JPS635702B2 - - Google Patents

Info

Publication number
JPS635702B2
JPS635702B2 JP57172627A JP17262782A JPS635702B2 JP S635702 B2 JPS635702 B2 JP S635702B2 JP 57172627 A JP57172627 A JP 57172627A JP 17262782 A JP17262782 A JP 17262782A JP S635702 B2 JPS635702 B2 JP S635702B2
Authority
JP
Japan
Prior art keywords
voltage
detector
circuit
signal
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57172627A
Other languages
Japanese (ja)
Other versions
JPS5961769A (en
Inventor
Shunei Mizuno
Shoichi Kobayashi
Takeshi Arisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP57172627A priority Critical patent/JPS5961769A/en
Publication of JPS5961769A publication Critical patent/JPS5961769A/en
Publication of JPS635702B2 publication Critical patent/JPS635702B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Description

【発明の詳細な説明】 この発明は等速電気泳動装置に関する。さらに
詳しくは、この発明は信号電圧が低いリーデイン
グイオンやそれに近似の易動度をもつ試料イオン
の検出の分解能を向上することを目的とするもの
で、検出器からの信号電圧を、入力信号反転回路
で反転して加算減算回路に入力し、この回路内で
電圧−周波数変換器(V/Fコンバータ)の最大
入力電圧に反転した信号電圧を加算してリーデイ
ング電圧およびその近傍における試料イオンの電
圧を高精度で処理することができる等速電気泳動
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an isotachophoresis device. More specifically, the present invention aims to improve the detection resolution of leading ions with low signal voltages and sample ions with similar mobilities, by converting the signal voltage from the detector into an inverted input signal. The inverted signal voltage is inverted in the circuit and input to the addition/subtraction circuit, and the inverted signal voltage is added to the maximum input voltage of the voltage-frequency converter (V/F converter) in this circuit to obtain the reading voltage and the voltage of the sample ion in the vicinity. The present invention relates to an isotachophoresis device that can process with high precision.

従来の等速電気泳動装置例えば第1図に示す1
aでは、泳動管4aの途中に設置された検出器6
aからの電位勾配入力信号は、インピーダンス変
換器7aを介して電圧−周波数コンバータ10a
に入力され、同コンバータ10aからの出力をア
イソレーシヨン回路11aに入力したのちカウン
ター12aでパルスを測定して分析されていた。
この方法でターミナルイオン及び通常ターミナル
イオンの5〜20倍であるリーデイングイオンやそ
れに近似の易動度を持つ試料イオンの周波数につ
いて考える。電圧−周波数コンバータ10aの発
振周波数をアイソレーシヨン回路11aなどの関
係で約100KHz/10Vとし、ターミナルイオン及
びリーデイングイオンの信号電圧をそれぞれ10V
と0.5Vとしたとき、リーデイング電圧での周波
数fLはfL=5KHzとなり、カウンターで10msecご
とに読むことのできるパルス数は50ケと少なくな
るため、リーデイング電圧及びその近傍における
試料イオンの電圧のように低レベルの信号を高精
度で処理することができず、分解能が低いという
欠点があつた。
A conventional isotachophoresis apparatus, for example 1 shown in FIG.
In a, a detector 6 installed in the middle of the electrophoresis tube 4a
The potential gradient input signal from a is passed through an impedance converter 7a to a voltage-frequency converter 10a.
After inputting the output from the converter 10a to the isolation circuit 11a, the pulses were measured and analyzed by the counter 12a.
In this method, we consider the frequencies of terminal ions, leading ions whose mobility is 5 to 20 times that of normal terminal ions, and sample ions whose mobility is similar to that of terminal ions. The oscillation frequency of the voltage-frequency converter 10a is set to approximately 100KHz/10V due to the isolation circuit 11a, etc., and the signal voltages of the terminal ion and leading ion are each 10V.
and 0.5V, the frequency f L at the reading voltage is f L = 5KHz, and the number of pulses that can be read every 10 msec by the counter is as small as 50, so the reading voltage and the voltage of the sample ion in the vicinity It has the disadvantage of being unable to process low-level signals with high precision, such as low resolution.

この発明は上記欠点を解消することができる等
速電気泳動装置を提供するものである。
The present invention provides an isotachophoresis device that can eliminate the above-mentioned drawbacks.

この発明の実施例を第2図以下について詳述す
る。なお、これによつてこの発明が限定を受ける
ものではない。
An embodiment of the present invention will be described in detail with reference to FIG. 2 and subsequent figures. Note that this invention is not limited by this.

第2図において、等速電気泳動装置1は、リー
デイング電極槽2と、ターミナル電極槽と、両電
極槽2,3を接続する試料注入室5及び検出器6
を備えた泳動管4と、検出器6からの検出信号の
インピーダンス変換器7、入力信号反転回路8、
加算減算回路9、電圧−周波数コンバータ10、
アイソレーシヨン回路11、カウンター12から
なる信号処理回路13と、両電極槽2,3の各電
極に電圧を与える泳動電源14とから主として構
成されている。
In FIG. 2, the isotachophoresis apparatus 1 includes a leading electrode tank 2, a terminal electrode tank, a sample injection chamber 5 that connects both electrode tanks 2 and 3, and a detector 6.
an impedance converter 7 for the detection signal from the detector 6, an input signal inversion circuit 8,
addition/subtraction circuit 9, voltage-frequency converter 10,
It mainly consists of a signal processing circuit 13 consisting of an isolation circuit 11 and a counter 12, and a migration power supply 14 that applies voltage to each electrode of both electrode tanks 2 and 3.

信号回路13のインピーダンス変換器7は検出
器6からのPGセル入力信号のインピーダンスを
変換する役目を果すもので、インピーダンス変換
器7からの出力電圧は、入力信号反転回路8に入
力されて出力電圧の正負の符号を反転される。入
力信号反転回路8で電圧値の符号を反転された出
力は、加算減算回路9に入力されて電圧−周波数
の最大入力電圧の値と加算される。リーデイング
イオンやそれに近似の易動度をもつ信号電圧が
0.5Vである場合について説明すれば、0.5Vの入
力信号は入力信号反転回路8で−0.5Vに反転さ
れ、加算減算回路9で最大入力電圧である10Vに
加算されて10V−0.5V=9.5Vとなる。
The impedance converter 7 of the signal circuit 13 serves to convert the impedance of the PG cell input signal from the detector 6, and the output voltage from the impedance converter 7 is input to the input signal inverting circuit 8 to be converted into an output voltage. The sign of is reversed. The output whose sign of the voltage value has been inverted by the input signal inversion circuit 8 is input to the addition/subtraction circuit 9 and is added to the value of the maximum input voltage of voltage-frequency. The signal voltage with the leading ion or similar mobility is
To explain the case of 0.5V, the 0.5V input signal is inverted to -0.5V by the input signal inversion circuit 8, and added to the maximum input voltage of 10V by the addition/subtraction circuit 9, resulting in 10V - 0.5V = 9.5. It becomes V.

加算減算回路9からの出力信号は、この出力信
号に比例する周波数のパルスを発生する電圧−周
波数コンバータ10に入力され、同コンバータ1
0からの出力信号はアイソレーシヨン回路11に
入力したのちカウンター12でパルスを測定して
分析される。この場合、分析を検出器6からの高
速信号に追随して真の値に近いところを読み取れ
るようにするには、カウンター12でカウントす
る時間間隔を短くする必要があるが、この時間間
隔の短縮は、インピーダンス変換器7と電圧−周
波数コンバータ10との間に入力信号反転回路8
と加算減算回路9とを直列に挿入したことにより
リーデイング電圧値近傍の値を持つ試料イオンを
高分解能で検出することができる。すなわち、リ
ーデイングイオンやそれに近似の易動度をもつ信
号電圧が0.5Vであるとき、加算減算回路9の出
力電圧は先に述べたように9.5Vとなり、電圧−
周波数コンバータ10の発振周波数が約100K
Hz/10Vのとき、リーデイング電圧0.5Vは、電圧
−周波数コンバータ10の入力信号としては、
9.5Vとなる。そのまま0.5Vを電圧−周波数コン
バータに入力したときは5KHzとなりカウンター
12で10msecごとにパルスを測定するとすれば、
そのパルス数はそれぞれ50ケであるが、9.5Vの
場合は950ケとなる。このパルス数の著しい増加
のため、リーデイング電圧及びその近傍における
試料イオンの電圧による信号を分解能を低下させ
ることなく高精度で処理することができる。
The output signal from the addition/subtraction circuit 9 is input to a voltage-frequency converter 10 that generates a pulse with a frequency proportional to this output signal.
The output signal from 0 is input to an isolation circuit 11, and then a counter 12 measures and analyzes the pulses. In this case, in order to enable the analysis to follow the high-speed signal from the detector 6 and read a value close to the true value, it is necessary to shorten the time interval at which the counter 12 counts. is an input signal inversion circuit 8 between the impedance converter 7 and the voltage-frequency converter 10.
By inserting the addition/subtraction circuit 9 in series, sample ions having values near the reading voltage value can be detected with high resolution. That is, when the signal voltage of a leading ion or a signal having a mobility similar to it is 0.5V, the output voltage of the addition/subtraction circuit 9 is 9.5V as described above, and the voltage -
The oscillation frequency of frequency converter 10 is approximately 100K
When the reading voltage is 0.5V at Hz/10V, the input signal of the voltage-frequency converter 10 is:
It becomes 9.5V. If 0.5V is directly input to the voltage-frequency converter, it will be 5KHz, and if the counter 12 measures pulses every 10msec, then
The number of pulses is 50 each, but in the case of 9.5V, it is 950. Due to this significant increase in the number of pulses, signals due to the reading voltage and the sample ion voltage in the vicinity thereof can be processed with high precision without reducing resolution.

第4図はこの発明の要部の具体的な回路構成の
一例を示したものであるが、検出器6からの入力
信号が負の場合も、負の信号を正の信号に変換す
る反転回路を別に設ければ、入力信号が正の場合
と同様に取扱うことができる。
FIG. 4 shows an example of a specific circuit configuration of the main part of the present invention, and even when the input signal from the detector 6 is negative, an inverting circuit is used to convert the negative signal into a positive signal. If it is provided separately, it can be handled in the same way as when the input signal is positive.

なお、上記実施例は検出器6を電位勾配検出器
としてその信号について説明したが、検出器6は
電位勾配検出器に限定されるものではなく熱検出
器または導電率検出器であつてもよい。
Note that in the above embodiment, the signal was explained using the detector 6 as a potential gradient detector, but the detector 6 is not limited to a potential gradient detector, and may be a heat detector or a conductivity detector. .

以上説明したことから明らかなように、この発
明は検出器からの入力信号を入力信号反転回路で
信号の符号を変え、加算減算回路で電圧−周波数
の最大入力電圧の値に加算することによつて、リ
ーデイング電圧での周波数を大きくし、カウンタ
ーでの同一測定時間に対するパルスを多くしたも
のであるから、PGセルからの高速の信号に追随
できるだけでなく、リーデイング電解液や試料液
からの小信号をも十分に検出して分解能を低下さ
せることなく高精度で処理することができるすぐ
れた作用効果を奏する。
As is clear from the above explanation, the present invention changes the sign of the input signal from the detector using an input signal inversion circuit, and adds it to the maximum input voltage value of voltage-frequency using an addition/subtraction circuit. Therefore, since the frequency of the reading voltage is increased and the number of pulses is increased for the same measurement time on the counter, it is possible to not only follow high-speed signals from the PG cell, but also to track small signals from the reading electrolyte and sample solution. It has an excellent effect of being able to sufficiently detect and process with high precision without reducing resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一実施例を示す機能説明図、第
2図はこの発明の一実施例を示す機能説明図、第
3図は検出器として電位勾配検出器を用いた場合
の電気泳動分析図、第4図はこの発明の要部を具
体的に示した回路構成説明図である。 1……等速電気泳動装置、2……リーデイング
電極槽、3……ターミナル電極槽、4……泳動
管、5……試料注入室、6……検出器、7……イ
ンピーダンス変換器、8……入力信号反転回路、
9……加算減算回路、10……電圧−周波数コン
バータ、11……アイソレーシヨン回路、12…
…カウンター。
Fig. 1 is a functional explanatory diagram showing one conventional embodiment, Fig. 2 is a functional explanatory diagram showing one embodiment of the present invention, and Fig. 3 is an electrophoretic analysis when a potential gradient detector is used as a detector. FIG. 4 is an explanatory diagram of a circuit configuration specifically showing the main part of the present invention. DESCRIPTION OF SYMBOLS 1... Isokinetic electrophoresis device, 2... Reading electrode tank, 3... Terminal electrode tank, 4... Electrophoresis tube, 5... Sample injection chamber, 6... Detector, 7... Impedance converter, 8 ...Input signal inversion circuit,
9... Addition/subtraction circuit, 10... Voltage-frequency converter, 11... Isolation circuit, 12...
…counter.

Claims (1)

【特許請求の範囲】[Claims] 1 ターミナル電極槽と、リーデイング電極槽
と、両電極槽を接続し試料注入室及び検出器を設
置した泳動管と、検出器からの検出信号を処理す
る信号処理回路とを備え、更にこの信号処理回路
が、検出器からの検出入力信号を反転する入力信
号反転回路とこの反転回路からの出力信号を電圧
−周波数の最大入力電圧の値に加算する加算減算
回路と、電圧−周波数コンバータと、カウンター
とをこの順で備えたことを特徴とする等速電気泳
動装置。
1 Equipped with a terminal electrode tank, a leading electrode tank, an electrophoresis tube that connects both electrode tanks and is equipped with a sample injection chamber and a detector, and a signal processing circuit that processes the detection signal from the detector, and further includes a signal processing circuit that processes the detection signal from the detector. The circuit includes an input signal inversion circuit that inverts a detected input signal from the detector, an addition/subtraction circuit that adds the output signal from the inversion circuit to a maximum input voltage value of voltage-frequency, a voltage-frequency converter, and a counter. An isotachophoresis apparatus characterized by comprising: and in this order.
JP57172627A 1982-09-30 1982-09-30 Uniform velocity electrophoretic apparatus Granted JPS5961769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57172627A JPS5961769A (en) 1982-09-30 1982-09-30 Uniform velocity electrophoretic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57172627A JPS5961769A (en) 1982-09-30 1982-09-30 Uniform velocity electrophoretic apparatus

Publications (2)

Publication Number Publication Date
JPS5961769A JPS5961769A (en) 1984-04-09
JPS635702B2 true JPS635702B2 (en) 1988-02-04

Family

ID=15945380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57172627A Granted JPS5961769A (en) 1982-09-30 1982-09-30 Uniform velocity electrophoretic apparatus

Country Status (1)

Country Link
JP (1) JPS5961769A (en)

Also Published As

Publication number Publication date
JPS5961769A (en) 1984-04-09

Similar Documents

Publication Publication Date Title
DE3787041D1 (en) METHOD FOR DETECTING AND / OR IDENTIFYING A BIOLOGICAL SUBSTANCE BY ELECTRICAL MEASUREMENTS AND DEVICE FOR CARRYING OUT THIS METHOD.
ES471120A1 (en) Method and apparatus for particle analysis
GB1481273A (en) Electrophoretic analysis of ions or like electrically charged particles
US5342492A (en) System for electrokinetic separation and detection where detection is performed at other than separation electric field
JPS635702B2 (en)
Brown et al. Instrumentation for Digital Data Acquisition in Voltammetric Techniques. DC And AC Polarography.
US2962426A (en) Electrochemical method for analyzing materials
EP0262582A3 (en) Method for determining the concentration ratio of lithium to sodium ions and apparatus for carrying out this method
Koyama Square-wave polarography of plutonium
JPH0442771Y2 (en)
ATE51415T1 (en) DETECTION OF SALICYLATE AND DEVICE FOR CARRYING OUT THE SAME.
SU725009A1 (en) Method of polarography on stationary electrodes
GB2176296A (en) Arrangement for electrochemical indication of eg the final stage of a titration analysis
SU769424A1 (en) Device for measuring electrode potentials under non-standard conditions of electrolysis
JPS61178643A (en) Particle analyser
SU1187063A1 (en) Method of differential voltammetry
SU1182368A1 (en) Apparatus for measuring liquid electric conduction
SU1509719A1 (en) Device for measuring concentration of ions in solutions of electrolytes
SU1122899A1 (en) Method and device for registering radiation by means of photodiode
SU1603283A1 (en) Method of differential relaxation voltammetry
SU1511663A1 (en) Method of checking binary alloys based on lead
JPS5961768A (en) Uniform velocity electrophoretic apparatus
SU1448265A1 (en) Device for measuring electrochemical potential of ions in solutions
SU855479A1 (en) Method of ac polarogram registering
SU619842A1 (en) Device for measuring electric conductivity