JPS6357136B2 - - Google Patents

Info

Publication number
JPS6357136B2
JPS6357136B2 JP59180513A JP18051384A JPS6357136B2 JP S6357136 B2 JPS6357136 B2 JP S6357136B2 JP 59180513 A JP59180513 A JP 59180513A JP 18051384 A JP18051384 A JP 18051384A JP S6357136 B2 JPS6357136 B2 JP S6357136B2
Authority
JP
Japan
Prior art keywords
mold
model
solvent
coating film
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59180513A
Other languages
Japanese (ja)
Other versions
JPS6160240A (en
Inventor
Tatsuo Natori
Susumu Hioki
Takashi Shimaguchi
Toshihiro Yamada
Shoei Watanabe
Kensuke Konze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59180513A priority Critical patent/JPS6160240A/en
Priority to DE19853530910 priority patent/DE3530910A1/en
Priority to KR1019850006328A priority patent/KR900001344B1/en
Publication of JPS6160240A publication Critical patent/JPS6160240A/en
Priority to US07/019,135 priority patent/US4812278A/en
Publication of JPS6357136B2 publication Critical patent/JPS6357136B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/046Use of patterns which are eliminated by the liquid metal in the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Mold Materials And Core Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は例えば、セラミツク粉末、金属粉末、
炭素粉末などの耐火性粉末を含むスリツプ(泥
漿)を鋳込んで成形体を得るためのスリツプキヤ
ステイング用鋳型の製作法に係わり、特に逆勾配
などで抜去できないような形状複雑な中子や主型
を必要とする成形体に好適な鋳型の製作法に関す
るものである。 〔発明の背景〕 外観形状および空洞部の形状が複雑な成形体を
スリツプキヤステイングで成形する場合、従来は
多数個の主型や中子を組合せて所望の鋳型とする
方法が一般的であつた。しかし、この方法は多数
個の主型や中子の製作および組立に多くの工数が
かかると共に製品にバリが多発するなどの問題点
がある。 これらの問題を解決するための方法として、例
えば特開昭50−95126号公報がある。この方法は
形状が複雑な鋳型部を有機材料で構成し、単純形
状の部分を石膏鋳型としてスリツプを鋳込み、そ
の水分を石膏に吸収させることによりスリツプを
固化させる。その後、有機材料を溶剤で溶かすこ
とにより湿態の成形体(グリーンボデイ)を得る
方法である。 しかし、この方法は次の点について配慮されて
いなかつた。 (i) グリーンボデイの表面に有機材料の溶解残渣
が局部的に残留し、形状が複雑であればあるほ
ど除去が困難である。また残渣の除去が不十分
な場合やグリーンボデイに溶剤が浸透し残留し
た場合には製品の品質が低下する。 (ii) 吸水能力のある鋳型部分が少ないので、グリ
ーンボデイの固化に極めて長時間を要する。 また、名古屋工業技術試験所報告(1963年4月
1日発行)によれば、金属の精密鋳造用として実
用されているロストワツクス法のワツクス模型の
代りに、発泡ポリスチロール模型を使用し鋳型を
製作する方法に関するいくつかの問題点が指摘さ
れている。すなわち、製品とほぼ同一形状の発泡
スチロール模型の表面に耐火物層を約5〜10mm付
着させ固化させた後、鋳型をトリクレンなどの溶
剤の中に1〜3時間浸漬し模型を溶解して、その
大部分を鋳型外に滴下除去する。ただし、鋳型内
壁のほぼ全面にスチロールの溶解残渣が層状に残
留する。この場合、残渣が流れ出にくい形状の空
洞部には、溶解残渣は特に多く残留する。このた
め、鋳型を高温(約1000〜1100℃)に加熱し鋳型
内に残留している溶解残渣を燃焼させるが、この
場合も次のような問題がある。 (i) 鋳型の高温加熱の際に多量の煙やススが発生
し、ススの一部は鋳型内壁に残留する。 (ii) 耐熱性の極めて良好な粘結剤および骨材を用
いた鋳型に限られる。すなわちフランやフエノ
ールなどの有機系の粘結剤を用いる鋳型や石膏
鋳型には適用できない。粘結剤が無機系であつ
ても水ガラスやセメントを粘結剤として用いる
場合には適用できない。粘結剤の燃焼や脆化に
より鋳型としての使用に耐えないためであり、
1000℃以上の耐熱性を有するエチルシリケート
やアルミナゾルを粘結剤とし、シリカフラワ
ー、溶融シリカやジルコンサンドの粒子や粉末
を骨材とする特殊鋳型に限られる。 さらに、米国特許第2830343号に発泡スチロー
ル模型を鋳物砂中に埋設し、そのまま溶融金属を
注入して溶湯の熱で模型を消失させ模型の占める
空間を溶融金属と置換する方法、すなわちフルモ
ールド鋳造法(充填鋳型鋳造法)がある。しかし
この方法は、工数は少ないが鋳肌表面に模型の燃
焼残渣による窪み欠陥および模型の燃焼ガスによ
る吹かれ欠陥が多発し製品の品質を低下させる。 〔発明の目的〕 本発明は上記に鑑み、外観形状および空洞部の
形状が複雑な成形体をスリツプキヤステイングで
精密に成形する場合に、鋳型空洞内面に溶解残渣
の全く残らない鋳型の製作法を提供することを目
的とする。 〔発明の概要〕 本発明の鋳型の製作法は、溶剤に可溶性の有機
材料、例えば発泡スチロールなどで模型を作り、
前記模型の表面に付着し可撓性を有し、かつ溶剤
に不溶性のゴム、例えばシリコンゴム、ウレタン
系シーラントゴムなどを用いて模型表面に被覆膜
を塗布したものを鋳型模型とし、前記鋳型模型の
周囲に石膏などの鋳型材料を充填・硬化させた
後、溶剤で模型を溶解し前記被覆膜に内包させた
溶解残渣を被覆膜の摘出除去に際して被覆膜ごと
鋳型外に除去することを特徴とするものである。
鋳型空洞内に模型の残渣が全く残らず、溶剤も鋳
型壁に吸収されることがないので高品質の成形体
が得られると共に、その工程は簡便である。さら
に、いかに複雑な形状の製品を作る場合であつて
も、多数個の主型や中子を作つて後にこれらを組
合せて所望の鋳型とするなどの工程は不要であ
る。 なお、模型材質としては発泡スチロールに限ら
ず、ポリエチレン、P−ジクロロベンゼンなど溶
剤可溶性のものならば何でも良い。さらに模型の
発泡倍率は目的に応じて選ぶべきであり、また極
めて薄肉であつたり鋭利な形をした模型部分につ
いては非発泡体を使うことも有効である。模型の
成形は金型による発泡成形に限らずブロツク発泡
体を素材として機械もしくは加熱線などによる加
工によることも有効であり、さらにはこれらの組
合せも考えられる。 模型に塗布する材料は、(1)溶剤注入部を除く模
型の全表面を被覆するために、模型に付着するこ
と、(2)塗布する材料が模型を侵蝕しないこと、た
とえばこの材料の中に模型を溶かすような溶剤が
含まれていないこと、(3)溶剤により模型を溶解し
た場合に溶解残渣が鋳型内壁に付着したり、溶解
残渣および溶剤が鋳型内壁に浸透することを防ぐ
ために、被覆膜が溶剤不溶性であること、(4)鋳型
外に抽出除去し易くするために、前記材料よりな
る被覆膜は可撓性を有すること、(5)模型が変形し
ない温度下で硬化すること、好ましくは常温硬化
型であること、(6)被覆膜が実質的に溶剤不透性で
あること、等の6条件を満足することが必要であ
る。したがつて、これらの条件を備えるものであ
れば必ずしも前記のシリコン系ゴム、あるいはウ
レタン系シーラントゴムに限らない。 なお前記の常温硬化型シリコンゴム(以下
「RTVゴム」と略す)は1液型と2液型に分けら
れる。前者、すなわち1液型RTVゴムは模型に
塗布後、空気中の水分と反応して常温で硬化しゴ
ム弾性体となり硬化と同時に殆んどの材質に接着
するので本発明に適用できる。後者、すなわち2
液型RTVゴムはゴムベースと硬化触媒にわかれ
ていて触媒を添加混合することによつて常温硬化
する。ただし本発明においては、樹脂模型に接着
することが要件のひとつであり、これに合致する
ものは2液型RTVゴムのうちでは自己接着型の
ものである。したがつて、これも本発明に適用で
きる。 本発明において使用に適した溶剤は、アセト
ン、トリクロルエチレン(トリクレン)、トリク
ロルエタン(トリエタン)、テトラクロルエチレ
ン、四塩化炭素、ベンゼン、ベンジンなど模型と
しての有機樹脂を溶解するものであればいずれで
も良く、またこれらの2種もしくは2種以上の混
合物を使用しても差しつかえない。さらに、これ
らの溶剤の使用態様は液体状、気体状のいずれで
も良く、前者の中には噴霧状も含む。 〔発明の実施例〕 以下、具体的実施例によつて本発明を説明す
る。 実施例 1 第1図に示す発泡スチロール製の試験片1(発
泡倍率40倍)の頂部を除く全表面に第1表に示す
処理を施し、Siゴム被覆膜2を形成させた。この
試験片1を反転し、第2図のように定盤3の上に
設置した木枠4の中央部に固定し、周囲に石膏
100部(重量部、以下全て同じ)および水50部よ
りなる石膏スラリーを鋳込み、このスラリーが凝
固したのち鋳型5を反転し、定盤3および木枠4
を除去した。 試験片1の頂部よりアセトンを噴霧状にして吹
きつけた。試験片1はアセトンに急激に溶解し、
体積は約1/40に減少した。また、アセトンの鋳型
への浸透状況および溶解残渣の鋳型内壁への付着
状況は、表に示すとおりである。なお、参考のた
め、被覆膜を形成しないものについても示す。
[Field of Application of the Invention] The present invention is applicable to, for example, ceramic powder, metal powder,
It is related to the manufacturing method of slip casting molds for obtaining compacts by casting slips (sludge) containing refractory powder such as carbon powder, and is particularly applicable to cores and main bodies with complex shapes that cannot be removed due to reverse gradients. The present invention relates to a method for manufacturing a mold suitable for a molded object that requires a mold. [Background of the Invention] When molding a molded body with a complex external shape and cavity shape by slip casting, the conventional method was to combine a large number of main molds and cores to form a desired mold. Ta. However, this method has problems such as requiring a large number of man-hours to manufacture and assemble a large number of main molds and cores, and causing frequent burrs on the product. As a method for solving these problems, there is, for example, Japanese Patent Application Laid-open No. 50-95126. In this method, a complex-shaped mold part is made of an organic material, a simple-shaped part is used as a plaster mold, and the slip is cast into it, and the slip is solidified by absorbing the moisture into the plaster. Thereafter, a wet molded body (green body) is obtained by dissolving the organic material with a solvent. However, this method did not take into account the following points. (i) Dissolved residues of organic materials remain locally on the surface of the green body, and the more complex the shape, the more difficult it is to remove. Furthermore, if the removal of the residue is insufficient or if the solvent penetrates into the green body and remains, the quality of the product will deteriorate. (ii) Since there are few parts of the mold that can absorb water, it takes an extremely long time for the green body to solidify. Additionally, according to a report from the Nagoya Institute of Technology (issued April 1, 1963), molds were manufactured using expanded polystyrene models instead of wax models using the lost wax method, which is used in precision metal casting. Several problems have been pointed out regarding the method. That is, after a refractory layer of approximately 5 to 10 mm is attached to the surface of a styrofoam model with almost the same shape as the product and solidified, the mold is immersed in a solvent such as Trichlorene for 1 to 3 hours to dissolve the model. Most of it is dripped out of the mold and removed. However, a layer of dissolved styrene remains on almost the entire inner wall of the mold. In this case, a particularly large amount of dissolved residue remains in a cavity that is shaped so that it is difficult for the residue to flow out. For this reason, the mold is heated to a high temperature (approximately 1000 to 1100°C) to burn off the melted residue remaining in the mold, but this also has the following problems. (i) A large amount of smoke and soot is generated when the mold is heated to high temperatures, and some of the soot remains on the inner wall of the mold. (ii) Limited to molds using binders and aggregates with extremely good heat resistance. In other words, it cannot be applied to molds or plaster molds that use organic binders such as furan or phenol. Even if the binder is inorganic, it cannot be applied when water glass or cement is used as the binder. This is because the binder burns and becomes brittle, making it unusable as a mold.
It is limited to special molds that use ethyl silicate or alumina sol, which has a heat resistance of 1000℃ or higher, as a binder, and use silica flour, fused silica, or zircon sand particles or powder as aggregate. Furthermore, U.S. Patent No. 2,830,343 describes a method in which a Styrofoam model is buried in foundry sand, molten metal is directly poured into the mold, the model disappears due to the heat of the molten metal, and the space occupied by the model is replaced with molten metal, that is, the full mold casting method. (filling mold casting method). However, although this method requires less man-hours, the quality of the product is degraded because it causes frequent pitting defects on the casting surface due to combustion residue from the model and blow-out defects due to combustion gas from the model. [Object of the Invention] In view of the above, the present invention provides a method for manufacturing a mold that leaves no melting residue on the inner surface of the mold cavity when precisely molding a molded product with a complex external shape and cavity shape by slip casting. The purpose is to provide [Summary of the Invention] The mold manufacturing method of the present invention involves making a model from a solvent-soluble organic material, such as styrofoam, and
A coating film is applied to the surface of the model using a rubber that adheres to the surface of the model and is flexible and insoluble in solvents, such as silicone rubber or urethane sealant rubber. After filling and hardening mold material such as plaster around the model, the model is dissolved with a solvent, and the dissolved residue contained in the coating film is removed from the mold together with the coating film when the coating film is extracted and removed. It is characterized by this.
Since no model residue remains in the mold cavity and no solvent is absorbed by the mold walls, a high quality molded product can be obtained and the process is simple. Furthermore, no matter how complex a product is to be made, there is no need to create a large number of main molds or cores and then combine them to form a desired mold. Note that the model material is not limited to styrene foam, but may be any solvent-soluble material such as polyethylene or P-dichlorobenzene. Furthermore, the foaming ratio of the model should be selected depending on the purpose, and it is also effective to use non-foamed material for parts of the model that are extremely thin or have sharp shapes. The molding of the model is not limited to foam molding using a mold, but it is also effective to process a block foam material using a machine or a heating wire, and a combination of these is also conceivable. The material applied to the model must (1) adhere to the model to cover all surfaces of the model except for the solvent injection area, and (2) ensure that the material being applied does not corrode the model, e.g. Contains no solvent that would dissolve the model; (3) In order to prevent the dissolution residue from adhering to the inner wall of the mold when the model is dissolved with a solvent, and to prevent the dissolution residue and solvent from penetrating into the inner wall of the mold, The coating film is insoluble in solvents, (4) the coating film made of the above material has flexibility to facilitate extraction and removal outside the mold, and (5) it hardens at a temperature that does not deform the model. (6) The coating film must be substantially impermeable to solvents. Therefore, as long as it meets these conditions, it is not necessarily limited to the above-mentioned silicone rubber or urethane sealant rubber. Note that the above-mentioned room temperature curing silicone rubber (hereinafter abbreviated as "RTV rubber") is divided into one-component type and two-component type. The former, that is, one-component RTV rubber, after being applied to a model, reacts with moisture in the air and hardens at room temperature to become a rubber elastic body and adheres to most materials at the same time as it hardens, so it can be applied to the present invention. The latter, i.e. 2
Liquid type RTV rubber consists of a rubber base and a curing catalyst, and is cured at room temperature by adding and mixing the catalyst. However, in the present invention, one of the requirements is to adhere to the resin model, and among the two-component RTV rubbers, self-adhesive rubbers meet this requirement. Therefore, this is also applicable to the present invention. Solvents suitable for use in the present invention include acetone, trichloroethylene (triclene), trichloroethane (triethane), tetrachloroethylene, carbon tetrachloride, benzene, benzine, and any other solvent that dissolves the organic resin as a model. It is also possible to use two or a mixture of two or more of these. Furthermore, these solvents may be used in either liquid or gaseous form, and the former also includes atomized form. [Examples of the Invention] The present invention will be explained below using specific examples. Example 1 The treatment shown in Table 1 was applied to the entire surface of the expanded polystyrene test piece 1 (expansion ratio: 40 times) shown in FIG. 1, except for the top, to form the Si rubber coating film 2. This test piece 1 was inverted and fixed in the center of a wooden frame 4 placed on a surface plate 3 as shown in Fig. 2, and plaster was placed around it.
A gypsum slurry consisting of 100 parts (by weight, same hereinafter) and 50 parts of water is cast, and after this slurry solidifies, the mold 5 is inverted, and the surface plate 3 and wooden frame 4 are cast.
was removed. Acetone was sprayed onto the top of the test piece 1. Test piece 1 rapidly dissolved in acetone,
The volume decreased to about 1/40. Further, the state of penetration of acetone into the mold and the state of adhesion of the dissolution residue to the inner wall of the mold are as shown in the table. For reference, cases in which no coating film is formed are also shown.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば外観形状
および空洞部の形状が複雑な成形体を例えばスリ
ツプキヤステイングで成形する場合に、有機材料
よりなる模型表面に不溶性被覆膜を形成させるこ
とにより鋳型空洞内面に溶解残渣の全く残らない
鋳型を製作することが可能となるという効果があ
る。
As explained above, according to the present invention, when molding a molded body with a complicated external shape and a complicated cavity shape, for example, by slip casting, by forming an insoluble coating film on the surface of a model made of an organic material. This has the effect of making it possible to manufacture a mold in which no melting residue remains on the inner surface of the mold cavity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第9図は本発明の鋳型の製作法に係
る説明図で、第1図は試験片模型の断面図、第2
図は鋳型の製作法の説明図、第3図はターボチヤ
ージヤ・ケーシングの発泡スチロール模型の断面
図、第4図はSi3N4製ターボチヤージヤ・ケーシ
ングの焼結品の外観図、第5図はスクリユロータ
の発泡スチロール模型の外観図、第6図は発泡ス
チロール模型を鋳型中に埋設した状態の断面図、
第7図は発泡スチロール模型除去後の鋳型空洞に
スリツプを鋳込む説明図、第8図はスクリユ真空
ポンプケーシングの発泡スチロール模型の外観
図、第9図はケーシングの発泡スチロール模型を
鋳型中に埋設した状態の断面図である。 1,6,8,13……可溶性発泡スチロール模
型、2,9,14……不溶性のゴム被覆膜、5,
10,17……鋳型。
1 to 9 are explanatory diagrams related to the mold manufacturing method of the present invention, and FIG. 1 is a cross-sectional view of a test piece model, and FIG.
The figure is an explanatory diagram of the mold manufacturing method, Figure 3 is a cross-sectional view of a styrofoam model of a turbocharger casing, Figure 4 is an external view of a sintered Si 3 N 4 turbocharger casing, and Figure 5 is a diagram of a screw rotor. An external view of the Styrofoam model, Figure 6 is a cross-sectional view of the Styrofoam model embedded in the mold,
Figure 7 is an explanatory diagram of casting a slip into the mold cavity after removing the Styrofoam model, Figure 8 is an external view of the Styrofoam model of the screw vacuum pump casing, and Figure 9 is an illustration of the Styrofoam model of the casing embedded in the mold. FIG. 1, 6, 8, 13...Soluble styrofoam model, 2,9,14...Insoluble rubber coating film, 5,
10,17...Mold.

Claims (1)

【特許請求の範囲】[Claims] 1 溶剤に可溶性の材料で作つた模型の表面に前
記溶剤に不溶性の被覆膜を施こして鋳型模型と
し、溶剤で前記溶剤可溶性模型を溶解して除去す
る鋳型の製作法において、ゴムを前記模型表面に
塗布して前記被覆膜を形成し、前記鋳型模型の周
囲に鋳型材料を充填・固化させた後、有機溶剤で
前記模型を溶解して、前記被覆膜に内包させた溶
解残渣を該被覆膜の摘出除去に際して該被覆膜ご
と鋳型外に除去することを特徴とするスリツプキ
ヤステイング用鋳型の製作法。
1. A mold manufacturing method in which a coating film insoluble in the solvent is applied to the surface of a model made of a material soluble in a solvent to form a mold model, and the solvent-soluble model is dissolved and removed with a solvent, in which the rubber is After coating the surface of the model to form the coating film, filling and solidifying the mold material around the mold model, and dissolving the model with an organic solvent, the dissolution residue is encapsulated in the coating film. A method for manufacturing a mold for slip casting, characterized in that when removing the coating film, the entire coating film is removed from the mold.
JP59180513A 1984-08-31 1984-08-31 Manufacture of casting mold Granted JPS6160240A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59180513A JPS6160240A (en) 1984-08-31 1984-08-31 Manufacture of casting mold
DE19853530910 DE3530910A1 (en) 1984-08-31 1985-08-29 METHOD FOR PRODUCING CASTING MOLDS
KR1019850006328A KR900001344B1 (en) 1984-08-31 1985-08-30 Making method for the casting mold
US07/019,135 US4812278A (en) 1984-08-31 1987-02-25 Process for preparing mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59180513A JPS6160240A (en) 1984-08-31 1984-08-31 Manufacture of casting mold

Publications (2)

Publication Number Publication Date
JPS6160240A JPS6160240A (en) 1986-03-27
JPS6357136B2 true JPS6357136B2 (en) 1988-11-10

Family

ID=16084564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59180513A Granted JPS6160240A (en) 1984-08-31 1984-08-31 Manufacture of casting mold

Country Status (1)

Country Link
JP (1) JPS6160240A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2591240Y2 (en) * 1992-06-03 1999-03-03 岡三機工株式会社 Kneading equipment for cement mixture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990628A (en) * 1972-12-28 1974-08-29
JPS5380324A (en) * 1976-12-27 1978-07-15 Janome Sewing Machine Co Ltd Preparation of mold for precistion inverstment casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990628A (en) * 1972-12-28 1974-08-29
JPS5380324A (en) * 1976-12-27 1978-07-15 Janome Sewing Machine Co Ltd Preparation of mold for precistion inverstment casting

Also Published As

Publication number Publication date
JPS6160240A (en) 1986-03-27

Similar Documents

Publication Publication Date Title
KR900001344B1 (en) Making method for the casting mold
US4919193A (en) Mold core for investment casting, process for preparing the same and process for preparing mold for investment casting having therewithin said mold core
AU729980B2 (en) Sleeves, their preparation, and use
JP2001511719A (en) Metal perfect dense mold and method of forming parts
JP3133077B2 (en) Ceramic mold forming method using thermoreversible material
US6133340A (en) Sleeves, their preparation, and use
JPH01154846A (en) Method of casting metal in air gap section of sand mold easy to be fluidized and firmly cured
JPS6357136B2 (en)
JPH0144124B2 (en)
JPS6357137B2 (en)
JPS6317020B2 (en)
US2931081A (en) Mould structure and its production
JPS63242439A (en) Production of mold for investment casting
JPS63140740A (en) Mold for casting active metal of high melting point
CN112739476B (en) Casting core for casting mould and production method thereof
JP2916593B2 (en) Casting mold
US2923990A (en) Casting mold for fusible pattern
JPH0339774B2 (en)
JPS63260656A (en) Placing core for pressure casting
US3208115A (en) Investment molding
JPS6358082B2 (en)
SU825268A1 (en) Method of producing double-layer casting moulds
JPS6330202A (en) Manufacture of ceramics baked body
JPH10109137A (en) Solid mold precision casting method
JPH0292433A (en) Pattern for precision casting