する事が重要である
が、L極、M1極、M2極及びT極のうちL、T極
の何れかを除いたら3本の電極の相互間で電流の
位相差がそれぞれ120゜、残りのT極又はL極は最
も遠くはなれた電極に対して電流の位相差が0゜±
30゜となるときにT極アークに働く電磁力が適正
となるのに反してこの条件外では、T極アークが
過度に溶接進行方向に振れたり、溶接進行方向と
逆の方向に振れアンダーカツトが発生し易い。 次にフラツクス組成の限定理由は次の通りであ
る。 MgO:高融点酸化物であり、高速溶接としては
低融点が望ましい事から少ない方が好ましい
が、塩基度を上げじん性を上げるため6%以上
の添加が必要な一方15%を超えると高速溶接性
を阻害する。 Al2O3:MgO同様高融点酸化物であるが5%未満
ではスラグはく離性が劣化し、また15%を超え
ると高速溶接性を阻害する。 TiO2:アークの安定性に影響して、5%未満で
はアークの安定性が悪くなり、20%を超えると
ビート形状が凸状となりやすい。 CaF2:溶接金属のじん性向上作用があるが、6
%未満ではその効果が少なく、15%をこえて過
量に添加するとスラグ粘性が下がりすぎ溶鋼の
激しい動きが抑えられないためビード外観が劣
化する。 上記の他 1.3≦MgO/CaF2+0.59Al2O3/TiO2≦1.7 0.2≦MgO/CaF2≦1.0 の関係は種々の化学組成のフラツクスにおける、
溶接作業性の良好な範囲を示す実験式である。こ
の条件範囲外では良好な作業性は得られない。 SiO2:フラツクスを構成する主要成分で塩基度
やスラグ粘性を調整するために添加されるが、
25%未満では粘性が小さくなりすぎ高速溶接性
が損なわれる。いつぽう35%を超えると塩基度
が低くなりすぎ溶接金属のじん性を確保できな
い。 MnO:4%未満でスラグはくり性が劣化する。
15%を超えるとMnOの還元により酸素が増加
し溶接金属のじん性が劣化する。 CaO:5%未満では溶接金属のじん性が劣化す
る。15%を超えるとポツクマークが発生しやす
い。 焼成型フラツクスの粒子径もまた溶接作業性に
影響する要因である。メジアン径が500〜800μよ
り小さい場合、細かすぎてフラツクス溶融量が過
度となりガス発生量も増すが、フラツクスの流動
性が要化するためガス逸出が困難となり、空洞の
吹上げが生じ不安定なアークとなる。 いつぽう800μを超えると粗くなりすぎフラツ
クスの均一な溶融が行われずガス発生も不均一と
なる。したがつてこの場合も不安定となる。 また295μ径以下の細粒が15%を超えると著し
くアンダカツトが増加する。 以下実施例についてさらに詳しく述べる。 第1図に示す4電極サブマージアーク溶接装置
を用い、第1表に示すフラツクスA1〜A4を供試
フラツクスとして、第2図のV溝を施した鋼板に
第2表の溶接条件で溶接を行なつた。
The present invention relates to a multi-electrode tandem high-speed submerged arc welding method, and is intended to propose an improvement in submerged arc welding, which can be used particularly for seam welding of large-diameter steel pipes to obtain highly efficient and high-quality welds. For example, increasing the speed of submerged arc welding used for seam welding has a direct effect on improving the production efficiency of UO large-diameter steel pipes. It is being considered. The baked flux for high-speed welding that the inventors developed earlier has good workability at high speeds, but the weak point of this type of flux is that the arc concentration is somewhat poor, and depending on the welding conditions, Sometimes welding became unstable. In other words, in general, fired fluxes have a small bulk specific gravity, and when the flux is spread at a low height, arc blow-up occurs between the electrodes.
If this is severe, it may cause melting of the electrode tip, resulting in a decrease in welding efficiency. In addition, such unstable phenomena during welding appear as weld defects such as meandering of the bead, degrading the quality of the welded part. The basic purpose of this invention is to improve the above-mentioned weaknesses in the fired flux and to fully bring out its high-speed welding performance. The inventors have promoted the advantages of the above-mentioned fired flux for high-speed welding, which enables high-efficiency welding, and have also found that the instability seen during welding is due to the unique properties of this flux, such as its low bulk specific gravity and Since this property is the main factor contributing to high-speed welding performance, especially in relation to gas generation, we believe that there is no way to resolve the above weaknesses other than improving the arc generation conditions, and we have determined the appropriate phase difference of the electrode current. I've been considering options. As a result, among the appropriate phases found by the inventors in the four-electrode method, we found one that improves the stability and efficiency during welding of the previously described fired flux. That is, 6 to 15% by weight (hereinafter simply expressed as %)
MgO, 5-15% Al 2 O 3 , 5-20% TiO 2 , and 6-15% CaF 2 within a range that satisfies the following formulas (1) and (2) at the same time, 25-35% SiO 2 , 4-15%
The composition contains MnO and 5 to 15% CaO, and the gas generated by thermal decomposition of these components is
It is a sintered flux of 1.5 to 3%, and the median diameter DMED, which accounts for 50% of the cumulative particle size distribution, is 500 to 30%.
Flux for multi-electrode tandem high-speed submerged arc welding in which fine particles of 800 μm and particle diameter of 295 μm or less account for 15% or less of the total.Note 1.3≦MgO/CaF 2 +0.59・Al 2 O 3 /TiO 2 ≦1.7
...(1) 0.2≦MgO/CaF 2 ≦1.0 ...(2) This flux contributes to improving stability during welding, especially when used in the multi-electrode submerged arc welding method described below. Significantly. Note: Apply alternating current to all four electrodes arranged in a row from the front in the direction of welding: L pole, M 1 pole, M 2 pole, and T pole, and apply an alternating current to either the front L pole or the last T pole. The current phase difference between the three removed electrodes is 120°, and the remaining T or L pole has a current phase difference of 0°± with respect to the farthest electrode.
This is done by loading it with a 3-phase AC power source with an angle of 30°. In order to prevent undercut during high-speed welding, it is necessary to deflect the T-pole arc predominantly in the welding direction, thereby suppressing the rapid flow of molten steel backward. In order to deflect the T pole arc in the welding direction, T
It is important to control the electromagnetic force acting on the polar arc, but if you exclude either the L or T pole among the L pole, M 1 pole, M 2 pole, and T pole, there will be no current between the three electrodes. The phase difference of the remaining T or L poles is 120°, respectively, and the current phase difference of the remaining T or L poles is 0°± with respect to the farthest electrode.
When the angle is 30°, the electromagnetic force acting on the T-pole arc is appropriate; however, outside this condition, the T-pole arc may swing excessively in the direction of welding progress, or may swing in the opposite direction to the direction of welding progress, resulting in undercut. is likely to occur. Next, the reasons for limiting the flux composition are as follows. MgO: It is a high melting point oxide, and since a low melting point is desirable for high speed welding, it is preferable to have less. However, in order to increase basicity and toughness, it is necessary to add 6% or more, while if it exceeds 15%, high speed welding inhibit sex. Al 2 O 3 : Like MgO, it is a high melting point oxide, but if it is less than 5%, slag releasability deteriorates, and if it exceeds 15%, high-speed weldability is inhibited. TiO 2 : Affects the stability of the arc. If it is less than 5%, the stability of the arc will deteriorate, and if it exceeds 20%, the beat shape will tend to become convex. CaF 2 : It has the effect of improving the toughness of weld metal, but 6
If it is less than 15%, the effect will be small, and if it exceeds 15%, the slag viscosity will drop too much and the violent movement of molten steel will not be suppressed, resulting in deterioration of the bead appearance. In addition to the above, the relationships 1.3≦MgO/CaF 2 +0.59Al 2 O 3 /TiO 2 ≦1.7 0.2≦MgO/CaF 2 ≦1.0 apply to fluxes of various chemical compositions.
This is an experimental formula showing a good range of welding workability. Good workability cannot be obtained outside this range of conditions. SiO 2 : The main component of flux, which is added to adjust the basicity and slag viscosity.
If it is less than 25%, the viscosity becomes too small and high-speed weldability is impaired. If it exceeds 35%, the basicity becomes too low and the toughness of the weld metal cannot be ensured. MnO: If it is less than 4%, the slag removal property deteriorates.
If it exceeds 15%, oxygen increases due to reduction of MnO and the toughness of the weld metal deteriorates. CaO: If it is less than 5%, the toughness of the weld metal deteriorates. If it exceeds 15%, spot marks are likely to occur. The particle size of the fired flux is also a factor that affects welding workability. If the median diameter is smaller than 500 to 800 μ, it is too small and the amount of flux melted becomes excessive and the amount of gas generated increases. However, the fluidity of the flux is required, making it difficult for gas to escape, causing the cavity to blow up and becoming unstable. It becomes an arc. If it exceeds 800 μm, the flux becomes too coarse and uniform melting of the flux is not achieved, resulting in uneven gas generation. Therefore, this case also becomes unstable. Furthermore, if the proportion of fine particles with a diameter of 295 μm or less exceeds 15%, undercuts will significantly increase. Examples will be described in more detail below. Using the 4-electrode submerged arc welding equipment shown in Fig. 1, welding was carried out under the welding conditions shown in Table 2, using the fluxes A1 to A4 shown in Table 1 as test fluxes, to the steel plate with the V groove shown in Fig. 2. Summer.

【表】【table】

【表】 A1〜A4の各フラツクスは第3図a,bに電流
位相関係でそれぞれ表して2種の結線すなわちこ
の発明に従う結線C1と従来法による比較結線C2
とにより得られた作業性評価の結果を第3表に示
すようにいずれのフラツクスについても結線の如
何によらずアンダーカツトの発生はなかつたが、
第3図aの結線によれば同図bの結線で生じる蛇
行が抑制されて、より安定したビードが得られ、
また、アーク吹き上げが顕著であつたものについ
てもこれが抑えられ、チツプ溶損も起こしていな
い。
[Table] Each flux of A1 to A4 is shown in the current phase relationship in Figure 3a and b, respectively, and shows two types of connections: connection C1 according to the present invention and comparative connection C2 according to the conventional method.
As shown in Table 3, the results of the workability evaluation obtained by the above method show that undercuts did not occur for any flux, regardless of the connection.
According to the connection shown in Fig. 3a, the meandering that occurs in the connection shown in Fig. 3b is suppressed, and a more stable bead can be obtained.
Further, even though the arc blow-up was noticeable, this was suppressed and no chip melting occurred.

【表】 なお以上の実施例では、最前のL極と最後のT
極とを同相とした第3図aの結線を用いたが、各
電流の位相差は0゜±30゜以内で、ほゞ同等の溶接
結果が得られた。 以上のべたようにこの発明によれば、多電極高
速サブマージアーク溶接を高能率で、しかも高品
位の溶接部が得られるように改良することができ
る。
[Table] In the above embodiment, the front L pole and the last T
Although the connection shown in Fig. 3a was used in which the poles were in the same phase, the phase difference of each current was within 0° ± 30°, and almost the same welding results were obtained. As described above, according to the present invention, it is possible to improve multi-electrode high-speed submerged arc welding with high efficiency and to obtain a high-quality welded part.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は4電極溶接装置の電極配置図であり第
2図はV溝寸法を示す試験開先の断面図、そして
第3図a,bは、この発明に従う結線を従来結線
と比較して示す電流位相関係図である。
Fig. 1 is an electrode arrangement diagram of a four-electrode welding device, Fig. 2 is a sectional view of a test groove showing the V-groove dimensions, and Figs. It is a current phase relation diagram shown.

Claims (1)

【特許請求の範囲】 1 溶接進行方向に前方からL極、M1極、M2
およびT極の順に一列に配置した4本の電極の全
てに交流電流を、最前のL極または最後のT極の
何れかを除いた3本の電極の相互間で電流の位相
差がそれぞれ120゜であり、残りのT極またはL極
は最も遠く離れた電極に対して電流の位相差が0゜
±30゜となる3相交流電源により負荷すること; 6〜15重量%のマグネシア(MgO)、5〜15重
量%のアルミナ(Al2O3)、5〜20重量%のチタ
ニア(TiO2)、および6〜15重量%のほたる石
(CaF2)を次の各式 1.3MgO/CaF2+0.59・Al2O3/TiO2≦1.7、 0.2≦MgO/CaF2≦1.0 の両条件を同時に満足する範囲内で、25〜35重量
%のシリカ(SiO2)、4〜15%重量%の酸化マン
ガン(MnO)および5〜15重量%のライム
(CaO)とともに含有し、 これら成分の熱分解で発生するガスが1.5〜3
重量%であり、 累積粒度分布において50重量%を占める粒子の
メジアン径dmedが500〜800μmでかつ、粒子径
295μm以下の微粒子は全体の15重量%以下であ
る焼成型フラツクスを用いること; の結合になる多量極タンデム高速サブマージアー
ク溶接方法。
[Claims] 1. An alternating current is applied to all four electrodes arranged in a line in the order of L pole, M 1 pole, M 2 pole, and T pole from the front in the direction of welding progress. The current phase difference between the three electrodes excluding one of the T poles is 120°, and the current phase difference of the remaining T or L poles is 0° with respect to the farthest electrode. Loaded with a 3-phase AC power supply with ±30°; 6-15% by weight magnesia (MgO), 5-15% by weight alumina (Al 2 O 3 ), 5-20% by weight titania (TiO 2 ). , and 6 to 15% by weight of fluorite (CaF 2 ) using the following formula: 1.3MgO/CaF 2 +0.59・Al 2 O 3 /TiO 2 ≦1.7, 0.2≦MgO/CaF 2 ≦1.0. Contains together with 25-35% by weight of silica (SiO 2 ), 4-15% by weight of manganese oxide (MnO) and 5-15% by weight of lime (CaO) within a satisfactory range at the same time. The gas generated by decomposition is 1.5 to 3
% by weight, the median diameter dmed of particles that account for 50% by weight in the cumulative particle size distribution is 500 to 800 μm, and the particle size is
A multi-electrode tandem high-speed submerged arc welding method that combines the use of a sintered flux in which fine particles of 295 μm or less account for 15% by weight or less of the total.
JP17703581A 1981-11-06 1981-11-06 Flux for high speed submerged arc welding with multiple electrodes in tandem and welding method Granted JPS5881593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17703581A JPS5881593A (en) 1981-11-06 1981-11-06 Flux for high speed submerged arc welding with multiple electrodes in tandem and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17703581A JPS5881593A (en) 1981-11-06 1981-11-06 Flux for high speed submerged arc welding with multiple electrodes in tandem and welding method

Publications (2)

Publication Number Publication Date
JPS5881593A JPS5881593A (en) 1983-05-16
JPS6357153B2 true JPS6357153B2 (en) 1988-11-10

Family

ID=16024001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17703581A Granted JPS5881593A (en) 1981-11-06 1981-11-06 Flux for high speed submerged arc welding with multiple electrodes in tandem and welding method

Country Status (1)

Country Link
JP (1) JPS5881593A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5628082B2 (en) * 2011-04-12 2014-11-19 日鐵住金溶接工業株式会社 Bond flux for multi-electrode single-sided submerged arc welding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841694A (en) * 1981-09-07 1983-03-10 Kawasaki Steel Corp Calcined flux for submerged arc welding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841694A (en) * 1981-09-07 1983-03-10 Kawasaki Steel Corp Calcined flux for submerged arc welding

Also Published As

Publication number Publication date
JPS5881593A (en) 1983-05-16

Similar Documents

Publication Publication Date Title
CA2436445C (en) Flux-cored wire formulation for welding
US4072845A (en) Welding electrode
JP5260469B2 (en) Gas shield arc welding method
KR20020023610A (en) Flux cored wire for gas shield arc welding
JP3804802B2 (en) Metal-based flux-cored wire for gas shielded arc welding and gas shielded arc welding method
JPH0790367B2 (en) High-speed horizontal fillet gas shield arc welding method
JP2015139784A (en) Two-electrode horizontal fillet gas shielded arc welding method
JP2711077B2 (en) Flux-cored wire for gas shielded arc welding
US3551217A (en) Submerged arc welding composition
TWI778536B (en) Flux for electroslag welding and electroslag welding method
JPH0453638B2 (en)
JPS6357153B2 (en)
JP5448497B2 (en) Flux-cored wire for 2-electrode horizontal fillet gas shielded arc welding
JP3027312B2 (en) Flux for submerged arc welding
JP2003025088A (en) Flux cored wire for gas-shielded arc welding
JPH09314383A (en) High-speed horizontal fillet gas shielded metal arc welding method
WO2018235701A1 (en) Multi-electrode submerged arc welding method and welding apparatus
JPH01138098A (en) Coated electrode for stainless steel
JP5669684B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding
JPS5937719B2 (en) Sintered flux for submerged arc welding
JP3836071B2 (en) Single electrode single-sided submerged arc welding method
JPH0362518B2 (en)
JPH09277089A (en) Large leg length horizontal fillet gas shielded arc welding method
JPH11226735A (en) Gas shield arc welding method
JPS6246275B2 (en)